SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL

SAKKARAMPALAYAM, AGARAM (PO) ELACHIPALAYAM

TIRUCHENGODE(TK), NAMAKKAL (DT) PIN-637202

Cell : 99655-31727, 94432-31727

COMMON HALF-YEARLY EXAMINATION 2018

STD: XII

22.12.2018

SUBJECT: CHEMISTRY

ANSWER KEY

MARKS: 70

$\begin{tabular}{ c c c c c } \hline 1 & c & \beta-particle & 1 \\ \hline 2 & a & Hydride & 1 \\ \hline 3 & c & -2 to 0 & 1 \\ \hline 4 & b & +3 & 1 \\ \hline 5 & d & J, II and V & 1 \\ \hline 6 & a & A, B_A & 1 \\ \hline 7 & a & Sec^1 & 1 \\ \hline 7 & a & Sec^1 & 1 \\ \hline 7 & a & Sec^1 & 1 \\ \hline 7 & a & Sec^1 & 1 \\ \hline 7 & a & Sec^1 & 1 \\ \hline 7 & a & Sec^1 & 1 \\ \hline 7 & a & Sec^1 & 1 \\ \hline 7 & a & Sec^1 & 1 \\ \hline 7 & a & Sec^1 & 1 \\ \hline 7 & a & Sec^1 & 1 \\ \hline 10 & d & nE^{0-} 0.0591 \log K & 1 \\ \hline 11 & c & 2-pentanol & 1 \\ \hline 11 & c & 2-pentanol & 1 \\ \hline 13 & d & (i), (iii), iii), (i) & 1 \\ \hline 14 & c & CH_3CL_2COOHCH_3CHOCH_3COCH_3 & 2 \\ Reason:+1 Effect \\ \hline 12 & Na & Solutions of reactants and products in solution measured at 25^{\circ}C. \\ \hline 12 & Increasing order of reactivity :HCHO>CH_3CHOCH_3COCH_3 & 2 \\ \hline 12 & Reason:+1 Effect \\ \hline 13 & R & Rober & Ro$	Q.NO	SECTION-I	MARKS		
2a) Hydride13c) - 2 to 014b) +315d) L I andIV16a) A ₁ B ₄ 17a) Sec ¹ 18a) Solid dispersed in gas19b) Phenolphthalien110d) ft ⁵⁰ = 0.0591 log K111c) 2-pentanol112a) Functional isomerism113d) (ii),(iii),iv),(i)114c) CH ₃ CH ₂ COOH115c) Tri1Q.NOSECTION-IIMARKS16ii) The addition of an extra electron produces high electron density which increases strong electron-electron repulsion.116ii) The addition of an extra electron produces high electron density which increases strong electron-electron repulsion.Each one has ½18 γN^{15} (p.a) $_{0}C^{12}$ $_{1}Na^{23}(n, \beta)_{12}Mg^{24}$ 119If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress220Lyophibic-Gelatin , protein, starch Lyophibic-Sulphur When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard conditions, it is called the standard enf thus oblutions of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 222Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 222Reason:+1 Effect2	1	c) β- particle	1		
$ \begin{array}{ c c c c c c } \hline 3 & c) \cdot 2 \ to \ 0 & 1 \\ \hline 4 & b) + 3 & 1 \\ \hline 5 & d) \ I \ and IV & 1 \\ \hline 6 & a) \ A_1B_4 & 1 \\ \hline 7 & a) \ Sec^1 & 1 \\ \hline 8 & a) \ Solid \ dispersed \ in \ gas & 1 \\ \hline 9 & b) \ Phenolphthalien & 1 \\ \hline 10 & d) \ nE^{\eta=} 0.0591 \ log \ K & 1 \\ \hline 11 & c) \ 2 \ 2 \ pentanol \ isomerism & 1 \\ \hline 12 & a) \ Functional \ isomerism & 1 \\ \hline 13 & d) \ (ii), (iii), iv), (i) & 1 \\ \hline 14 & c) \ CH_3CUOH< CH_3COOH< CICH_2COOH \\ \hline 15 & C) \ Tri & 1 \\ \hline Q.NO & SECTION-II & MARKS \\ \hline The \ reason \ for \ this \ is \ probablydue \ to \\ i) \ 3mall \ size \ of \ fluorine \ atom. \\ \hline 16 & ii) \ The \ addition \ of \ an \ extra \ electron \ produces \\ high \ electron \ density \ which \ increases \ strong \ electron-electron \ repulsion. \\ \hline 1 \\ 1 \\$	2	a) Hydride			
	3	c) -2 to 0	1		
5d) L I andIV16a) A ₁ B ₄ 17a) Sec ⁻¹ 18a) Solid dispersed in gas19b) Phenolphthalien110d) nE ⁹ = 0.0591 log K111c) 2-pentanol112a) Functional isomerism113d) (ii),(iii),iv),(i)114c) CH ₂ CH ₂ COOH <ch<sub>3COOH<cich<sub>2COOH115C) Tri1QNOSECTION-IIMARKSThe reason for this is probablydue to i)small size of fluorine atom.116ii) The addition of an extra electron produces high electron density which increases strong electron-electron repulsion.117Coordination number: 6 Nature of the complex: cationic complex118$_{2}N^{15}$ (p, $_{0}$, $_{0}C^{12}$ niNa²⁵(n, β)₁₂ Mg²⁴119If a system at equilibrium is subjected to a nullify the effect of the disturbance or stress120Lyophilic-Gelatin, protein, starch Lyophobic- Sulphar121Men the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25° C.222Increasing order of reactivity :HCHO>CH₃CHO>CH₃COCH₃222Increasing order of reactivity :HCHO>CH₃CHO>CH₃COCH₃2</cich<sub></ch<sub>	4	b) +3	1		
6a) A_1B_4 17a) Sec ⁻¹ 18a) Solid dispersed in gas19b) Phenolphthalien110d) nE ⁰ = 0.0591 log K111c) 2-pentanol112a) Functional isomerism113d) (ii),(iii),iv),(i)114c) CH ₂ CL ₂ COOH <ch<sub>3COOH<hcooh<cich<sub>2COOH15c) Tri1Q.NOSECTION-IIMARKSThe reason for this is probablydue to i)small size of fluorine atom.116ii) The addition of an extra electron produces high electron density which increases strong electron-electron repulsion.17Central metal ion: Co⁺³ Co-ordination number: 6 Nature of the complex: cationic complex18$_2N^{15}$ (p, $\alpha)$ $_6C^{12}$ $_{11}Na^{23}$(n, $\beta)_{12} Mg^{24}$19If a system at equilibrium is subjected to a nullify the effect of the disturbance or stress20Lyophobic-Sulphur Thus standard conditions, it is called the standard emf Thus standard conditions, it is called the standard emf Thus standard end may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25° C.22Increasing order of reactivity :HCHO>CH₃CHO>CH₃COCH₃222Increasing order of reactivity :HCHO>CH₃CHO>CH₃COCH₃2</hcooh<cich<sub></ch<sub>	5	d) I,II andIV	1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	a) A_1B_4	1		
8a) Solid dispersed in gas19b) Phenolphthalien110d) $nE^0 = 0.0591 \log K$ 111c) 2-pentanol112a) Functional isomerism113d) (ii),(iii),iv),(i)114c) CH ₃ CH ₂ COOH <ch<sub>3COOH<chcooh<cich<sub>2COOH15C) Tri1Q.NOSECTION-IIMARKSThe reason for this is probablydue to i)small size of fluotine atom.116ii) The addition of an extra electron produces high electron density which increases strong electron-electron repulsion.17Central metal ion: Cot⁻³ Co-ordination number: 6 Nature of the complex: cationic complex18$_{7N}^{1.5}$ (p,c) $_{6}C^{1.2}$ $_{1.1Na^{2/3}}(n, \beta)_{1.2} Mg^{2.4}$19If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress20Lyophiblic-Gelatin , protein, starch Lyophobic-Sulphur121Standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25°C.222Increasing order of reactivity :HCHO>CH₃CHO>CH₃COCH₃222Increasing order of reactivity :HCHO>CH₃CHO>CH₃COCH₃2</chcooh<cich<sub></ch<sub>	7	a) Sec ⁻¹	1		
	8	a) Solid dispersed in gas	1		
	9	b) Phenolphthalien	1		
	10	d) nE ⁰ = 0.0591 log K	1		
12a) Functional isomerism113d) (iii),(iii),iv),(i)114c) CH ₃ CH ₂ COOH <ch<sub>3COOH<hcooh<cich<sub>2COOH115C) Tri1Q.NOSECTION-IIMARKSThe reason for this is probablydue to i)small size of fluorine atom.116ii) The addition of an extra electron produces high electron density which increases strong electron-electron repulsion.117Ligand: NH₃(Ammine), CI- Chloro Central metal ion: Co⁺³ Co-ordination number: 6 Nature of the complex: cationic complex118γN^{15} (p, α) $_{6}C^{12}$ $_{11}Na^{25}(n, \beta)_{12}Mg^{24}$119If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to mullify the effect of the disturbance or stress220Lyophilic-Gelatin , protein, starch Lyophobic- Sulphur121When the emf of a cell is determined under standard conditions, it is called the standard emf solutions of reactants and products in solution measured at 25° C.222Increasing order of reactivity :HCHO>CH₃CHO>CH₃COCH₃2</hcooh<cich<sub></ch<sub>	11	c) 2-pentanol	1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	a) Functional isomerism	1		
14c) $CH_3CH_2C0OH115C) Tri1Q.NOSECTION-IIMARKSThe reason for this is probablydue toi)small size of fluorine atom.116ii) The addition of an extra electron produceshigh electron density which increases strong electron-electron repulsion.117Ligand: NH3(Ammine), CI- ChloroCentral metal ion: Co^{-3}Co-ordination number: 6Nature of the complex: cationic complex118_7N^{15} (p,\alpha) _6C^{12}_{11Na^{23}}(n, \beta)_{12} Mg^{24}119If a system at equilibrium is subjected to adisturbance or stress, then the equilibrium shifts in the direction that tends tonullify the effect of the disturbance or stress220Lyopholic-Gelatin , protein, starchLyopholic- Sulphur121When the emf of a cell is determined understandard conditions, it is called the standard emfThus standard enf may be defined as the emf of a cell with 1 Msolutions of reactants and products in solution measured at 25°C.222Increasing order of reactivity :HCHO>CH3CHO>CH3COCH3Reason:+I Effect2$	13	d) (ii),(iii),iv),(i)	1		
15C) Tri1Q.NOSECTION-IIMARKSThe reason for this is probablydue to i)small size of fluorine atom.116ii) The addition of an extra electron produces high electron density which increases strong electron-electron repulsion.117Ligand: NH ₃ (Ammine), Cl ⁻ Chloro Central metal ion: Co^{+3} Co-ordination number: 6 Nature of the complex: cationic complexEach one has ½18 γN^{15} (p, α) ${}_{6}C^{12}$ ${}_{11}Na^{23}(n, \beta)_{12} Mg^{24}$ 119If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress220Lyophilic-Gelatin , protein, starch Lyophobic- Sulphur121When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25°C.222Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 2	14	c) CH ₃ CH ₂ COOH <ch<sub>3COOH<hcooh<clch<sub>2COOH</hcooh<clch<sub></ch<sub>	1		
Q.NOSECTION-IIMARKSThe reason for this is probablydue to i)small size of fluorine atom.116ii) The addition of an extra electron produces high electron density which increases strong electron-electron repulsion.117Ligand: NH ₃ (Ammine), CI - Chloro Central metal ion: Co^{+3} Co-ordination number: 6 Nature of the complex: cationic complexEach one has ½18 $7N^{15}$ (p, α) $_{6}C^{12}$ $_{11}Na^{23}(n, \beta)_{12}Mg^{24}$ 119If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress220Lyophilic-Gelatin , protein, starch Lyophobic- Sulphur121When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25°C.222Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 2	15	C) Tri	1		
The reason for this is probablydue to i)small size of fluorine atom.116ii) The addition of an extra electron produces high electron density which increases strong electron-electron repulsion.117Ligand: NH ₃ (Ammine), CI - Chloro Central metal ion: Co ⁺³ Co-ordination number: 6 Nature of the complex: cationic complexEach one has ½18 $7N^{15}$ (p, α) $_{6}C^{12}$ $_{11Na^{23}}(n, \beta)_{12} Mg^{24}$ 119If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress220Lyophilic-Gelatin, protein, starch Lyophobic- Sulphur121When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25°C.222Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 2	Q.NO	SECTION-II	MARKS		
16i)small size of fluorine atom.116ii) The addition of an extra electron produces high electron density which increases strong electron-electron repulsion.117Ligand: NH ₃ (Ammine), CI - Chloro Central metal ion: Co^{+3} Co-ordination number: 6 Nature of the complex: cationic complexEach one has ½18 $7N^{15}$ (p, α) $_{6}C^{12}$ $_{11}Na^{23}(n, \beta)_{12} Mg^{24}$ 119If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress220Lyophilic-Gelatin, protein, starch Lyophobic- Sulphur121When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25° C.222Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 2		The reason for this is probablydue to			
16ii) The addition of an extra electron produces high electron density which increases strong electron-electron repulsion.117Ligand: NH ₃ (Ammine), CI - Chloro Central metal ion: Co*3 Co-ordination number: 6 Nature of the complex: cationic complexEach one has ½18 $_{7}N^{15}$ (p, α) $_{6}C^{12}$ $_{11}Na^{23}$ (n, β) $_{12}Mg^{24}$ 119If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress220Lyophilic-Gelatin , protein, starch Lyophobic- Sulphur1 121When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25°C.222Increasing order of reactivity :HCHO>CH ₃ COCH ₃ 2		i)small size of fluorine atom.	1		
high electron density which increases strong electron-electron repulsion.IiLigand: NH ₃ (Ammine), CI ⁻ Chloro Central metal ion: Co ⁺³ Co-ordination number: 6 Nature of the complex: cationic complexEach one has ½18 $_7N^{15}$ (p, α) $_6C^{12}$ $_{11}Na^{23}$ (n, β) $_{12}Mg^{24}$ 119If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress220Lyophilic-Gelatin , protein, starch Lyophobic- Sulphur121When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25° C.222Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 2	16	ii) The addition of an extra electron produces	1		
17Ligand: NH ₃ (Ammine), CI - Chloro Central metal ion: Co ⁺³ Co-ordination number: 6 Nature of the complex: cationic complexEach one has $\frac{1}{2}$ 18 $7N^{15}$ (p, α) $_{6}C^{12}$ $_{11}Na^{23}$ (n, β) ₁₂ Mg ²⁴ 119If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress220Lyophilic-Gelatin , protein, starch Lyophobic- Sulphur121When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25° C.222Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 2		high electron density which increases strong electron-electron repulsion.			
17Ligand: NH ₃ (Ammine), CI - Chloro Central metal ion: Co ⁺³ Co-ordination number: 6 Nature of the complex: cationic complexEach one has ½18 $7N^{15}$ (p,a) ${}_{6}C^{12}$ ${}_{11}Na^{23}(n, \beta)_{12} Mg^{24}$ 119If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress220Lyophilic-Gelatin , protein, starch Lyophobic- Sulphur121When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25°C.222Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 2					
17Central metal ion: Co^{+3} has V_2 18 $_7N^{15}$ (p, α) $_6C^{12}$ 119If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress220Lyophilic-Gelatin , protein, starch Lyophobic- Sulphur121When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at $25^{\circ}C$.222Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 2		Ligand: NH ₃ (Ammine), Cl ⁻ - Chloro	Each one		
Co-ordination number: 6 Nature of the complex: cationic complex118 $_{7}N^{15}$ (p, α) $_{6}C^{12}$ $_{11}Na^{23}(n, \beta)_{12}Mg^{24}$ 119If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress220Lyophilic-Gelatin , protein, starch Lyophobic- Sulphur121When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25° C.222Increasing order of reactivity :HCHO>CH_3CHO>CH_3COCH_3 Reason:+I Effect2	17	Central metal ion: Co ⁺³	has $\frac{1}{2}$		
Nature of the complex: cationic complex18 $_7N^{15}$ (p,a) $_6C^{12}$ 1 $_{11}Na^{23}(n, \beta)_{12} Mg^{24}$ 119If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress220Lyophilic-Gelatin , protein, starch Lyophobic- Sulphur121When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25° C.222Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 2		Co-ordination number: 6			
18 $_{7}N^{15}$ (p, α) $_{6}C^{12}$ 119If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress220Lyophilic-Gelatin , protein, starch Lyophobic- Sulphur121When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25°C.222Increasing order of reactivity :HCHO>CH3CHO>CH3COCH32		Nature of the complex: cationic complex			
18 $_{7}N^{15}$ (p,a) $_{6}C^{12}$ 119If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress220Lyophilic-Gelatin , protein, starch Lyophobic- Sulphur121When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25° C.222Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 2			1		
11Na ²³ (n, β) ₁₂ Mg ²⁴ 1 19 If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress 2 20 Lyophilic-Gelatin , protein, starch Lyophobic- Sulphur 1 21 When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25°C. 2 22 Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 2	18	$_{7}N^{15}$ (p, α) $_{6}C^{12}$			
19If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress220Lyophilic-Gelatin , protein, starch Lyophobic- Sulphur121When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25°C.222Increasing order of reactivity :HCHO>CH3CHO>CH3COCH3 Reason:+I Effect2		$_{11}$ Na ²³ (n, β) ₁₂ Mg ²⁴	1		
19If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress220Lyophilic-Gelatin , protein, starch Lyophobic- Sulphur121When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25°C.222Increasing order of reactivity :HCHO>CH3CHO>CH3COCH3 Reason:+I Effect2					
10 disturbance or stress, then the equilibrium shifts in the direction that tends to 1 11 nullify the effect of the disturbance or stress 1 120 Lyophilic-Gelatin , protein, starch 1 11 Lyophobic- Sulphur 1 121 When the emf of a cell is determined under 2 121 standard conditions, it is called the standard emf 2 121 Thus standard emf may be defined as the emf of a cell with 1 M 2 121 Solutions of reactants and products in solution measured at 25° C. 2 122 Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 2 122 Reason:+I Effect 2	19	If a system at equilibrium is subjected to a	2		
nullify the effect of the disturbance or stress20Lyophilic-Gelatin , protein, starch Lyophobic- Sulphur121When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25°C.222Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ Reason:+I Effect2	17	disturbance or stress, then the equilibrium shifts in the direction that tends to			
20Lyophilic-Gelatin , protein, starch Lyophobic- Sulphur121When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25°C.222Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ Reason:+I Effect2		nullify the effect of the disturbance or stress			
Lyophobic- Sulphur 1 When the emf of a cell is determined under 2 standard conditions, it is called the standard emf 2 Thus standard emf may be defined as the emf of a cell with 1 M 2 solutions of reactants and products in solution measured at 25°C. 2 Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 2 Reason:+I Effect 2	20	Lyophilic-Gelatin, protein, starch			
21when the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25° C.222Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ Reason:+I Effect2		Lyopnobic- Sulphur	1		
21 Standard conditions, it is called the standard entity 2 Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at 25°C. 2 22 Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 2 22 Reason:+I Effect 2		when the effit of a cell is determined under	2		
Thus standard enn may be defined as the enn of a cen with 1 Msolutions of reactants and products in solution measured at 25°C.22Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 2Reason:+I Effect	21	Standard conditions, it is called the standard enil Thus standard amf may be defined as the amf of a call with 1 M	2		
Solutions of reactants and products in solution measured at 25°C.22Increasing order of reactivity :HCHO>CH ₃ CHO>CH ₃ COCH ₃ 2Reason:+I Effect2		solutions of reactants and products in solution measured at 25°C			
22 Increasing order of reactivity increasing coefficiency children and the second se		Increasing order of reactivity HCHONCH_CHONCH_COCH_	2		
Rouson, +1 Effect	22	Reason+LEffect	2		

23	Formation of cyclic diester - by heating in presence of catalytic amount of con. H ₂ SO ₄ . $CH_{3} \xrightarrow{CHO[H] HO} - C = O \xrightarrow{H^{*}} CH_{3} \xrightarrow{CH} CH_{3} \xrightarrow{CH} CH_{2}O \xrightarrow{CH} + 2H_{2}O \xrightarrow{CH-CH_{3}} O = C \xrightarrow{CH-CH-CH_{3}} O = C \xrightarrow{CH-CH-CH-CH_{3}} O = C \xrightarrow{CH-CH-CH-CH_{3}} O = C \xrightarrow{CH-CH-CH-CH_{3}} O = C \xrightarrow{CH-CH-CH-CH_{3}} O = C \xrightarrow{CH-CH-CH-CH-CH_{3}} O = C \xrightarrow{CH-CH-CH-CH-CH_{3}} O = C \xrightarrow{CH-CH-CH-CH-CH_{3}} O = C \xrightarrow{CH-CH-CH-CH-CH-CH-CH-CH_{3}} O = C CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C$	2
24	 Phospholipids like lecithins, and cephalins play a greater role in biosystem. The lecithins are required for normal transport and utilisation of other lipids, especially in the liver. lecithin aids in the organisation of the cell structure. Cephalins are found in the brain. Cephalins have been implicated in the process of blood coagulation. 	1
Q.NO	SECTION-III	MARK
25	Lead is not attacked by pure water in the absence of air, but water containing dissolved air has a solvent action on it due to the formation of lead hydroxide (a poisonous substance). This phenomenon is called Plumbo solvency . $2Pb + O_2 + 2H_2O \longrightarrow 2Pb(OH)_2$	1 1 1
26	 Any three Points A pyrophoric alloy which contains cerium, lanthanum and Neodymium, iron, aluminium, calcium, carbon and silicon is used in cigarette lighters, toys, flame throwing tanks and tracer bullets. Ceria (CeO₂) and thoria (ThO₂) are used in gas lamp materials. Cerium salts are used in dyeing cotton, lead storage batteries and as catalyst. Lanthanides are used in metallothermic reactions due to their extraordinary reducing property. Lanthanido - thermic processes can yield sufficiently pure Nb, Zr, Fe, Co, Ni, Mn, Y, W, U, B and Si. Alloys of Lanthanides are known as mish - metals .The major constituents of mish-metals are Ce(45-50%), La(25%), Nd(5%) and small quantities of other lanthanide metals and Fe and Ca impurities. Mish-metals are used for the production of brands of steel like heat resistant, stainless and instrumental steels. Mg- alloys containing 30% mishmetal and 1% Zr are useful in making parts of jet engines. 	3
27	Coordination compounds having the same molecular formula but formingdifferent ions in solution are called ionisation isomers. This property is known asionisation isomerism.An example of this type of isomerism is furnished by the red-violet, $[Co(NH_3)_5Br]SO_4$ $[Co(NH_3)_5SO_4]Br$ pentaamminebromocobalt(III) sulphatepentaamminesulphatocobalt (III) bromideThe red-violet isomer yields sulphate ion and the red isomer furnishes bromide ionin solution.	1 ¹ /2 1 ¹ /2
28	Simple cubic Find the total Number of atoms per unit cell = Nc/8=8/8= 1 The total Number of atoms per unit cell = Nc/8 + Nb/1 =8/8 + 1/1 =1+1 = 2 First-centred cubic First-centred cubic The total Number of atoms per unit cell = Nc/8+Nf/2 =8/8 + 6/2 =1+3 = 4	1

SHRI VIDHYABHARATHI MAT.HR.SEC.SCHOOL, SAKKARAMPALAYAM. 99655-31727Page 2

	a) bromination of bromo benzene- Parallel reaction	1
29	b) Decomposition of HI in gaseous phase - Opposing reaction	1
	c) Hydrolysis of diester in the presence of base - Consecutive reaction	1
30	 Any three points The catalyst remains unchanged in mass and in chemical composition at the end of the reaction. Only a small quantity of catalyst is generally needed. A catalyst cannot initiate a reaction. The function of a catalyst is only to alter the speed of the reaction which is already occurring at a particular rate. A catalyst does not alter the position of equilibrium in a reversible reaction. The catalyst is generally specific in its action. 	3
31	$H \xrightarrow{COOH} H \xrightarrow{H} \xrightarrow{COOH} H \xrightarrow{H} \xrightarrow{COOH} H \xrightarrow{H} \xrightarrow{Cis} Trans$ [Maleic acid] [Fumaric acid] fumaric acid(trans) is more stable than Maleic acid(cis) because of steric hindrance	11⁄2 11⁄2
	C ₆ H ₅ CHO : phenyl methanal	1
32	C ₆ H ₅ CH=CH-CHO : 3-phenyl prop - 2 en- 1- al	1
	CH ₃ COCH ₂ CH=CH ₂ : Pent - 4-ene - 2-one	1
	 Aqueous solution of carboxylic acids turn blue litmus into red colour. 	1
33	 Carboxylic acids give brisk effervescence with sodium bi-carbonate due to the evolution of carbon-di-oxide. On warming carboxylic acids with alcohol and concentrated sulphuric 	1
	acid it forms ester which is identified from its fruity odour.	
Q.NO	SECTION-IV	MARKS
	a) i) Intermolecular hydrogen bonding. Hydrogen fluoride H - E	1/2 + 1/2
	Intramolecular hydrogen bonding.	$\frac{1}{2} + \frac{1}{2}$
34	ii) Electronic configuration of Nitrogen - $1s^22s^22p^3$ N ₂ molecule - 14 electrons	1/2
	$N_{2}: KK(\sigma_{2s})^{2}(\sigma_{2s}^{*})^{2}(\pi_{2p_{x}})^{2}(\pi_{2p_{y}})^{2}(\sigma_{2p_{z}})^{2}$	
	here KK : $(\sigma_{1s})^2 (\sigma_{1s}^*)^2$	1⁄2
		<u> </u>

					1
	Atomic orbitals				
	Bono	$d \text{ order} = \frac{n_b - n_a}{2} = \frac{a - 2}{2} = 3.$ re of the bond : Triple			1/2
	mag b) i) atom	netic : Dia magnetic As we move from left to right nic and ionic radii of the eleme rge and the additive electrons an	acro ents e ac	oss a period, there is regular decrease in . This is due to the increase in the nuclear lded to the same electronic level.	1
	On r atom whice	noving down a group both ato nic number. The increase in siz ch outweigh the effect of increa	omic e is sed	c and ionic radii increase with increasing due to introduction of extra energy shells nuclear charge.	1
	ii) T	he electronic configuration of k	C ato	om is	1
	K 19 =	$= (1s^2) (2s^2 2p^6) (3s^2 3p^6) 4s^1$			
	Effe	ctive nuclear charge $(Z_*) = Z -$	S		1
	Z =	$19 - [(0.85 \cdot \text{No. of electrons in}]$	(n -	-1)th shell) +	
	(1.00	J total number of electrons in the $[0.85, (8) + (1.00, 10)]$	le in	ner shells)]	1
	= 19 Z*=	2.20			
	a) o	re :The chief ore Argentite (Ag	(2S)		1/2
	Con	centration: ore is concentrated	by	froth-floatation process.	1/2
	Trea	atment of the ore with NaCN			
	Ag	$g_2S + 4NaCN \implies 2Na [Ag(CN Sodium argento)]$	$)_2$] +	- Na ₂ S nide (soluble)	1
	Prec	cipitation of silver			
	2N	$Ia [Ag(CN)_{2}] + Zn \rightarrow Na_{2}[Zn(CN)_{4}]$]+2	Ag↓	1
	Elec	trolytic refining			1
	Ano	de : impure silver			2
		trolyte . Silver nitrate & 1% Ni	tric	acid	
	b) (i)) any three points			
35					
55		Chemical reactions		Nuclear reactions	
	1.	These reaction involve some loss, gain or overlap of outer orbital electrons of the reactant atoms.	1.	Nuclear reactions involve emission of alpha, beta and gamma particles from the nucleus.	
	2.	A chemical reaction is balanced in terms of mass only	2.	Nuclear reaction is balanced in terms of both mass and energy.	2
	3.	The energy changes in any chemical reaction is very much less when compared with nuclear reaction.	3.	The energy changes are far exceed than the energy changes in chemical reactions.	3
	4.	In chemical reactions, the energy is expressed in terms of kilojoules per mole.	4.	In nuclear reactions, the energy involved is expressed in MeV (Million electron volts) per individual nucleus.	
	5.	No new element is produced since nucleus is unaffected.	5.	New element / isotope may be produced during the nuclear reaction.	

	(ii) The amount of energy absorbed or released during nuclear reaction is called	1
	Q-value of nuclear reaction. $Q_{\rm relat} = (m_{\rm rel} - m_{\rm rel}) 931 {\rm MeV}$	1
	where m_r - Sum of the masses of reactants	1
	m_p - Sum of the masses of products	
	a)(i) In a chemical reaction, when number of molecules of products are more	1
	than the number of molecules of reactant entropy increases.	
	b) In physical process, when a solid changes to liquid, when a liquid changes	
	to vapour and when a solid changes to vapour, entropy increase in all these	1
	processes.	
	(ii) Any three points	
	1) G is defined as (H-TS) where H and S are the enthalpy and entropy of the	
	system respectively. $I = $ temperature. Since H and S are state functions, G is a state function	
	is a state function. ii) G is an extensive property while $\Lambda G = (G_2, G_1)$ which is the free energy	
	change between the initial (1) and final (2) states of the system becomes the	
	intensive property when mass remains constant between initial and final states	
	(or) when the system is a closed system.	
	iii) G has a single value for the thermodynamic state of the system.	
	iv) G and ΔG values correspond to the system only. There are three cases of	
	ΔG in predicting the nature of the process. When, $\Delta G < 0$ (negative), the	
	process is spontaneous and feasible; $\Delta G = 0$. The process is in equilibrium	2
	and $\Delta G > 0$ (positive), the process is nonspontaneous and not feasible.	3
	v) $\Delta G = \Delta H - T\Delta S$. But according to I law of thermodynamics,	
	$\Delta H = \Delta E + P\Delta V$ and $\Delta E = q - w$.	
	$\Delta G = q - w + P\Delta V - T\Delta S$	
	But $\Delta S = q/T$ and $T\Delta S = q =$ heat involved in the process.	
	$\Delta \mathbf{G} = \mathbf{q} - \mathbf{w} + \mathbf{P} \Delta \mathbf{V} - \mathbf{q} = -\mathbf{w} + \mathbf{P} \mathbf{V}$	
	$(or) -\Delta G = w - P\Delta V = network.$	
	The decrease in free energy $-\Delta G$, accompanying a process taking place at	
	constant temperature and pressure is equal to the maximum obtainable work	
	This quantity is called as the "net work" of the system and it is equal to	
	(w - PAV) Net work = $-AG = w - PAV$.	
36		
30	b) (i)The effect of concentration on equivalent conductance can be studied	1
	from the plots of λc values versus square root of concentration of the	
	electrolyte. By doing so, it has been found that different types of plots are	
	obtained depending on the nature of electrolyte.	
	For strong electrolytes λC decreases linearly with increase in $\mathcal{V} C$ while for weak	
	electrolytes, there is a curve type of non-linear decrease of λ c with λC	1
	t turve type of non intear decrease of AC with VC .	-
	1 / /*	1
	he b	
	$\sqrt{c} \rightarrow$	
	$\lambda_{\rm C} = \lambda_{\infty} - ({\rm A} + {\rm B} \lambda_{\infty}) \sqrt{{\rm C}}$	1
	(ii) $pH = -log [H^+]$	
	$= -\log 10^{-2}$	1
	= +2	

