SHRI VIDHY ABHARATHI MATRIC HR.SEC.SCHOOL SAKKARAMPALAYAM, AGARAM (PO) ELACHIPALAYAM TIRUCHENGODE(TK), NAMAKKAL (DT) PIN-637202 Cell : 99655-31727, 94432-31727 COMMON HALF-YEARLY EXAMINATION 2018		
STD: XII SUBJECT: CHEMISTRY	22.12 .2018 I: CHEMISTRY ANSWER KEY	MARKS: 70
Q.NO SECTION-I ${ }^{\text {a }}$ MARKS		
1	c) β-particle	1
2	a) Hydride	1
3	c) -2 to 0	1
4	b) +3	1
5	d) I,II andIV	1
6	a) $\mathrm{A}_{1} \mathrm{~B}_{4}$	1
7	a) Sec^{-1}	1
8	a) Solid dispersed in gas	1
9	b) Phenolphthalien	1
10	d) $\mathrm{nE}^{0}=0.0591 \log \mathrm{~K}$	1
11	c) 2-pentanol	1
12	a) Functional isomerism	1
13	d) (ii),(iii),iv),(i)	1
14	c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{HCOOH}<\mathrm{ClCH}_{2} \mathrm{COOH}$	1
15	C) Tri	1
Q.NO	SECTION-II	MARKS
16	The reason for this is probablydue to i)small size of fluorine atom. ii) The addition of an extra electron produces high electron density which increases strong electron-electron repulsion.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
17	Ligand: NH_{3} (Ammine), Cl^{-}- Chloro Central metal ion: Co^{+3} Co-ordination number: 6 Nature of the complex: cationic complex	Each one has $1 / 2$
18	$\begin{aligned} & { }_{7} \mathrm{~N}^{15}(\mathrm{p}, \alpha){ }_{6}{ }_{6} \mathrm{C}^{12} \\ & { }_{11} \mathrm{Na}^{23}(\mathrm{n}, \beta)_{12} \mathrm{Mg}^{24} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
19	If a system at equilibrium is subjected to a disturbance or stress, then the equilibrium shifts in the direction that tends to nullify the effect of the disturbance or stress	2
20	Lyophilic-Gelatin, protein, starch Lyophobic- Sulphur	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
21	When the emf of a cell is determined under standard conditions, it is called the standard emf Thus standard emf may be defined as the emf of a cell with 1 M solutions of reactants and products in solution measured at $25^{\circ} \mathrm{C}$.	2
22	$\begin{aligned} & \text { Increasing order of reactivity : } \mathrm{HCHO}>\mathrm{CH}_{3} \mathrm{CHO}>\mathrm{CH}_{3} \mathrm{COCH}_{3} \\ & \text { Reason: }+ \text { I Effect } \end{aligned}$	2

Bond order $=\frac{\mathrm{N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}}}{2}=\frac{8-2}{2}=3$.
nature of the bond: Triple magnetic : Dia magnetic
b) i)As we move from left to right across a period, there is regular decrease in atomic and ionic radii of the elements. This is due to the increase in the nuclear charge and the additive electrons are added to the same electronic level.

On moving down a group both atomic and ionic radii increase with increasing atomic number. The increase in size is due to introduction of extra energy shells which outweigh the effect of increased nuclear charge.
ii) The electronic configuration of K atom is
$\mathrm{K}_{19}=\left(1 \mathrm{~s}^{2}\right)\left(2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}\right)\left(3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}\right) 4 \mathrm{~s}^{1}$
Effective nuclear charge (Z^{*}) $=\mathrm{Z}-\mathrm{S}$
$Z *=19-\left[\left(0.85 \cdot\right.\right.$ No. of electrons in $(n-1)_{\text {th }}$ shell $)+$
(1.00 total number of electrons in the inner shells)]
$=19-[0.85 \cdot(8)+(1.00 \cdot 10)]$
Z* $=2.20$
a) ore :The chief ore Argentite $\left(\mathrm{Ag}_{2} \mathrm{~S}\right)$

Concentration: ore is concentrated by froth-floatation process.
Treatment of the ore with NaCN
$\mathrm{Ag}_{2} \mathrm{~S}+4 \mathrm{NaCN} \rightleftharpoons 2 \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+\mathrm{Na}_{2} \mathrm{~S}$ Sodium argento cyanide (soluble)
Precipitation of silver
$2 \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{,}\right]+\mathrm{Zn} \rightarrow \mathrm{Na},\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]+2 \mathrm{Ag} \downarrow$
Electrolytic refining
Anode : impure silver
Cathode: Pure silver
Electrolyte: Silver nitrate \& 1\% Nitric acid
b) (i) any three points

Chemical reactions		Nuclear reactions	
1.	These reaction involve some loss, gain or overlap of outer orbital electrons of the reactant atoms.	1.	Nuclear reactions involve emission of apha, beta and ganma particles from the mucleus.
2.	A chemical reaction is balanced in terms of mass only	2.	Nuclear reaction is balanced in terms of both mass and energy.
3.	The energy changes in any chemical reaction is very much less when compared with nuclear reaction.	3.	The energy changes are far exceed than the energy changes in chemical reactions.
4.	In chemical reactions, the energy is expressed in terms of kilojoules per mole.	4.	In nuclear reactions, the energy involved is expressed in MeV (Million electron volts) per individual nucleus.
5.	No new element is produced since mucleus is unaffected.	5.	New element / isotope may be produced during the muclear reaction.

(ii) The amount of energy absorbed or released during nuclear reaction is called Q-value of nuclear reaction.
$Q_{\text {value }}=\left(m_{p}-\mathrm{m}_{\mathrm{r}}\right) 931 \mathrm{MeV}$
where m_{r} - Sum of the masses of reactants m_{p} - Sum of the masses of products
a)(i) In a chemical reaction, when number of molecules of products are more than the number of molecules of reactant entropy increases.
b) In physical process, when a solid changes to liquid, when a liquid changes
to vapour and when a solid changes to vapour, entropy increase in all these processes.
(ii) Any three points
i) G is defined as (H-TS) where H and S are the enthalpy and entropy of the system respectively. $T=$ temperature. Since H and S are state functions, G is a state function.
ii) G is an extensive property while $\Delta \mathrm{G}=\left(\mathrm{G}_{2}-\mathrm{G}_{1}\right)$ which is the free energy change between the initial (1) and final (2) states of the system becomes the intensive property when mass remains constant between initial and final states (or) when the system is a closed system.
iii) G has a single value for the thermodynamic state of the system.
iv) G and $\Delta \mathrm{G}$ values correspond to the system only. There are three cases of $\Delta \mathrm{G}$ in predicting the nature of the process. When, $\Delta \mathbf{G}<\mathbf{0}$ (negative), the process is spontaneous and feasible; $\Delta \mathbf{G}=0$. The process is in equilibrium and $\Delta G>0$ (positive), the process is nonspontaneous and not feasible.
v) $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$. But according to I law of thermodynamics,
$\Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{V}$ and $\Delta \mathrm{E}=\mathrm{q}-\mathrm{w}$.
$\Delta \mathrm{G}=\mathrm{q}-\mathrm{w}+\mathrm{P} \Delta \mathrm{V}-\mathrm{T} \Delta \mathrm{S}$
But $\Delta \mathrm{S}=\mathrm{q} / \mathrm{T}$ and $\mathrm{T} \Delta \mathrm{S}=\mathrm{q}=$ heat involved in the process.
$\Delta \mathrm{G}=\mathrm{q}-\mathrm{w}+\mathrm{P} \Delta \mathrm{V}-\mathrm{q}=-\mathrm{w}+\mathrm{PV}$
(or) $-\Delta \mathbf{G}=\mathbf{w}-\mathbf{P} \Delta \mathbf{V}=$ network.
The decrease in free energy $-\Delta \mathrm{G}$, accompanying a process taking place at constant temperature and pressure is equal to the maximum obtainable work from the system other than work of expansion.
This quantity is called as the "net work" of the system and it is equal to $(\mathrm{w}-\mathrm{P} \Delta \mathrm{V}) . \quad$ Net work $=-\Delta \mathrm{G}=\mathrm{w}-\mathrm{P} \Delta \mathrm{V}$.
b) (i)The effect of concentration on equivalent conductance can be studied
from the plots of λ_{C} values versus square root of concentration of the electrolyte. By doing so, it has been found that different types of plots are obtained depending on the nature of electrolyte.
For strong electrolytes λ_{c} decreases linearly with increase in $\sqrt{ } \mathrm{C}$ while for weak electrolytes, there is a
curve type of non linear decrease of λ_{C} with $\sqrt{ } \mathrm{C}$.

$\lambda_{\mathrm{C}}=\lambda_{\infty}-\left(\mathrm{A}+\mathrm{B} \lambda_{\infty}\right) \sqrt{\mathrm{C}}$
(ii) $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$=-\log 10^{-2}$
$=+2$

37	a) (i) a) Concentrated sulphuric acid being more powerful acid and dehydrating agent removes two molecules of water forming dioxan.	2 (Without catalyst 1)
	b) When glycerol is heated with potassium bisulphate or conc. sulphuric acid or phosphorous pentoxide dehydration takes place. Two β-elimination reaction takes place to give acrolein or acrylic aldehyde.	2 (Without catalyst 1)
	(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ is more water soluble than $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{3}$ Reason : Presence of H - Bonding in Ethanol	1
	(OR) b) (i) $\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3} \\ & \text { diethyl ether } \\ & \text { (methyy }-\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \end{aligned}$	1 1 1
	ii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}+2 \mathrm{HI} \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}+\mathrm{H}_{2} \mathrm{O}$ Zeisel's method of detection and estimation of alkoxy (especially methoxy) group in natural products like alkaloids.	1 1
38	a) (i) a) b) $\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{CHCl}_{3}+3 \mathrm{KOH} \longrightarrow \mathrm{CH}_{3} \mathrm{NC}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}$	2 2
	ii) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}<\mathrm{CH}_{3} \mathrm{NH}_{2}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	1
	(OR) b) The propulsion system in most space vehicles consists of rocket engines powered by chemical propellants. These also called rocket propellants. Propellants are combustible compounds which on ignition undergo rapid combustion to release large quantities of hot gases. A propellant is a combination of an oxidiser and a fuel. Working of a propellant : These gases then come out through the nozzle of the rocket motor. Newton's Third law of Motion (to every action, there is an equal and opposite reaction). Hydrazine, Liquid hydrogen, Polyurethane, etc.	1 1 1 1 1

