ACE
Engineering Academy
Leading Institute for ESE/GATE/PSUs

Hyderabad | Delhi | Ahmedabad | Bhopal | Pune | Bhubaneswar | Bengaluru Lucknow | Patna | Chennai | Vijayawada | Vizag | Tirupathi | Kukatpally | Kolkata

ESE-2019 (MAINS)

Questions with Detailed Solutions

 ELECTRICAL ENGINEERING
PAPER-II

ACE Engineering Academy has taken utmost care in preparing the ESE-2019 MAINS Examination solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (GATE/ESE/PSUs/PSC/GENCO/TRANSCO etc.,).

ELECTRICAL ENGINEERING ESE MAINS-2019 PAPER-2

PAPER REVIEW

Overall paper was Moderate, in this paper in every subject some of the questions are easy and some are difficult and also subjects are not divided in section wise. Section-B is easy as compared to Section-A. So choosing three questions from Section-B will fetch you to score good marks.

Subjects	LEVEL	Marks
Analog \& Digital Electronics	Moderate	64
Systems \& Signal Processing	Moderate	52
Control Systems	Moderate	84
Electrical Machines	Hard	104
Power Systems	Moderate	92
Power Electronics	Moderate	84

SECTION - A

1(a) Determine the values of slope K_{1}, K_{2}, K_{3} and the voltages L_{+}and L_{-}for the amplifier and its transfer characteristics shown in the figure given below:

$\left(R_{1}=30 \mathrm{k} \Omega, R_{2}=R_{5}=9 \mathrm{k} \Omega, R_{3}=R_{4}=3 \mathrm{k} \Omega, R_{f}=60 \mathrm{k} \Omega\right)$
The diodes may be assumed to be ideal.
Sol: Case (i): For the small values of V_{i} i.e. close origin ' O '
Step: $1 \quad \mathrm{As} \mathrm{V}_{\mathrm{i}} \& \mathrm{~V}_{0}$ are small, the voltage at node ' A ' is +Ve and voltage at node ' B ' is -Ve .
Therefore D_{1} and D_{2} will be OFF
$\Rightarrow \mathrm{V}_{0}=-\frac{R_{f}}{R_{1}} V_{i}$
\therefore The slope, $\mathrm{K}_{1}=\frac{-R_{f}}{R_{1}}=-\frac{60 k}{30 k}=-2$
Case (ii): For $\mathrm{V}_{\mathrm{i}}=$ positive
Step 2: As V_{i} increases, D_{2} remains $O F F$, but D_{1} will be $O N$
$\mathrm{L}_{-}=-\mathrm{V}\left[\frac{R_{3}}{R_{2}}\right]-V_{D_{1}}\left(1+\frac{R_{3}}{R_{2}}\right) \ldots \ldots$. (3) [Using super position principle node ' A '
(4) $\left[\because D_{1}\right.$ is ideal, $\left.V_{D 1}=0\right]$

$$
\mathrm{L}_{-}=-5 \mathrm{~V}
$$

$$
\begin{equation*}
=-15 \mathrm{~V}\left[\frac{3 k}{9 k}\right]-0 \tag{4}
\end{equation*}
$$

\qquad
4

Step 3:

$$
\text { Slope, } \begin{aligned}
\mathrm{K}_{2} & =-\frac{R_{f} / / R_{3}}{R_{1}} \\
& -\frac{60 K / / 3 K}{30 K} \\
\mathrm{~K}_{2} & =-0.095238
\end{aligned}
$$

Case (iii)

Step 4: As V_{i} is $-\mathrm{Ve}, \mathrm{D}_{1}$ OFF D_{2} will be ON
$\mathrm{L}_{+}=\mathrm{V}\left(\frac{R_{4}}{R_{5}}\right)+V_{D_{2}}\left(1+\frac{R_{4}}{R_{5}}\right)$.
(9) $[\because$ Super position principle at $]$

Node (B)

$$
=+15 \mathrm{~V}\left[\frac{3 K}{9 K}\right]+0
$$

\qquad

$$
\text { (10) } \quad\left[\because \mathrm{D} 2 \text { is ideal, } \mathrm{V}_{\mathrm{D} 2}=0\right]
$$

$$
\begin{equation*}
\therefore L_{+}=+5 \mathrm{~V} . \tag{11}
\end{equation*}
$$

Step 5:

Slope, $\mathrm{K}_{3}=-\frac{R_{f} / / R_{4}}{R_{1}}$

$$
\begin{equation*}
=-\frac{60 k / / 3 k}{30 k} \tag{12}
\end{equation*}
$$

$K_{3}=-0.095238$ \qquad

1(b) Determine the total energy and average power of the following signal:

$$
x(t)=\left\{\begin{array}{cc}
2 & -3 \leq t \leq 3 \\
5-\mathrm{t} & 3 \leq \mathrm{t} \leq 5 \\
0 & \text { otherwise }
\end{array}\right.
$$

Sol: $\quad x(t)= \begin{cases}2 & -3 \leq t \leq 3 \\ 5-t & 3 \leq t \leq 5 \\ 0 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{x}(\mathrm{t})} & =\int_{-\infty}^{\infty}|\mathrm{x}(\mathrm{t})|^{2} \mathrm{dt}=\int_{-3}^{3}(2)^{2} \mathrm{dt}+\int_{3}^{5}(5-\mathrm{t})^{2} \mathrm{dt} \\
& =\left.4(\mathrm{t})\right|_{-3} ^{3}+\left(\frac{(5-\mathrm{t})^{3}}{-3}\right)_{3}^{5} \\
& =4(6)+\frac{8}{3}=26.67 \mathrm{~J}
\end{aligned}
$$

Alternative method:

$$
\mathrm{E}=
$$

$$
\mathrm{A}^{2} \mathrm{~T}
$$

$$
\begin{aligned}
E & =(2)^{2}(6)+\frac{(2)^{2}(2)}{3} \\
& =24+\frac{8}{3} \\
& =24+2.67
\end{aligned}
$$

$$
\mathrm{E}=\frac{\mathrm{A}^{2} \mathrm{~T}}{3}
$$

For an energy signal average power $=0$

1(c) Show the permissible area for the poles of a second order system which must simultaneously meet the following criteria:

12
(i) Maximum percent overshoot $\leq \mathbf{5 \%}$
(ii) Settling time for $\mathbf{2 \%}$ criterion $\leq 500 \mathrm{~ms}$

Sol: $\quad M_{P}=5 \%=0.05$

$$
\begin{align*}
& \mathrm{M}_{\mathrm{P}}=\mathrm{e}^{\frac{-\zeta \pi}{\sqrt{1-\zeta^{2}}}} \\
& \zeta=\sqrt{\frac{\left(\ln \mathrm{M}_{\mathrm{p}}\right)^{2}}{\pi^{2}+\left(\ln \mathrm{M}_{\mathrm{p}}\right)^{2}}}=0.69 \\
& \phi=\cos ^{-1} \zeta=46.4^{\circ} \ldots \ldots \ldots . \tag{1}
\end{align*}
$$

$\mathrm{t}_{\mathrm{s}} \cong \frac{4}{\zeta \omega_{\mathrm{n}}} \leq 500 \times 10^{-3}$
$\zeta \omega_{\mathrm{n}} \geq \frac{4}{500 \times 10^{-3}}=8$

$$
\zeta \omega_{\mathrm{n}} \geq 8
$$

From (1) \& (2) poles should lie in the following region

1(d) A $1000 \mathrm{VA}, 440 / 220 \mathrm{~V}$ single-phase two-winding transformer is connected as autotransformer to supply a load at 440 V from a supply voltage of 660 V ac mains. Draw the schematic diagram of the autotransformer with proper labelling. If the full load unity power factor (pf) efficiency of the two-winding transformer is 96.2%, what will be the full-load efficiency of the autotransformer at 0.85 pf lagging? Also find the maximum primary and secondary currents of the autotransformer.

Sol: VA rating of two winding transformer $\left(\mathrm{kVA}_{\text {Tw }}\right)=1000 \mathrm{VA}$
Voltage rating of two winding transformer $=440 / 220 \mathrm{~V}$
Voltage rating of auto transformer $=440 / 660 \mathrm{~V}$
$\% \eta_{\text {(TW TF at FL } \& ~ U P F)}=96.2 \%$
$\% \eta_{\text {Auto TF at new FL } \& 0.85 \mathrm{lag}}=$?
Maximum primary current of auto transformer, $\mathrm{I}_{1 \text { max auto }}=$?
Maximum secondary current of auto transformer $\mathrm{I}_{2 \text { max auto }}=$?

Current rating of winding ' AB ' $=\frac{\mathrm{VA} \text { rating }}{\mathrm{V} \text { rating }}=\frac{1000}{440}=2.273 \mathrm{~A}$
Current rating of winding ' DC ' $=\frac{\mathrm{VA} \text { rating }}{\mathrm{V} \text { rating }}=\frac{1000}{220}=4.545 \mathrm{~A}$
In auto transformer to get voltage rating of $440 / 660 \mathrm{~V}$, two winding transformer should be connected
in series additive polarity. Here two possibilities are there to get required voltage rating.

1. Connect $\mathrm{A} \& \mathrm{D}$ terminals with terminal ' B ' is common to both primary and secondary.
2. Connect $\mathrm{B} \& \mathrm{C}$ terminals with terminal ' A ' is common to both primary and secondary.

Here A \& D terminals are connected with common 'B'

N. ACM	10	Electrical Engineering

Fig. 440/660 V Auto transformer
$\mathrm{K}_{\text {auto }}=\frac{\mathrm{LV}}{\mathrm{HV}}=\frac{440}{660}=0.667$
Maximum kVA rating of auto transformer,

$$
\begin{aligned}
\mathrm{kVA}_{\text {auto } \max } & =\left(\frac{1}{1-\mathrm{K}_{\text {auto }}}\right) \mathrm{kVA}_{\text {TWTF }} \\
& =\left(\frac{1}{1-\frac{440}{660}}\right) \times 1000 \\
& =3000 \mathrm{VA}
\end{aligned}
$$

Maximum current drawn from supply, $\mathrm{I}_{1 \text { max auto }}=\frac{\mathrm{VA}_{\text {automax }}}{\text { Primary voltagerating of auto }}$

$$
=\frac{3000}{440}=6.8182 \mathrm{~A}
$$

Maximum current delivered by auto transformer, $\mathrm{I}_{2 \text { auto } \max }=\frac{\mathrm{VA}_{\text {auto max }}}{\text { Secondary voltagerating of auto }}$

$$
=\frac{3000}{660}=4.5454 \mathrm{~A}
$$

Apply KCL to know current in common winding of auto transformer $=\mathrm{I}_{1 \text { max auto }}-\mathrm{I}_{2 \text { max auto }}$

$$
\begin{aligned}
& =6.8182-4.5454 \\
& =2.2728 \mathrm{~A}
\end{aligned}
$$

$\eta($ pu $)$ TW TF FL $\&$ UPF $=\frac{(\mathrm{VA})_{\mathrm{TW}} \cos \theta_{2}}{(\mathrm{VA})_{\text {TW }} \cos \theta_{2}+\text { Total } \operatorname{lossin} \text { TWTF at FL }}$

$$
0.962=\frac{1000 \times 1}{1000+\text { Total lossin TW TF at FL }}
$$

Total loss in two winding transformer at $\mathrm{FL}=\frac{1000}{0.962}-1000=39.5 \mathrm{~W}$
Total loss in two winding transformer at $\mathrm{FL}=$ Total loss in auto transformer at new $\mathrm{FL}=39.5 \mathrm{~W}$
$\eta_{\text {auto TF at new FL } 0.85 \text { lag }}=\frac{(\mathrm{VA})_{\text {auto }} \cos \theta_{2}}{(\mathrm{VA})_{\text {auto }} \cos \theta_{2}+\text { Total loss in auto at new FL }} \times 100$
$=\frac{3000 \times 0.85}{3000 \times 0.85+39.5} \times 100$
$=98.47 \%$

1(e) The reverse recovery time of a diode is $\mathrm{t}_{\mathrm{rr}}=6 \mu \mathrm{~s}$, and the rate of fall of the diode current di/dt = $10 \mathrm{~A} / \mu \mathrm{s}$. If the softness factor $\mathrm{SF}=\mathbf{0 . 5}$,
(i) Find the storage charge \mathbf{Q}_{RR},
(ii) Find the peak reverse current $I_{R R}$, and
(iii) Draw the labelled reverse recovery characteristics.

Sol: Reverse characteristics of diode can be drawn as follows

$\mathrm{I}_{\mathrm{RR}}=$ maximum value of reverse current
$t_{\text {rr }}=$ Reverse recovery time

$$
\mathrm{t}_{\mathrm{rr}}=\mathrm{t}_{\mathrm{a}}+\mathrm{t}_{\mathrm{b}}
$$

During time " t_{a} ", the function get's recovered and during time t_{b} the semiconductor layers gets recovered.

Given data:

$$
\mathrm{t}_{\mathrm{rr}}=6 \mu \mathrm{~s}
$$

$$
\frac{\mathrm{di}}{\mathrm{dt}}=10 \mathrm{~A} / \mu \mathrm{s}
$$

S-factor $=\mathrm{S} . \mathrm{F}=0.5$

$$
\mathrm{t}_{\mathrm{rr}}=\mathrm{t}_{\mathrm{a}}+\mathrm{t}_{\mathrm{b}}
$$

$$
\mathrm{S}=\frac{\mathrm{t}_{\mathrm{b}}}{\mathrm{t}_{\mathrm{a}}} \Rightarrow 0.5=\frac{\mathrm{t}_{\mathrm{b}}}{\mathrm{t}_{\mathrm{a}}}
$$

$$
\mathrm{t}_{\mathrm{b}}=0.5 \mathrm{t}_{\mathrm{a}}
$$

$\mathrm{t}_{\mathrm{rr}}=\mathrm{t}_{\mathrm{a}}+0.5 \mathrm{t}_{\mathrm{a}}$
$\Rightarrow 1.5 \mathrm{t}_{\mathrm{a}}=\mathrm{t}_{\mathrm{rr}}=6$

$$
\mathrm{t}_{\mathrm{a}}=\frac{6}{1.5}=4 \mu \mathrm{~s}
$$

Peak reverse current $\left(I_{R R}\right)=t_{a} \cdot \frac{d i}{d t}$

$$
\mathrm{I}_{\mathrm{RR}}=4 \times 10=40 \mathrm{~A}
$$

Storage charge $\left(Q_{R R}\right)=\frac{1}{2} I_{R R} \times t_{r r}$

$$
\begin{aligned}
& =\frac{1}{2} \times 40 \times 6 \\
& =120 \mu \mathrm{c} \\
& =120 \mu \text { coulombs }
\end{aligned}
$$

2(a) Determine the value of v_{p}, v_{n} and $v_{\text {out }}$ in the circuit given below which uses an ideal operational amplifier. Find the resistance R that, when connected in parallel with the 1 mA source, will cause $v_{\text {out }}$ to drop to half its value when R is not present.

Sol: In absence of R

Since $V_{d}=0$
$V_{P}=V_{n}$

$$
\mathrm{I}_{1}=10^{-3}\left(\frac{3 \mathrm{~K}}{5 \mathrm{~K}}\right)=0.6 \mathrm{~mA}
$$

$\mathrm{I}_{2}=0.4 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{n}}=10^{3} . \mathrm{I}_{1}=0.6 \mathrm{~V}$

Then $V_{n}-V_{0}=4 \times 10^{3} I_{2}$

$$
\begin{aligned}
\mathrm{V}_{0} & =\mathrm{V}_{\mathrm{n}}-4(0.4) \\
& =0.6-1.6 \\
& =-1 \mathrm{~V} \\
\mathrm{~V}_{0} & =-1 \mathrm{~V}
\end{aligned}
$$

Now connect a resistor across 1 mA to get $\mathrm{V}_{0}=-0.5 \mathrm{~V}$

Since $V_{d}=0$
$V_{P}=V_{n}$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{I}_{1}^{\prime}=\left(10^{-3}-\mathrm{x}\right)\left[\frac{3 \mathrm{~K}}{5 \mathrm{~K}}\right] \\
\mathrm{I}_{1}^{\prime}=0.6\left(10^{-3}-\mathrm{x}\right) \\
\mathrm{I}_{2}^{\prime}=0.4\left(10^{-3}-\mathrm{x}\right) \\
\mathrm{V}_{\mathrm{P}}=10^{3} \mathrm{I}_{1}^{\prime} \\
=10^{3} \times 0.6\left(10^{-3}-\mathrm{x}\right) \\
\mathrm{V}_{\mathrm{P}}=0.6-600 \mathrm{x}=\mathrm{V}_{\mathrm{n}} \\
\text { Then } \quad \mathrm{V}_{\mathrm{n}}-\mathrm{V}_{0}=4 \times 10^{3} \mathrm{I}_{2}^{\prime} \\
\qquad \mathrm{V}_{\mathrm{n}}=\mathrm{V}_{0}+4 \times 10^{3} \times 0.4\left(10^{-3}-\mathrm{x}\right) \\
\quad=-0.5+1.6-1.6 \times 10^{3} \mathrm{x} \\
\mathrm{~V}_{\mathrm{n}}=1.1-1600 \mathrm{x}
\end{array}
\end{aligned}
$$

But $V_{n}=V_{P}$
$1.1-1600 \mathrm{x}=0.6-600 \mathrm{x}$
$1.1-0.6=1600 x-600 x$
$\Rightarrow \mathrm{x}=\frac{0.5}{1000}=0.5 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{P}}=0.6-0.6 \times 0.5$
$\mathrm{V}_{\mathrm{P}}=0.3 \mathrm{~V}=\mathrm{V}_{\mathrm{n}}$
$\mathrm{V}_{\mathrm{x}}-\mathrm{V}_{\mathrm{P}}=2 \times 10^{3} \mathrm{I}_{1}^{\prime}$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{x}} & =\mathrm{V}_{\mathrm{P}}+2 \times 10^{3} \times 0.6\left(10^{-3}-0.5 \times 10^{-3}\right) \\
& =0.3+1.2 \times 0.5 \\
& =0.9 \mathrm{~V}
\end{aligned}
$$

Then $\mathrm{R}=\frac{\mathrm{V}_{\mathrm{x}}}{\mathrm{x}}=\frac{0.9}{0.5 \times 10^{-3}}=1.8 \mathrm{k} \Omega$

2(b) Check the controllability and observability of the system shown in the figure given below. u is the input and y is the output.

Sol: From the given block diagram
$\mathrm{TF}=\frac{Y(s)}{U(s)}=\frac{s-1}{(s+1)(s-1)}=\frac{s-1}{s^{2}-1}$
$\frac{Y(s)}{U(s)} \frac{G(s)}{G(s)}=\frac{s-1}{s^{2}-1}$
Let $\frac{Y(s)}{G(s)}=s-1$
$\mathrm{Y}(\mathrm{s})=\mathrm{sG}(\mathrm{s})-\mathrm{G}(\mathrm{s})$
$\mathrm{y}(\mathrm{t})=\frac{\mathrm{dg}(\mathrm{t})}{\mathrm{dt}}-\mathrm{g}(\mathrm{t})$
Let $\frac{G(s)}{U(s)}=\frac{1}{s^{2}-1}$
$\mathrm{s}^{2} \mathrm{G}(\mathrm{s})-\mathrm{G}(\mathrm{s})=\mathrm{U}(\mathrm{s})$
$\frac{d^{2} g(t)}{d t^{2}}-g(t)=u(t)$
Let the state variables are
$\mathrm{x}_{1}(\mathrm{t})=\mathrm{g}(\mathrm{t})$
$\mathrm{x}_{2}(\mathrm{t})=\dot{g}(\mathrm{t})$
Differentiating the above equations
$\dot{\mathrm{x}}_{1}=\dot{g}(t)=\mathrm{x}_{2}(\mathrm{t})$
$\dot{\mathrm{x}}_{2}=\ddot{\mathrm{g}}(\mathrm{t})$
using equation (2) in (6)
$\dot{\mathrm{x}}_{2}=\mathrm{g}(\mathrm{t})+\mathrm{u}(\mathrm{t})$
$\dot{\mathrm{x}}_{2}=\mathrm{x}_{1}(\mathrm{t})+\mathrm{u}(\mathrm{t})$
From (5) and (6) state equations
$\left[\begin{array}{l}\dot{x}_{1} \\ \mathrm{x}_{2}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2}\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right] \mathrm{u}$
using equations (3) and (4) in (1)
$\mathrm{y}(\mathrm{t})=\mathrm{x}_{2}-\mathrm{x}_{1}$
\therefore Output equation $\mathrm{y}=\left[\begin{array}{ll}-1 & 1\end{array}\right]\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2}\end{array}\right]$
Controllability matrix $\mathrm{M}=\left[\begin{array}{ll}\mathrm{B} & \mathrm{AB}\end{array}\right]$
$\mathrm{AB}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
$M=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$|\mathrm{M}|=-1$ non zero
\therefore Controllable
Observability matrix $\mathrm{N}=\left[\begin{array}{c}\mathrm{C} \\ \mathrm{CA}\end{array}\right]$
$\mathrm{CA}=\left[\begin{array}{ll}-1 & 1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}1 & -1\end{array}\right]$
$\mathrm{N}=\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]$
$|\mathrm{N}|=1-1=0$
\therefore Observable
\therefore System is controllable but not observable

2 (c) A single-phase thyristor controlled bridge rectifier is supplying a dc load of $1 \mathbf{k W}$. A 1.5 kVA isolation transformer with a source side voltage rating of 120 V at 50 Hz is used. It has total leakage reactance of $\mathbf{8 \%}$ based on its rating. The source voltage of nominally $\mathbf{1 1 5} \mathbf{V}$ is in the range of $\pm \mathbf{1 0 \%}$. Assuming load current is nearly constant, find
(i) The minimum turns ratio of the transformer, if the dc load voltage is to be regulated at constant value of 100 V ,
(ii) The reduction in average load voltage due to commutation, and
(iii)The value of firing angle α when the source voltage is $115+10 \% \mathrm{~V}$.

Sol: (i)

Source voltage $\mathrm{V}_{\mathrm{S}}=115 \pm 10 \%$

$$
=126.5 \mathrm{~V} \& 103.5 \mathrm{~V}
$$

Output voltage $\mathrm{V}_{0}=\frac{2 \mathrm{~V}_{\mathrm{m}}}{\pi} \cos \alpha \quad\left(\because \mathrm{I}_{0}=\right.$ constant $)$
To get the minimum turns ratio $\cos \alpha$ should be maximum.
Therefore $\alpha=0$
$100=\frac{2 \times \mathrm{V}_{\mathrm{m}}}{\pi}$
$\Rightarrow \mathrm{V}_{\mathrm{m}}=50 \pi$
\therefore Turns ratio $=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{103.5 \times \sqrt{2}}{50 \pi}=0.931$
(ii) Reduction in average load voltage $=\frac{2 \omega \mathrm{~L}_{\mathrm{s}}}{\pi} \mathrm{I}_{0}$

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}_{\mathrm{S}}=8 \%=0.08 \mathrm{pu} \\
& \mathrm{X}_{\mathrm{pu}}=\mathrm{X}_{\mathrm{a} .} \times \frac{\mathrm{MVA}_{\mathrm{b}}}{\left(\mathrm{kV}_{\mathrm{b}}\right)^{2}} \\
& \mathrm{kVA}_{\mathrm{b}}=1.5 \mathrm{kVA} \\
& \mathrm{~V}_{\mathrm{b}}=120 \mathrm{~V} \\
& 0.08=\mathrm{X}_{\mathrm{a}} \times \frac{1.5}{1000 \times\left(\frac{120}{1000}\right)^{2}}
\end{aligned}
$$

$\Rightarrow \mathrm{X}_{\mathrm{a}}=0.768 \Omega=\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}_{\mathrm{S}}$
\therefore Voltage drop $=\frac{2 \times 0.768 \times 10}{\pi}=4.889 \mathrm{~V}$
(iii) $\mathrm{V}_{0}=\frac{2 \mathrm{~V}_{\mathrm{m}}}{\pi} \cos \alpha-\frac{2 \omega \mathrm{~L}_{\mathrm{s}}}{\pi} \mathrm{I}_{0}$

$$
100=\frac{2 \sqrt{2} \times 126.5}{\pi} \cos \alpha-4.889
$$

$$
109.778=\frac{2 \sqrt{2} \times 126.5}{\pi} \cos \alpha
$$

$$
\cos \alpha=0.920
$$

$$
\alpha=22.93^{\circ}
$$

3(a) A salient-pole synchronous motor (with negligible armature resistance and $X_{d}=23.2 \Omega$ and $X_{q}=14.5 \Omega . /$ phase) can support a maximum load of 563 kW without field excitation.

This motor is now excited with nominal field current and the motor is loaded with a load torque of $3.82 \mathrm{kN}-\mathrm{m}$. If the motor draws armature current at 0.8 power factor (leading), determine excitation emf and corresponding power angle (δ).

Sol: Insufficient data in given question. If speed is given, the solution to this question is given below.

1. $\mathrm{X}_{\mathrm{d}}=23.2 \Omega / \mathrm{ph} . \frac{1}{\mathrm{X}_{\mathrm{d}}}=0.043, \mathrm{X}_{\mathrm{q}}=14.5 \Omega / \mathrm{ph}, \frac{1}{\mathrm{X}_{\mathrm{q}}}=0.069$

$$
\begin{aligned}
\left.\frac{\mathrm{V}^{2}}{2}(0.069-0.043)\right) & =\frac{563000}{3} \\
\mathrm{~V}^{2}\left(\frac{0.026}{2}\right) & =\frac{563000}{3} \\
\mathrm{~V}^{2} & =\frac{2 \times 563000}{3 \times 0.026} \Rightarrow \mathrm{~V}=3800 \text { volts }
\end{aligned}
$$

2. Nominal field current: What does it mean?

It is assumed that nominal field current induces a $\mathrm{E}=\mathrm{V}$

$$
\therefore \mathrm{E}=3800 \mathrm{~V}
$$

This assumption cannot be valid since problem states that motor draws a leading current for which $\mathrm{E}>\mathrm{V}$.
3. Data about torque cannot be used since P \& f are not given, we cannot find synchronous speed and hence we cannot find power developed. We can assume suitable values for $\mathrm{P} \& \mathrm{f}$; say 4-poles \& 50 Hz , and work out the problem.

Assuming $\mathrm{P}=4, \mathrm{f}=50 \mathrm{~Hz}$,
ω_{s}, synchronous speed (mech.rad $/ \mathrm{sec}$) $=\frac{4 \pi \mathrm{f}}{\mathrm{P}}=\frac{4 \pi \times 50}{4}=50 \pi \mathrm{rad} / \mathrm{sec}$
\therefore Mechanical power developed $=(3820) 50 \pi$ watts

$$
\begin{aligned}
& =6 \times 10^{5} \text { watts } \quad(\text { for all } 3 \text { phases }) \\
& =\text { Power input to motor, since all losses are neglected. }
\end{aligned}
$$

(resistance is given as zero, other losses are not mentioned)
Power input/ph, $2 \times 10^{5}=3800 \times \mathrm{I} \times 0.85$
$\Rightarrow \quad \mathrm{I}=\frac{2 \times 10^{5}}{3800 \times 0.85}=61.9 \mathrm{~A}$
\therefore Armature current $/ \mathrm{ph}=61.9 \angle 36.87^{\circ} \mathrm{A}$

Phasor diagram:

$\mathrm{AH}=3800 \cos \delta$
$\mathrm{BH}=3800 \sin \delta$
Also $\mathrm{BH}=898 \cos (\theta+\delta)$
$=898 \cos \left(36.87^{\circ}+\delta\right)$

$3800 \sin \delta=898(0.8 \cos \delta-0.6 \sin \delta)$
$\Rightarrow 0.8 \cos \delta-0.6 \sin \delta=4.23 \sin \delta$
$\Rightarrow 4.83 \sin \delta=0.8 \cos \delta$
$\Rightarrow \tan \delta=\frac{0.8}{4.83}=0.1656$
$\delta=9.4^{\circ}$ elec.
$\mathrm{AH}=3749 \mathrm{~V}$
$\mathrm{HG}=\mathrm{JF}=1437 \sin \left(36.87^{\circ}+9.4^{\circ}\right)=1038 \mathrm{~V}$
$\mathrm{E}=3749+1038=\mathbf{4 7 8 6} \mathbf{~ V}$.

3(b) (i) Fourier transform of a periodic signal is given as
$\mathrm{X}(\mathrm{j} \omega)=\mathrm{j} \delta\left(\omega-\frac{\pi}{3}\right)+2 \delta\left(\omega-\frac{\pi}{7}\right)$.
Determine the fundamental angular frequency and the Fourier series coefficients. Then determine the corresponding time signal.
(ii) Determine the Laplace transform and the ROC for the signal $x(t)=e^{a t} u(t-k)$.

Sol: (i) FT of a periodic signal
$X(\omega)=j \delta\left(\omega-\frac{\pi}{3}\right)+2 \delta\left(\omega-\frac{\pi}{7}\right)$
Fundamental frequency $\omega_{0}=$ GCD of $\frac{\pi}{3}, \frac{\pi}{7}$

$$
=\frac{\pi}{21}
$$

$\operatorname{EFS} x(t)=\sum_{n=-\infty}^{\infty} C_{n} e^{j n \omega_{0} t}$
\downarrow FT
$\mathrm{X}(\omega)=2 \pi \sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{C}_{\mathrm{n}} \delta\left(\omega-\mathrm{n} \omega_{0}\right)$
$X(\omega)=j \delta\left(\omega-\frac{7 \pi}{21}\right)+2 \delta\left(\omega-\frac{3 \pi}{21}\right)$
$7^{\text {th }}$ harmonic $\quad 3^{\text {rd }}$ harmonic
By comparision with equation (1)

$$
\begin{array}{rlr}
2 \pi \mathrm{C}_{7}=\mathrm{j} & 2 \pi \mathrm{C}_{3}=2 \\
\mathrm{C}_{7} & =\frac{\mathrm{j}}{2 \pi} & \mathrm{C}_{3}=\frac{1}{\pi} \\
\therefore \mathrm{x}(\mathrm{t}) & =\mathrm{C}_{3} \mathrm{e}^{\mathrm{j}(3)(\pi / 21) \mathrm{t}}+\mathrm{C}_{7} \mathrm{e}^{\mathrm{j}(7)(\pi / 21) \mathrm{t}} \\
& =\frac{1}{\pi} \mathrm{e}^{\mathrm{j}(\pi t / 7)}+\frac{\mathrm{j}}{2 \pi} \mathrm{e}^{\mathrm{j} \pi / 3 / 3}
\end{array}
$$

(ii) $\mathrm{x}(\mathrm{t})=\mathrm{e}^{\mathrm{at}} \mathrm{u}(\mathrm{t}-\mathrm{k})$

$$
\begin{aligned}
\mathrm{x}(\mathrm{t}) & =\mathrm{e}^{\mathrm{a}(\mathrm{t}-\mathrm{k}+\mathrm{k})} \mathrm{u}(\mathrm{t}-\mathrm{k}) \\
& =\mathrm{e}^{\mathrm{ak}} \mathrm{e}^{\mathrm{a}(t-k)} \mathrm{u}(\mathrm{t}-\mathrm{k}) \quad \mathrm{x}\left(\mathrm{t}-\mathrm{t}_{0}\right) \stackrel{\mathrm{LT}}{\longleftrightarrow} \mathrm{e}^{-\mathrm{st} 0} \mathrm{x}(\mathrm{~s}) \text { with ROC }=\mathrm{R}
\end{aligned}
$$

$\operatorname{LT}[\mathrm{x}(\mathrm{t})]=\mathrm{X}(\mathrm{s})=\mathrm{e}^{\mathrm{ak}}\left[\frac{\mathrm{e}^{-\mathrm{sk}}}{\mathrm{s}-\mathrm{a}}\right] ; \operatorname{ROC}: \operatorname{Re}\{\mathrm{s}\}>\operatorname{Re}\{\mathrm{a}\}$

3(c) A Buck-Boost converter is operating at 20 kHz with Inductor $\mathrm{L}=50 \mu \mathrm{H}$. The output capacitor C is sufficiently large and source voltage $\mathrm{V}_{\mathrm{d}}=15 \mathrm{~V}$. The output is to be regulated at 10 V and the converter is supplying a load of 10 W . Find
(i) The duty ratio D , and
(ii) Maximum value of Inductor current.

Sol:

frequency (f) $=20 \mathrm{kHz}$
Inductance (L) $=50 \mu \mathrm{H}$
Supply voltage $\left(\mathrm{V}_{\mathrm{d}}\right)=15 \mathrm{~V}$
Output voltage $\left(\mathrm{V}_{0}\right)=10 \mathrm{~V}$
Load power $\left(\mathrm{P}_{0}\right)=10 \mathrm{~W}$
Load current $=\frac{\mathrm{P}_{0}}{\mathrm{~V}_{0}}=\frac{10}{10}=1 \mathrm{~A}$
Load resistance $(\mathrm{R})=\frac{\mathrm{V}_{0}}{\mathrm{I}_{0}}=\frac{10}{1}=10 \Omega$
Inductor current varies with slope of $\frac{\mathrm{V}_{s}}{\mathrm{~L}}$ during ON time of switch and $\frac{\mathrm{V}_{0}}{\mathrm{~L}}$ during OFF time of switch. The slope of current increasing is $\frac{15}{\mathrm{~L}}$ and slope of decrement of current is $\frac{10}{\mathrm{~L}}$. So, current takes 1.5 times of ON time to decrease and come to steady state.

$$
\begin{array}{r}
\mathrm{T}_{\mathrm{ON}}+\mathrm{T}_{\mathrm{OFF}}=\mathrm{T} \\
\mathrm{~T}_{\mathrm{ON}}+1.5 \mathrm{~T}_{\mathrm{ON}}=\mathrm{T} \\
2.5 \mathrm{~T}_{\mathrm{ON}}=\mathrm{T} \\
2.5 \mathrm{DT}=\mathrm{T} \\
\mathrm{D}=0.4
\end{array}
$$

Any duty cycle more than 0.4 is not suitable for this operation.
Critical value of duty cycle can be obtained as follows.

$$
\begin{aligned}
& \frac{2 \mathrm{~L}}{\mathrm{RT}}=\left(1-\mathrm{D}_{\mathrm{cr}}\right)^{2} \\
& \frac{2 \times 50 \times 10^{-6}}{10 \times 50 \times 10^{-6}}=\left(1-\mathrm{D}_{\mathrm{cr}}\right)^{2} \\
& \mathrm{D}_{\mathrm{cr}}=0.5527
\end{aligned}
$$

Any duty cycle more than 0.5527 makes inductor current to be continuous.
As per earlier conclusion duty cycle cannot be more than 0.4 . Hence conduction is discontinuous.

Discontinuous Conduction:

As the slope of ascending is 1.5 times than descending, it takes 1.5 times of turn on time (DT) to get current to zero.

$$
\begin{aligned}
& \mathrm{DT}=\mathrm{T}_{\mathrm{ON}} \quad(\beta-\mathrm{D}) \mathrm{T}=\mathrm{T}_{\mathrm{OFF}} \\
& (\beta-\mathrm{D}) \mathrm{T}=1.5 \mathrm{DT} \\
& \beta=2.5 \mathrm{D}
\end{aligned}
$$

Peak value of inductor current $\left(I_{L P}\right)=\frac{V_{s}}{L} D T$
Average value of output current $\left(\mathrm{I}_{0}\right)=\frac{1}{2} \mathrm{I}_{\mathrm{LP}}(\beta-\mathrm{D}) \mathrm{T}$

$$
\begin{aligned}
& \mathrm{I}_{0}=\frac{1}{2} \mathrm{I}_{\mathrm{LP}}(\beta-\mathrm{D}) \\
& \mathrm{I}_{0}=\frac{1}{2} \frac{V_{\mathrm{s}}}{\mathrm{~L}} \mathrm{DT}(\beta-\mathrm{D})
\end{aligned}
$$

焕参 ACP	27	ESE Mains-2019 Paper-2

$$
\begin{aligned}
1 & =\frac{1}{2} \times \frac{15}{50 \times 10^{-6}} \times \mathrm{D} \times 50 \times 10^{-6} \times(2.5 \mathrm{D}-\mathrm{D}) \\
1 & =\frac{15}{2} \times 1.5 \mathrm{D}^{2} \\
\Rightarrow \mathrm{D} & =0.2981
\end{aligned}
$$

Duty ratio $\mathrm{D}=0.2981$
Maximum value of inductor current

$$
\begin{aligned}
\left(\mathrm{I}_{\mathrm{LP}}\right) & =\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{~L}} \mathrm{DT} \\
& =\frac{15}{50 \times 10^{-6}} \times 0.2981 \times 50 \times 10^{-6} \\
& =4.472 \mathrm{~A}
\end{aligned}
$$

4(a) The open loop transfer function of a unity feedback system is given by

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{\mathrm{K}}{(\mathrm{~s}+20)\left(\mathrm{s}^{2}-2 \mathrm{~s}+1\right)}
$$

Use Nyquist stability criteria to find the range of K for closed loop stability.
Sol: $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{\mathrm{k}}{(\mathrm{s}+20)\left(\mathrm{s}^{2}-2 \mathrm{~s}+1\right)}=\frac{\mathrm{k}}{(\mathrm{s}+20)(\mathrm{s}-1)^{2}}$
Nyquist contour is shown below

Mapping of +ve imaginary axis of the Nyquist Contour.
Substitute $\mathrm{s}=\mathrm{j} \omega \quad 0 \leq \omega \leq \infty$

$$
\begin{aligned}
& G(j \omega) H(j \omega)=\frac{k}{(j \omega+20)(j \omega-1)^{2}} \\
& M=|G(j \omega) H(j \omega)|=\frac{k}{\sqrt{\left(\omega^{2}+400\right)\left(\omega^{2}+1\right)^{2}}}
\end{aligned}
$$

$\phi=\angle \mathrm{G}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega)=-\left[\tan ^{-1} \frac{\omega}{20}+2\left[180^{\circ}-\tan ^{-1} \omega\right]\right]$
$\phi=2 \tan ^{-1} \omega-\tan ^{-1} \frac{\omega}{20}$

ω	Magnitude (M)	Phase angle (ϕ)
0	$\frac{\mathrm{k}}{20}$	0°
\vdots		
∞	0	90°

Mapping of radius ' R ' semicircle of the Nyquist contour:
Substitute: $\mathrm{s}=\operatorname{Lt}_{\mathrm{R} \rightarrow \infty} \operatorname{Re}^{\mathrm{j} \theta} \theta$ is from 90° to 0° to -90°

$$
\mathrm{G}\left(\operatorname{Re}^{\mathrm{j} \theta}\right) \mathrm{H}\left(\operatorname{Re}^{\mathrm{j} \theta}\right)=\frac{\mathrm{k}}{\left(\operatorname{Re}^{\mathrm{j} \theta}+20\right)\left(\operatorname{Re}^{\mathrm{j} \theta}-1\right)^{2}} \cong 0
$$

This section merges with the origin.

Mapping of the negative imaginary axis of Nyquist contour
Substitute $\mathrm{s}=\mathrm{j} \omega \quad-\infty \leq \omega \leq 0$
This section becomes the mirror image of the positive imaginary axis and is drawn such that the Nyquist plot is symmetrical with respect to real axis.

佥	29	ESE Mains-2019 Paper-2

Combining all the above three sections the Nyquist plot is shown below.

$\mathrm{N}=0$ from the plot
$\mathrm{P}=2$ (from the given $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$)
$\mathrm{N}=\mathrm{P}-\mathrm{Z}$
$\mathrm{Z}=\mathrm{P}-\mathrm{N}=2-0$
$\mathrm{Z}=2$
Closed loop system is unstable with two right half of s-plane poles.
For all values of k system is unstable.

4(b) Draw and elaborate (with appropriate mathematical justification) the graphical locus of induction motor (voltage, current and power) for a complete range of slip from approximate equivalent circuit model. Justify its circular nature for naming it as circle diagram of induction motor.

Also, state and explain with the help of the circle diagram, how to obtain rotor/stator copper losses, torque and slip at any arbitrary point on circle diagram.

Sol: 1. Locus of the tip of the current phasor in the circuit of fig. 1:

Fig. 1

$$
\overline{\mathrm{I}}=\frac{V}{R+j X}=\frac{V(R-j X)}{R^{2}+X^{2}}=\frac{V R}{R^{2}+X^{2}}-j \frac{V X}{R^{2}+X^{2}}=I_{x}-j I_{y}
$$

The phasor $\overline{\mathrm{I}}$ is shown in fig. 2.
For $\mathrm{R}=0, \overline{\mathrm{I}}=-\mathrm{j} \frac{\mathrm{V}}{\mathrm{X}}$
For $\mathrm{R}= \pm \infty, \overline{\mathrm{I}}=0$.
What is the locus of the tip of the $\overline{\mathrm{I}}$ phasor as R varies?
2. Proof that locus of $\left(I_{x}, I_{y}\right)$ point is a circle:

Fig. 2
We have $I_{x}^{2}+I_{y}^{2}=\frac{V^{2}}{R^{2}+X^{2}}$
$\therefore \mathrm{I}_{\mathrm{x}}^{2}+\mathrm{I}_{\mathrm{y}}^{2}-\frac{\mathrm{V}^{2}}{\mathrm{R}^{2}+\mathrm{X}^{2}}=0$
Adding $\frac{\mathrm{V}^{2}}{4 \mathrm{X}^{2}}$ to both sides, we get

$$
\begin{equation*}
\mathrm{I}_{\mathrm{x}}^{2}+\mathrm{I}_{\mathrm{y}}^{2}-\frac{\mathrm{V}^{2}}{\mathrm{R}^{2}+\mathrm{X}^{2}}+\frac{\mathrm{V}^{2}}{4 \mathrm{X}^{2}}=\frac{\mathrm{V}^{2}}{4 \mathrm{X}^{2}} \tag{3}
\end{equation*}
$$

Now, $\left(I_{y}-\frac{V}{2 x}\right)^{2}=I_{y}^{2}+\frac{V^{2}}{4 X^{2}}-2 \frac{V}{2 x} I_{y}$

$$
\begin{aligned}
& =I_{y}^{2}+\frac{V^{2}}{4 X^{2}}-\frac{V}{X} \frac{V X}{R^{2}+X^{2}} \\
& =I_{y}^{2}+\frac{V^{2}}{4 X^{2}}-\frac{V^{2}}{R^{2}+X^{2}}
\end{aligned}
$$

\therefore (3) can be written as

$$
\begin{equation*}
I_{x}^{2}+\left(I_{y}-\frac{V}{2 X}\right)^{2}=\left(\frac{V}{2 X}\right)^{2} \tag{4}
\end{equation*}
$$

The locus of the point $\left(I_{x}, I_{y}\right)$ (which is the tip of the $\overline{\mathrm{I}}$ phasor of fig. 1. as R varies is a circle with center $\left(\mathrm{I}_{\mathrm{x}}=0, \mathrm{I}_{\mathrm{y}}=\frac{\mathrm{V}}{2 \mathrm{X}}\right)$ and radius $\left(\frac{\mathrm{V}}{2 \mathrm{X}}\right)$. This is the mathematic basis for the circle diagram of the 3-phase induction motor.

3. Now consider the approximate equivalent circuit/ph of a 3-phase induction motor.

The circuit to the right of the points A and B is a constant reactance variable resistance series circuit, to which a constant voltage is applied. The locus of the tip of the phasor current $\overline{\mathrm{I}}_{2}$ is therefore a circle, with radius $\frac{V}{2 X}$ and center $\frac{V}{2 X}, 0$ where $\mathrm{X}=\left(\mathrm{x}_{1}+\mathrm{x}_{2}^{1}\right)$.

4. Construction of the circle diagram using fig. 3:

4.1 Draw $\overline{\mathrm{V}}=\mathrm{V} \angle 0^{\circ}$. (It is customary to draw $\overline{\mathrm{V}}$ vertically).
4.2 Show $\overline{\mathrm{I}}_{\mathrm{c}}=\left(\frac{\overline{\mathrm{V}}}{\mathrm{R}_{\mathrm{c}}}\right)$ and $\overline{\mathrm{I}}_{\mathrm{m}}=\left(-\frac{\mathrm{j} \overline{\mathrm{V}}}{\mathrm{X}_{\mathrm{m}}}\right)$. Show $\overline{\mathrm{I}}_{0}=\overline{\mathrm{I}}_{\mathrm{m}}+\overline{\mathrm{I}}_{\mathrm{C}}$.
4.3 From point C , show $\overline{\mathrm{V}}$ (for convenience).
4.4 Draw the line CD lagging $\overline{\mathrm{V}}$ by 90°. On this line, mark the point E such that $\mathrm{E}=\frac{\mathrm{V}}{\mathrm{X}}$. Mark F on CD such that $\mathrm{CF}=\frac{\mathrm{V}}{2 \mathrm{X}}$
4.5 The locus of the tip of $\overline{\mathrm{I}}_{2}$ is a circle with center F and radius FC. Draw the circle.
4.6 For any point P on the circle, $\overline{\mathrm{CP}}=\overline{\mathrm{I}}_{2}$ and $\overline{\mathrm{OP}}=\overline{\mathrm{OC}}+\overline{\mathrm{CP}}=\overline{\mathrm{I}}_{1}$.
4.7 The full circle can be completed, lower portion representing generation action.

5. Rotor/stator copper losses, torque, and slip at any point P on the circle:

5.1 At P, draw the vertical PQ
$\overline{\mathrm{QP}}$, is the component of $\overline{\mathrm{I}}_{1}$ in phase with $\overline{\mathrm{V}}$. So to a suitable scale, QP represents the power input.
$\mathrm{QR}=\mathrm{BC}=$ core losses
$\therefore \mathrm{RP}=$ Mechanical power developed, (which includes friction losses) + stator and rotor copper losses.
5.2 From a rotor blocked test, locate the point S_{1} on the circle for an applied voltage $=$ rated voltage. At the point $\mathrm{S}_{1} ; \mathrm{slip}=1$.

The rotor is not rotating. There is no mechanical power.
Draw the vertical $S_{1} S_{2}$ to give the stator copper losses + rotor copper loss at rotor blocked condition with applied voltage $=$ rated value.
5.3 Locate the point S_{3} on $S_{1} S_{2}$ such that $S_{1} S_{3}=$ rotor copper loss and $S_{3} S_{2}=$ stator copper loss.

$$
\frac{\mathrm{S}_{1} \mathrm{~S}_{2}}{\mathrm{~S}_{3} \mathrm{~S}_{2}}=\frac{\mathrm{r}_{2}^{1}}{\mathrm{r}_{1}}
$$

5.4 Join CS_{1} and CS_{3}

5.5 At the point $\mathrm{P}, \mathrm{PT}=$ Mechanical power developed (output since mech losses are included in output).

TS = rotor copper losses corresponding to point of operation P ,
$\mathrm{SR}=$ stator copper losses corresponding to P ; and $\mathrm{RQ}=$ core losses (as given earlier)
(All these statements can be proved)

5.6 Torque and slip:

$\mathrm{PS}=\mathrm{PT}+\mathrm{TS}=$ Mech output + rotor copper loss

$$
\begin{aligned}
& =\text { Rotor power input } \\
\text { Slip } \mathrm{s} & =\frac{\text { Rotor copper losses }}{\text { Rotor input }}=\frac{\mathrm{TS}}{\mathrm{PS}} \\
\text { Torque } & =\frac{\text { Rotor input }}{\omega_{\mathrm{S}}} \\
& =\frac{\mathrm{PS}}{\omega_{\mathrm{S}}}\left(\omega_{\mathrm{S}}=\text { synchronous speed, mech } \mathrm{r} / \mathrm{sec}\right) .
\end{aligned}
$$

4(c) Draw the wiring diagram showing currents for power and relaying circuit used for protecting a transformer of the rating $25 \mathrm{MVA}, 220 \mathrm{Y} / 13.8 \Delta \mathrm{kV}, \mathrm{X}=\mathbf{1 0 \%}$. The transformer has a shortterm overload capacity of 30 MVA. You are required to use CTs with common turns ratios such as $50 / 5 \mathrm{~A}, 100 / 5 \mathrm{~A}, 150 / 5 \mathrm{~A}, 1000 / 5 \mathrm{~A}, 1200 / 5 \mathrm{~A}$. If needed, auxiliary CT of adequate turns ratio may be used.

Sol: The full load current in primary

$$
\mathrm{I}_{\mathrm{L} 1}=\frac{25 \times 10^{6}}{\sqrt{3} \times 220 \times 10^{3}}=65.6 \mathrm{~A}
$$

The full load current in secondary

$$
\mathrm{I}_{\mathrm{L} 2}=\frac{25 \times 10^{6}}{\sqrt{3} \times 13.8 \times 10^{3}}=1045.92 \mathrm{~A}
$$

The primary CT ratio is $100 / 5$
Since primary of power transformer is connected so primary side CT's must be connected in delta.
Since secondary of power transformer is Δ connected, so secondary side CT's must be connected in Y
$\sqrt{3} \mathrm{~V}_{\mathrm{L} 1} \mathrm{I}_{\mathrm{L} 1}=\sqrt{3} \mathrm{~V}_{\mathrm{L} 2} \mathrm{I}_{\mathrm{L} 2}$
$220 \times 100=13.8 \mathrm{I}_{\mathrm{L} 2}$
$\mathrm{I}_{\mathrm{L} 2}=1594.262$

CT ratio on secondary side is $=\frac{1594.202}{5 \sqrt{3}}=920.41 / 5$
So on secondary side CT ratio is 1000/5 but to get proper current auxiliary CT required
On secondary side of power transformer:

Hyderabad|Ahmedabad|Pune|Delhi|Bhopal|Bhubaneswar|Bangalore|Patna|Chennai|Lucknow|Visakhapatnam | Vijayawada | Tirupati| Kolkata

New Batches for
 GENCO / TRANSCO / DISCONS
 @ Hyderabad
 ELECTRICAL ENGINEERING

Batch Dates
 $29^{\text {th }}$ June \& $14^{\text {th }}$ July 2019

Duration : 5 to 6 Months • Timings : 4 to 6 hrs • Fee : 45000/- • Venue : ABIDS

It's exclusive for Power Generation Corporation \&
Power Distribution Company's of all states in India

Syllabus Included
(a). General Aptitude,
(b). Technical Subjects (as per GATE Syllabus Except Mathematics)

Scan OR Code
for More Information

SECTION-B

5(a) The transfer function of a linear system is given by $G(s)=\frac{10}{(s+1)(s+2)}$. The sinusoidal steady state response of the system to an input is given by $1+\sin \left(t-60^{\circ}\right)+5 \sin \left(2 t-45^{\circ}\right)$. Determine the input.

Sol: Given output $\mathrm{y}(\mathrm{t})=1+\sin \left(\mathrm{t}-60^{\circ}\right)+5 \sin \left(2 \mathrm{t}-45^{\circ}\right)$
As the system is linear, there must be three different inputs to get the given output.
$\mathrm{x}(\mathrm{t})=\mathrm{A}_{1}+\mathrm{A}_{2} \sin \left(\mathrm{t}+\phi_{1}\right)+\mathrm{A}_{3} \sin \left(2 \mathrm{t}+\phi_{2}\right)$
$G(\mathrm{~s})=\frac{10}{(\mathrm{~s}+1)(\mathrm{s}+2)} ; G(\omega)=\frac{10}{(\mathrm{j} \omega+1)(\mathrm{j} \omega+2)}$
$|G(\omega)|=\frac{10}{\sqrt{\left(1+\omega^{2}\right)\left(\omega^{2}+4\right)}}$
$\angle \mathrm{G}(\omega)=-\left[\tan ^{-1}\left(\frac{\omega}{1}\right)+\tan ^{-1}\left(\frac{\omega}{2}\right)\right]$

$|\mathrm{G}(\omega)|_{\omega=0}=\frac{10}{\sqrt{(1+0)(0+4)}}=5$
$\therefore \mathrm{A}_{1} \times 5=1$
$\therefore \mathrm{A}_{1}=\frac{1}{5}$

$|G(\omega)|_{\omega=1}=\frac{10}{\sqrt{(2)(5)}}=\sqrt{10}$
$\mathrm{A}_{2} \sqrt{10}=1 \Rightarrow \mathrm{~A}_{2}=\frac{1}{\sqrt{10}}$
$\left.\angle \mathrm{G}(\omega)\right|_{\omega=1}=-\left[\tan ^{-1}\left(\frac{1}{1}\right)+\tan ^{-1}\left(\frac{1}{2}\right)\right]$

$$
=-\left[45^{\circ}+26.56^{\circ}\right]
$$

$$
=-71.56^{\circ}
$$

$\phi_{1}-71.56=-60^{\circ} \Rightarrow \phi_{1}=-60^{\circ}+71.56^{\circ}$
$\therefore \phi_{1}=11.56^{\circ}$
\therefore Input $=\frac{1}{\sqrt{10}} \sin \left(\mathrm{t}+11.56^{\circ}\right)$

$\mathrm{A}_{3} \frac{\sqrt{10}}{2}=5$
$\therefore \quad \mathrm{A}_{3}=\sqrt{10}$
$\left.\angle \mathrm{G}(\omega)\right|_{\omega=2}=-\left[\tan ^{-1}(2)+\tan ^{-1}\left(\frac{2}{2}\right)\right]$
$=-\left(63.434^{0}+45^{\circ}\right)$
$=-108.43^{\circ}$
$\phi_{2}-108.43^{\circ}=-45^{\circ}$
$\therefore \phi_{2}=63.43^{\circ}$
\therefore Input is $\sqrt{10} \sin \left(2 t+63.43^{\circ}\right)$
\therefore Total input of the system is
$x(t)=\frac{1}{5}+\frac{1}{\sqrt{10}} \sin \left(t+11.56^{\circ}\right)+\sqrt{10} \sin \left(2 t+63.43^{\circ}\right)$

5(b) Draw phasor diagram of an over-excited salient-pole synchronous motor having armature resistance R_{a}, d-axis and q-axis reactances X_{d} and X_{q} respectively. Also prove, for lagging power factor

$$
\tan (\phi-\delta)=\frac{V_{t} \sin \phi-I_{a} X_{q}}{V_{t} \cos \phi-I_{a} R_{a}}
$$

Where V_{t} is the terminal voltage applied to motor, ϕ being the power factor angle, δ is power angle and I_{a} is armature current.
Sol: Overexcited salient pole synchronous motor with $\mathrm{R}_{\mathrm{a}}, \mathrm{X}_{\mathrm{d}}, \mathrm{X}_{\mathrm{q}}$:
$\overline{\mathrm{V}}-\mathrm{R}_{\mathrm{a}} \overline{\mathrm{I}}-\bar{I}_{\mathrm{q}} \mathrm{j} \mathrm{X}_{\mathrm{q}}-\overline{\mathrm{I}}_{\mathrm{d}} \mathrm{j} \mathrm{X}_{\mathrm{d}}=\overline{\mathrm{E}}$

Fig. Phasor diagram with $\overline{\mathrm{I}}$ leading $\overline{\mathrm{V}}$ by ϕ

Phasor diagram with $\overline{\mathrm{I}}$ lagging $\overline{\mathrm{V}}$:

\%	39	ESE Mains-2019 Paper-2

$\overline{\mathrm{DF}}=\overline{\mathrm{I}}\left[\mathrm{j}\left(\mathrm{X}_{\mathrm{d}}-\mathrm{X}_{\mathrm{q}}\right)\right]$
$\mathrm{BJ}=\mathrm{V} \sin \phi$
$\mathrm{CD}=\mathrm{BK}=\mathrm{IX}_{\mathrm{q}}$
$\therefore \mathrm{KJ}=\mathrm{DH}=\mathrm{V} \sin \phi-\mathrm{IX}_{\mathrm{q}}$
But from fig, $\tan (\phi-\delta)=\frac{D H}{A H}=\frac{V \sin \delta-\mathrm{IX}_{q}}{\mathrm{AH}}$
We must show that $\mathrm{AH}=\mathrm{V} \cos \phi-\mathrm{IR}_{\mathrm{a}}$
But from fig, $\quad \mathrm{AJ}=\mathrm{V} \cos \phi$.

$$
\begin{array}{ll}
& \mathrm{JH}=\mathrm{BC}=\mathrm{IR}_{\mathrm{a}} \text { (in magnitude) } \\
\therefore & \mathrm{AH}=\mathrm{V} \cos \phi-\mathrm{IR}_{\mathrm{a}}
\end{array}
$$

Hence, $\tan (\phi-\delta)=\frac{D H}{A H}=\frac{V \sin \delta-I X_{q}}{V \cos \phi-I R_{a}}$

5(c) A flyback converter has the following circuit parameters:

$$
\begin{aligned}
& V_{s}=24 \mathrm{~V} \\
& \mathbf{N}_{1} / \mathbf{N}_{2}=3 \\
& \mathbf{L}_{\mathrm{m}}=500 \mu \mathrm{H} \\
& \mathrm{R}=5 \Omega \\
& \mathrm{C}=200 \mu \mathrm{~F} \\
& \mathbf{f}=\mathbf{2 5} \mathrm{kHz} \\
& \mathbf{V}_{0}=10 \mathrm{~V}
\end{aligned}
$$

Find
(i) The average magnetizing current, and
(ii) The critical value of magnetizing inductor

Sol: Given data,
$\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}, \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}=3$
$\mathrm{L}_{\mathrm{m}}=500 \mu \mathrm{H}, \mathrm{R}=5 \Omega$
$\mathrm{C}=200 \mu \mathrm{~F}, \mathrm{f}=25 \mathrm{kHz}$
$\mathrm{V}_{0}=10 \mathrm{~V}$

40
Electrical Engineering
(i) Average magnetizing current $\left(\mathrm{I}_{\mathrm{m}}\right)$

$$
\mathrm{I}_{0}=\frac{\mathrm{V}_{0}}{\mathrm{R}}=\frac{10}{5}=2
$$

Fly back converter operation is similar to buck boost converter

$$
\begin{aligned}
& \frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{s}}}=\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}} \frac{\mathrm{D}}{(1-\mathrm{D})} \\
& \frac{\mathrm{D}}{1-\mathrm{D}}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}} \cdot \frac{\mathrm{~V}_{0}}{\mathrm{~V}_{\mathrm{s}}}=(3) \cdot \frac{10}{24} \\
& \frac{\mathrm{D}}{1-\mathrm{D}}=\frac{5}{4} \\
& \Rightarrow \mathrm{D}=\frac{5}{9}=0.555
\end{aligned}
$$

Average value of magnetizing current $=\frac{\mathrm{I}_{0}}{1-\mathrm{D}}\left(\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}\right)$

$$
=\frac{2}{1-0.555}\left(\frac{1}{3}\right)
$$

$$
=1.5 \mathrm{~A}
$$

(ii) Critical value of inductor current can be obtained by $\frac{2 \mathrm{~L}_{\mathrm{cr}}}{\mathrm{RT}}=(1-\mathrm{D})^{2}$

$$
\begin{aligned}
\Rightarrow \frac{2 \times \mathrm{L}_{\mathrm{cr}}}{5 \times 40 \times 10^{-6}} & =(1-0.555)^{2} \\
\mathrm{~L}_{\mathrm{cr}} & =19.75 \mu \mathrm{H}
\end{aligned}
$$

(d) A 220 kV three-phase transmission line is 90 km long. The resistance is $0.1 \Omega / \mathrm{km}$ and the inductance is $1.0 \mathbf{~ m H} / \mathrm{km}$. Use the short transmission line model to find
(i) Voltage at the sending end, and
(ii) Voltage regulation at the sending end.

Sol: (i) (Data insufficient)
To calculate voltage @ sending end either the rating of transmission line or load current should be given.
(ii) Sending end voltage regulation $=0$

When load is changed from no load to full load, receiving end voltage is changed but not sending voltage

$$
\begin{aligned}
& \text { i.e., }\left(\mathrm{V}_{\mathrm{s}}\right)_{\text {full load }}=\left(\mathrm{V}_{\mathrm{s}}\right)_{\text {noload }} \\
& \therefore\left(\mathrm{V}_{\text {reg }}\right)_{\text {sendingend }}=0
\end{aligned}
$$

5(e) A 12-bit dual-slope ADC utilizes a $1 \mathbf{M H z}$ clock and has $\mathbf{V}_{\text {ref }}=10 \mathrm{~V}$. Its analog input voltage is in the range of 0 to $\mathbf{- 1 0} \mathrm{V}$. Find out the time required to convert an input signal equal to the fullscale value. Also find the integrator time constant if the peak voltage reached at the output of the integrator is 10 V .
Sol: $\mathrm{t}_{\mathrm{A}}=\left(2^{\mathrm{n}+1}{ }_{-1}\right) \mathrm{T}_{\mathrm{c} \mid \mathrm{k}}$

$$
\begin{aligned}
& =\left(2^{12+1}-1\right) \frac{1}{\mathrm{f}_{\mathrm{c} / \mathrm{k}}} \\
& =\frac{\left(2^{13}-1\right)}{1 \times 10^{6}} \\
& =\frac{8191}{10^{6}} \\
& =8191 \times 10^{-6} \\
& =8.191 \times 10^{-3} \\
& =8.191 \mathrm{~ms} \\
& \cong 8.2 \mathrm{~ms}
\end{aligned}
$$

6(a) A 50 Hz , 4-pole turbogenerator rated $500 \mathrm{MVA}, 22 \mathrm{kV}$ has an inertia constant of $7.5 \mathrm{MJ} / \mathrm{MVA}$. Find
(i) Rotor acceleration, if the input to the generator is suddenly raised to 400 MW for an electrical load of 350 MW ,
(ii) The speed of rotor in rpm, if the rotor acceleration calculated in part (i) is constant for a period of 10 cycles, and
(iii)The change in torque angle δ in elect.degrees.

佥 $\mathbf{A C E}$	42	Electrical Engineering

Sol: Given,
$\mathrm{f}=50 \mathrm{~Hz}$
$\mathrm{s}=500 \mathrm{MVA}$
$\mathrm{V}=22 \mathrm{kV}$
$\mathrm{H}=7.5 \mathrm{MJ} / \mathrm{MVA}$
(i) $\mathrm{P}_{\mathrm{e}}=350 \mathrm{MW}$
$\mathrm{P}_{\mathrm{m}}=400 \mathrm{MW}$
Swing equation in actual units and electrical degrees is

$$
\begin{aligned}
& \frac{\mathrm{GH}}{180^{\circ} \mathrm{f}} \frac{\mathrm{~d}^{2} \delta}{\mathrm{dt}^{2}}=\mathrm{P}_{\mathrm{m}}-\mathrm{P}_{\mathrm{e}} \\
& \frac{(500) \times(7.5) \times 10^{6}}{180^{\circ} \times(50)} \cdot \frac{\mathrm{d}^{2} \delta}{\mathrm{dt}^{2}}=(400-350)^{\circ} \times 10^{6}
\end{aligned}
$$

$$
\therefore \quad \frac{\mathrm{d}^{2} \delta}{\substack{\uparrow \\ \text { Rotoraceleration }}} \mathrm{dt}^{2} \quad 120 \text { elec deg } / \mathrm{sec}^{2}
$$

(ii) $\left(\frac{\mathrm{d}^{2} \delta}{\mathrm{dt}^{2}}\right)_{\text {mech }}=\frac{2}{\mathrm{P}}\left(\frac{\mathrm{d}^{2} \delta}{\mathrm{dt}^{2}}\right)_{\text {elec }}=\frac{2}{4}(120)$

$$
\left(\frac{\mathrm{d}^{2} \delta}{\mathrm{dt}^{2}}\right)_{\text {mech }}=60 \mathrm{mech} \mathrm{deg} / \mathrm{sec}^{2}
$$

$$
=\frac{60}{360} \text { rotations } / \sec ^{2}
$$

$$
\begin{gathered}
=\frac{\left(\frac{1}{6}\right) \text { rotations }}{\left(\frac{1}{60}\right)^{2} \min ^{2}} \\
\left(\frac{\mathrm{~d}^{2} \delta}{\mathrm{dt}^{2}}\right)_{\text {mech }}= \\
=\frac{3600}{6}=600 \text { rotations } / \mathrm{min}^{2}
\end{gathered}
$$

$$
\text { Time }=\mathrm{t}=10 \text { cycles }=10 \times \frac{1}{50}=\frac{1}{5} 8=\frac{1}{5} \times \frac{1}{60} \mathrm{~min}
$$

$$
\mathrm{t}=\frac{1}{300} \min
$$

Initial speed $\mathrm{N}_{0}=\frac{120 \mathrm{f}}{\mathrm{P}}=\frac{120 \times 50}{4}=1500 \mathrm{rpm}$
Final speed $N_{1}=N_{0}+\left(\frac{\mathrm{d}^{2} \delta}{\mathrm{dt}^{2}}\right) \mathrm{t}$

$$
=1500+600 \times \frac{1}{300}
$$

$\mathrm{N}_{1}=1502 \mathrm{rpm}$
(iii)change in torque angle is

$$
\begin{aligned}
\Delta \delta & =\frac{1}{2} \alpha_{\mathrm{e}} \mathrm{t}^{2} \\
& =\frac{1}{2} \times 120\left(\text { elec. } . \mathrm{deg} / \mathrm{sec}^{2}\right) \times\left(\frac{1}{5}\right)^{2} \sec ^{2}
\end{aligned}
$$

$\Delta \delta=2.4$ electrical degrees.

6(b) The full bridge inverter is used to produce a 50 Hz voltage across a series RL load using Bipolar $P W M$. The dc input to the bridge is 200 V , the frequency modulation m_{f} is 21 and amplitude modulation m_{a} is 0.8 . The load has resistance of $R=10 \Omega$ and inductance $L=20 \mathrm{mH}$. Find
(i) The amplitude of fundamental voltage and current, and
(ii) Total harmonic distortion in load current.

Assume harmonics ($>\mathbf{2 5}{ }^{\text {th }}$ order) are insignificant and normalized voltage is

$\mathrm{m}_{\mathrm{a}}=1$		0.9	0.8	0.7	0.6	0.5
$\mathrm{n}=1$	1.0	0.9	0.8	0.7	0.6	0.5
$\mathrm{n}=\mathrm{m}_{\mathrm{f}}$	0.6	0.71	0.82	0.92	1.01	1.15
$\mathrm{n}=\mathrm{m}_{\mathrm{f}} \pm 2$	0.32	0.27	0.22	0.17	0.13	0.09

Sol: Full bridge inverter is operating with bipolar PWM.
DC input voltage $\left(\mathrm{V}_{\mathrm{d}}\right)=200 \mathrm{~V}$
Frequency modulation $\left(\mathrm{m}_{\mathrm{f}}\right)=21$
Amplitude modulation $\left(\mathrm{m}_{\mathrm{a}}\right)=0.8$
Load: Resistance $(\mathrm{R})=10 \Omega$

Inductance (L) $=20 \mathrm{mH}$
Fundamental frequency (f) $=50 \mathrm{~Hz}$
Inductive reactance at $50 \mathrm{~Hz}=2 \pi \times 50 \times 20 \times 10^{-3}$

$$
=6.28 \Omega
$$

$$
\begin{aligned}
\text { Impedance at fundamental frequency } & =\sqrt{10^{2}+6.28^{2}} \\
& =11.8 \Omega
\end{aligned}
$$

(i) Amplitude of fundamental voltage $\left(\mathrm{V}_{01 \mathrm{~m}}\right)=\mathrm{m}_{\mathrm{a}} \cdot \mathrm{V}_{\mathrm{d}}$

$$
=0.8 \times 200=160 \mathrm{~V}
$$

Amplitude of fundamental current $\left(\mathrm{I}_{01 \mathrm{~m}}\right)=\frac{\mathrm{V}_{01 \mathrm{~m}}}{\mathrm{Z}}$

$$
=\frac{160}{11.8}=13.56 \mathrm{~A}
$$

RMS value of fundamental current $\left(\mathrm{I}_{1}\right)=\frac{13.56}{\sqrt{2}}=9.59 \mathrm{~A}$
(ii) RMS value of $21^{\text {st }}$ harmonic $\left(\mathrm{V}_{21}\right)=0.82 \times 200 \times \frac{1}{\sqrt{2}}$

$$
=115.9 \mathrm{~V}
$$

RMS value of $19^{\text {th }}$ harmonic $\left(\mathrm{V}_{19}\right)=0.22 \times 200 \times \frac{1}{\sqrt{2}}$

$$
=31.31 \mathrm{~V}
$$

RMS value of $23^{\text {rd }}$ harmonic $\left(\mathrm{V}_{23}\right)=0.22 \times 200 \times \frac{1}{\sqrt{2}}$

$$
=31.31 \mathrm{~V}
$$

Impedance of $21^{\text {st }}$ harmonic $\left(Z_{21}\right)=\sqrt{R^{2}+X_{21}^{2}}$

$$
\begin{aligned}
& =\sqrt{10^{2}+(21 \times 6.28)^{2}}=132.25 \Omega \\
\mathrm{Z}_{19} & =\sqrt{10^{2}+(19 \times 6.28)^{2}}=119.7 \Omega \\
\mathrm{Z}_{23} & =\sqrt{10^{2}+(23 \times 6.28)^{2}}=144.78 \Omega
\end{aligned}
$$

RMS value of $21^{\text {st }}$ harmonic $=I_{21}=\frac{V_{21}}{Z_{21}}$

45

$$
\begin{aligned}
& \mathrm{I}_{21}=\frac{115.9}{132.25}=0.8763 \mathrm{~A} \\
& \mathrm{I}_{19}=\frac{\mathrm{V}_{19}}{\mathrm{Z}_{19}}=\frac{31.31}{119.7}=0.2615 \mathrm{~A} \\
& \mathrm{I}_{23}=\frac{\mathrm{V}_{23}}{\mathrm{Z}_{23}}=\frac{31.31}{144.78}=0.216 \mathrm{~A}
\end{aligned}
$$

RMS value of current $=\sqrt{\mathrm{I}_{1}^{2}+\mathrm{I}_{19}^{2}+\mathrm{I}_{21}^{2}+\mathrm{I}_{23}^{2}}$

$$
=\sqrt{9.59^{2}+0.2615^{2}+0.8763^{2}+0.216^{2}}
$$

$$
\mathrm{I}_{\mathrm{or}}=9.636 \mathrm{~A}
$$

Total harmonic distortion $=\frac{\sqrt{\mathrm{I}_{\text {or }}^{2}-\mathrm{I}_{1}^{2}}}{\mathrm{I}_{1}} \times 100 \%=\frac{\sqrt{9.636^{2}-9.59^{2}}}{9.59} \times 100 \%=9.79 \%$

6(c) Design a circuit that takes as input two 2-bit numbers, \mathbf{N}_{1} and \mathbf{N}_{2} for comparison and generates three outputs:
$\mathbf{N}_{1}=\mathbf{N}_{2}, \mathbf{N}_{1}<\mathbf{N}_{2}$ and $\mathbf{N}_{1}>\mathbf{N}_{2}$. These three binary outputs are represented by $\mathbf{F}_{\text {eq }}, \mathbf{F}_{\text {lt }}$ and \mathbf{F}_{gt} respectively. Realize the output in Sum of Products (SoP) form.

Sol: Let us consider N_{1} is $\mathrm{A}_{1} \mathrm{~A}_{0} \& \mathrm{~N}_{2}$ is $\mathrm{B}_{1} \mathrm{~B}_{0}$

0	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{0}$	$\mathrm{~F}_{\mathrm{eq}}$	F_{1+}	F_{gt}
0	0	0	0	0	1	0	0
1	0	0	0	1	0	1	0
2	0	0	1	0	0	1	0
3	0	0	1	1	0	1	0
4	0	1	0	0	0	0	1
5	0	1	0	1	1	0	0
6	0	1	1	0	0	1	0
7	0	1	1	1	0	1	0
8	1	0	0	0	0	0	1
9	1	0	0	1	0	0	1
10	1	0	1	0	1	0	0
11	1	0	1	1	0	1	0
12	1	1	0	0	0	0	1
13	1	1	0	1	0	0	1
14	1	1	1	0	0	0	1
15	1	1	1	1	1	0	0

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{eq}}=\sum \mathrm{m}(0,5,10,15) \\
& \mathrm{F}_{\mathrm{it}}=\sum \mathrm{m}(1,2,3,6,7,11) \\
& \mathrm{F}_{\mathrm{gt}}=\sum \mathrm{m}(4,8,9,12,13,14)
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{eq}} \overline{\mathrm{~A}}_{1} \overline{\mathrm{~A}}_{0} \overline{\mathrm{~B}}_{1} \overline{\mathrm{~B}}_{0}+\bar{A}_{1} A_{0} \bar{B}_{1} \bar{B}_{0}+\mathrm{A}_{1} \mathrm{~A}_{0} \mathrm{~B}_{1} \mathrm{~B}_{0}+A \bar{A}_{0} B, \bar{B}_{0}
$$

$$
\mathrm{F}_{1}+=\overline{\mathrm{A}}_{1} \mathrm{~B}_{1}+\overline{\mathrm{A}}_{1} \overline{\mathrm{~A}}_{0} \mathrm{~B}_{0}+\overline{\mathrm{A}}_{0} \mathrm{~B}_{1} \mathrm{~B}_{0}
$$

$$
\mathrm{F}_{\mathrm{gt}}=\mathrm{A}_{1} \overline{\mathrm{~B}}_{1}=\mathrm{A}_{0} \overline{\mathrm{~B}}_{1} \overline{\mathrm{~B}}_{0}+\mathrm{A}_{1} \mathrm{~A}_{0} \overline{\mathrm{~B}}_{0}
$$

7(a) For a causal system specified by the transfer function $\quad H(z)=\frac{z}{z-0.5}$
Determine the zero state response to the input

$$
\mathbf{r}(\mathbf{k})=(0.8)^{\mathbf{k}} \mathbf{u}(\mathbf{k})+(2)^{\mathbf{k}+1} \mathbf{u}\{-(\mathbf{k}+1)\} .
$$

Sol: $\mathrm{H}(\mathrm{z})=\frac{\mathrm{z}}{\mathrm{z}-0.5}$ ROC of $\mathrm{H}(\mathrm{z})$ is $|\mathrm{z}|>0.5$
Input $\mathrm{r}(\mathrm{k})=(0.8)^{\mathrm{k}} \mathrm{u}(\mathrm{k})+(2)^{\mathrm{k}+1} \mathrm{u}\{-(\mathrm{k}+1)\}$.

$$
\begin{array}{lc}
\downarrow & \downarrow \\
|\mathrm{z}|>0.8 & |\mathrm{z}|<2
\end{array}
$$

Input ROC: $0.8<|z|<2, \operatorname{ROC}$ of $H(z)$ is $|z|>0.5$
\therefore ROC of $\mathrm{Y}(\mathrm{z})=0.8<|\mathrm{z}|<2$

$$
\begin{aligned}
& \mathrm{a}^{\mathrm{n}} \mathrm{u}(\mathrm{n}) \leftrightarrow \frac{1}{1-\mathrm{az}^{-1}} ;|\mathrm{z}|>|\mathrm{a}| \\
& -\mathrm{a}^{\mathrm{n}} \mathrm{u}(-\mathrm{n}-1) \leftrightarrow \frac{1}{1-\mathrm{az}^{-1}} ;|\mathrm{z}|<|\mathrm{a}|
\end{aligned}
$$

Input $\mathrm{r}(\mathrm{k})=(0.8)^{\mathrm{k}} \mathrm{u}(\mathrm{k})+(2)^{\mathrm{k}+1} \mathrm{u}\{-(\mathrm{k}+1)\}$.
\downarrow Z.T
$R(z)=\frac{1}{1-0.8 z^{-1}}-\frac{2}{1-2 z^{-1}} ; 0.8<|z|<2$ $=\frac{1-2 \mathrm{z}^{-1}-2+1.6 \mathrm{z}^{-1}}{\left(1-0.8 \mathrm{z}^{-1}\right)\left(1-2 \mathrm{z}^{-1}\right)}$ $=\frac{-1-0.4 \mathrm{z}^{-1}}{\left(1-0.8 \mathrm{z}^{-1}\right)\left(1-2 \mathrm{z}^{-1}\right)}$
$\mathrm{Y}(\mathrm{z})=\mathrm{R}(\mathrm{z}) \mathrm{H}(\mathrm{z}) ; \mathrm{ROC}: 0.8<|\mathrm{z}|<2$
$Y(z)=\frac{-1-0.4 z^{-1}}{\left(1-0.8 z^{-1}\right)\left(1-2 z^{-1}\right)\left(1-0.5 z^{-1}\right)}$

$$
=\frac{\mathrm{A}}{1-0.5 \mathrm{z}^{-1}}+\frac{\mathrm{B}}{1-2 \mathrm{z}^{-1}}+\frac{\mathrm{C}}{1-0.5 \mathrm{z}^{-1}}
$$

ROC of $Y(z)$

By partial fractions, $\mathrm{A}=\frac{8}{3}, \mathrm{~B}=\frac{-8}{3} ; \mathrm{C}=-1$
Inverse Z-transform of $\mathrm{Y}(\mathrm{z})$
$y(n)=\frac{8}{3}(0.8)^{n} u(n)-\frac{8}{3}(2)^{n}[-u(-n-1)]-(0.5)^{n} u(n)$

7(b) An unbalanced $2-\phi, 1000 \mathrm{~V}, 50 \mathrm{~Hz}$ induction motor has unequal winding impedances $\mathrm{Z}_{\mathrm{a}}=3+$ j 2.7 and $Z_{b}=7+\mathrm{j} 3 \Omega$. This motor is supplied by Scott-connected transformer combination from a 3-phase 11 kV system. Calculate phase currents I_{a} and I_{b} of the motor and line currents on 3phase supply side.

Sol:

$\overline{\mathrm{V}}_{\mathrm{RS}}-\overline{\mathrm{V}}_{\mathrm{YS}}=11000 \angle 0^{\circ}$

$$
\overline{\mathrm{V}}_{\mathrm{YS}}=\overline{\mathrm{V}}_{\mathrm{SB}}=\frac{11000}{2} \angle-120^{\circ}
$$

$$
\overline{\mathrm{V}}_{\mathrm{RS}}=11000 \angle 0^{\circ}+\frac{11000}{2} \angle-120^{\circ}
$$

$$
=\frac{\sqrt{3}}{2} 11000 \angle-30^{\circ}
$$

$$
\left[\frac{\sqrt{3}}{2} \times 11000 \angle-30\right] \frac{\mathrm{N}_{2}}{\frac{\sqrt{3}}{2} \mathrm{~N}_{1}}=1000 \angle-30^{\circ}
$$

$$
\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}=\frac{1}{11}
$$

Motor phase currents:

$$
\begin{aligned}
& \overline{\mathrm{I}}_{\mathrm{a}}=\frac{1000 \angle-30^{\circ}}{3+\mathrm{j} 2.7}=247.8 \angle-72^{\circ} \mathrm{A} \\
& \overline{\mathrm{I}}_{\mathrm{b}}=\frac{1000 \angle-120^{\circ}}{7+\mathrm{j}}=131.3 \angle-143.2^{\circ} \mathrm{A}
\end{aligned}
$$

Transformer currents:

$\overline{\mathrm{I}}_{\mathrm{R}}=\frac{2}{\sqrt{3}} \frac{1}{11}\left(247.8 \angle-72^{\circ}\right)=26 \angle-72^{\circ} \mathrm{A}$
$\overline{\mathrm{I}}_{\mathrm{Y}}\left(\frac{\mathrm{N}_{1}}{2}\right)-\overline{\mathrm{I}}_{\mathrm{B}}\left(\frac{\mathrm{N}_{1}}{2}\right)=\overline{\mathrm{I}}_{\mathrm{b}} \mathrm{N}_{2}$
$\overline{\mathrm{I}}_{\mathrm{Y}}-\overline{\mathrm{I}}_{\mathrm{B}}=\overline{\mathrm{I}}_{\mathrm{b}} \mathrm{N}_{2}\left(\frac{2}{\mathrm{~N}_{1}}\right)$

$$
\begin{equation*}
=\frac{2}{11} \overline{\mathrm{I}}_{\mathrm{b}}=\frac{2}{11} 131.3 \angle-143.2^{\circ} \mathrm{A} \tag{2}
\end{equation*}
$$

$\overline{\mathrm{I}}_{\mathrm{Y}}-\overline{\mathrm{I}}_{\mathrm{B}}=23.8 \angle-143.2^{\circ}$
$\overline{\mathrm{I}}_{\mathrm{R}}+\overline{\mathrm{I}}_{\mathrm{Y}}+\overline{\mathrm{I}}_{\mathrm{B}}=0$
From (1) \& (3)
$\overline{\mathrm{I}}_{\mathrm{Y}}+\overline{\mathrm{I}}_{\mathrm{B}}=-26 \angle-72^{\circ}=26 \angle 108^{\circ}$
By solving equations (2) \& (3)
$\overline{\mathrm{I}}_{\mathrm{Y}}=14.5 \angle 158.8^{\circ} \mathrm{A}$
$\overline{\mathrm{I}}_{\mathrm{B}}=20.25 \angle 74.2^{\circ} \mathrm{A}$
$\overline{\mathrm{I}}_{\mathrm{R}}=26 \angle-72^{\circ} \mathrm{A}$

7(c) A 25 MVA, 13.8 kV generator with $\mathrm{x}_{\mathrm{d}}^{\prime \prime}=15 \%$ is connected through a 25 MVA, 13.8/6.9 kV transformer with leakage reactance of 10% to a bus which supplied four identical motors as shown in the figure. The sub-transient reactance $X_{d}^{\prime \prime}$ of each motor is 20% on base of 5 MVA, 6.9 kV . Find
(i) The sub-transient current in the fault, and
(ii) The sub-transient current in breaker A.

Sol: Given,

	VA-rating	V-rating	X"
Generator:	25 MVA	13.8 kV	15%
Transformer:	25 MVA	$13.8 \mathrm{kV} / 6.9 \mathrm{kV}$	10%
Motor:	5 MVA	6.9 kV	20%

Network is:

$\mathrm{S}_{\mathrm{B}}=25 \mathrm{MVA}$	$\mathrm{S}_{\mathrm{B}}=25 \mathrm{MVA}$	
$\mathrm{V}_{\mathrm{B}}=13.8 \mathrm{kV}$	$\mathrm{V}_{\mathrm{B}}=6.9 \mathrm{kV}$	base quantities

$\left.\begin{array}{rl}\text { let } \mathrm{S}_{\mathrm{B}} & =25 \mathrm{MVA} \\ \mathrm{V}_{\mathrm{B}} & =13.8 \mathrm{kV}\end{array}\right\} @$ generator
The corresponding bases at other locations of power system shown above is represented on the circuit. For generator and transformer, base and rated quantities are same hence their pu reactances do not change. But for motor rated and base powers are not same. Hence for motor, new values of reactances should be calculated in its new values by using the formula.

$$
\begin{aligned}
X_{\mathrm{m}}(\text { new }) & =\mathrm{X}_{\mathrm{m}}(\text { old }) \cdot \frac{\mathrm{S}_{\text {new }}}{\mathrm{S}_{\text {old }}} \\
& =20 \cdot \frac{(25)}{5} \\
\left.X_{\mathrm{m}} \text { (new) }\right) & =100 \%=1 \mathrm{pu}
\end{aligned}
$$

Hence the reactances of motor adjusted in the new base of $S_{B}=25$ MVA is 100%
Reactance diagram as seen from fault is (voltages sources are replaced by their equivalent reactance)

事边	53	ESE Mains-2019 Paper-2

As seen from fault location equivalent reactance is
$\mathrm{X}_{\mathrm{eq}}=\left(\mathrm{X}_{\mathrm{n}}^{\prime \prime}\right)\left\|\left(\mathrm{X}_{\mathrm{m}}^{\prime \prime}\right)\right\|\left(\mathrm{X}_{\mathrm{m}}^{\prime \prime}\right)\left\|\left(\mathrm{X}_{\mathrm{m}}^{\prime \prime}\right)\right\|\left(\mathrm{X}_{\mathrm{T}}^{\prime \prime}+\mathrm{X}_{\mathrm{g}}^{\prime \prime}\right)$
$=(1)| |(1)| |(1)| |(1)| |(0.15+0.1)$
$X_{\text {eq }}=0.125$
$\Rightarrow \mathrm{I}_{\mathrm{f}}(\mathrm{pu})($ fault current $)=\frac{1}{\mathrm{X}_{\mathrm{eq}}}=\frac{1}{0.125}=8 \mathrm{pu}$
$\mathrm{I}_{\mathrm{f}}(\mathrm{pu})=8 \mathrm{pu}$
\Rightarrow At motor location,

$$
\begin{aligned}
& \quad \begin{aligned}
\mathrm{I}_{\mathrm{B}}(\text { base })= & \frac{\mathrm{S}_{\mathrm{B}}}{\sqrt{3} \mathrm{~V}_{3}}=\frac{25 \times 10^{6}}{\sqrt{3} \times 6.9 \times 10^{3}}=2.092 \mathrm{kA} \\
\Rightarrow & \mathrm{I}_{\mathrm{f}}(\text { actual })
\end{aligned}=\mathrm{I}_{\mathrm{f}}(\mathrm{pu}) \times \mathrm{I}_{\mathrm{B}} \\
& \\
& =8 \times 2.092 \\
& \mathrm{I}_{\mathrm{f}}(\text { actual })=16.73 \mathrm{kA} \\
& \Rightarrow \mathrm{I}_{\mathrm{A}}=\mathrm{I}_{\mathrm{f}}-\mathrm{I}_{\mathrm{m}}=8-\frac{1}{1}=7 \mathrm{pu} \\
& \mathrm{I}_{\mathrm{A}}=7 \mathrm{pu}
\end{aligned}
$$

\therefore Current through circuit breaker A is
$\mathrm{I}_{\mathrm{A}}=7 \times 2.092=14.64 \mathrm{kA}$

8(a) Find the transfer function $\frac{Y(s)}{U(s)}$ using Mason's Gain formula. Also find $\frac{X_{5}(s)}{U(s)}$.

Sol: Number of forward paths from $\mathrm{U}(\mathrm{s})$ to $\mathrm{Y}(\mathrm{s})=1$
Number of Loops $=5$
Two non touching loops $=7$
Three non touching loops $=2$
$\frac{Y(s)}{U(s)}=\frac{M_{1} \Delta_{1}}{\Delta}$
Forward path gain

$$
\mathrm{M}_{1}=\mathrm{G}_{4} \mathrm{G}_{5} \mathrm{G}_{6}
$$

Loops $\mathrm{L}_{1}=\mathrm{G}_{1} \mathrm{H}_{1}$

$$
\mathrm{L}_{2}=\mathrm{G}_{2} \mathrm{H}_{2}
$$

$$
\mathrm{L}_{3}=\mathrm{G}_{3} \mathrm{H}_{3}
$$

$$
\mathrm{L}_{4}=\mathrm{G}_{5} \mathrm{H}_{4}
$$

$$
\mathrm{L}_{5}=\mathrm{G}_{6} \mathrm{H}_{5}
$$

Two non touching loops $=L_{1} L_{3}=G_{1} H_{1} G_{3} H_{3}$
$\mathrm{L}_{1} \mathrm{~L}_{4}=\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{5} \mathrm{H}_{4}$
$\mathrm{L}_{1} \mathrm{~L}_{5}=\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{6} \mathrm{H}_{5}$
$\mathrm{L}_{2} \mathrm{~L}_{4}=\mathrm{G}_{2} \mathrm{H}_{2} \mathrm{G}_{5} \mathrm{H}_{4}$
$\mathrm{L}_{2} \mathrm{~L}_{5}=\mathrm{G}_{2} \mathrm{H}_{2} \mathrm{G}_{6} \mathrm{H}_{5}$
$\mathrm{L}_{3} \mathrm{~L}_{4}=\mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{5} \mathrm{H}_{4}$
$\mathrm{L}_{3} \mathrm{~L}_{5}=\mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{6} \mathrm{H}_{5}$
The non touch loops $=L_{1} L_{3} L_{4}=G_{1} H_{1} G_{3} H_{3} G_{5} H_{4}$
$L_{1} L_{3} L_{5}=G_{1} H_{1} G_{3} H_{3} G_{6} H_{5}$

Four, five etc... non touching loops do not exist

$$
\begin{aligned}
& \therefore \Delta=1-\left(\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+\mathrm{L}_{4}+\mathrm{L}_{5}\right)+\left(\mathrm{L}_{1} \mathrm{~L}_{3}+\mathrm{L}_{1} \mathrm{~L}_{4}+\mathrm{L}_{1} \mathrm{~L}_{5}+\right. \\
& \left.\mathrm{L}_{2} \mathrm{~L}_{4}+\mathrm{L}_{2} \mathrm{~L}_{5}+\mathrm{L}_{3} \mathrm{~L}_{4}+\mathrm{L}_{3} \mathrm{~L}_{5}\right)-\left(\mathrm{L}_{1} \mathrm{~L}_{3} \mathrm{~L}_{4}+\mathrm{L}_{1} \mathrm{~L}_{3} \mathrm{~L}_{5}\right) \\
& \Delta=1-\left(\mathrm{G}_{1} \mathrm{H}_{1}+\mathrm{G}_{2} \mathrm{H}_{2}+\mathrm{G}_{3} \mathrm{H}_{3}+\mathrm{G}_{5} \mathrm{H}_{4}+\mathrm{G}_{6} \mathrm{H}_{5}\right)+\left(\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{3} \mathrm{H}_{3}+\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{5} \mathrm{H}_{4}+\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{6} \mathrm{H}_{5}+\right. \\
& \left.\mathrm{G}_{2} \mathrm{H}_{2} \mathrm{G}_{5} \mathrm{H}_{4}+\mathrm{G}_{2} \mathrm{H}_{2} \mathrm{G}_{6} \mathrm{H}_{5}+\mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{5} \mathrm{H}_{4}+\mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{6} \mathrm{H}_{5}\right)-\left(\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{5} \mathrm{H}_{4}+\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{6} \mathrm{H}_{5}\right) \\
& \Delta_{1}=1-\left(\mathrm{L}_{2}+\mathrm{L}_{3}\right) \\
& \Delta_{1}=1-\left(\mathrm{G}_{2} \mathrm{H}_{2}+\mathrm{G}_{3} \mathrm{H}_{3}\right) \\
& \frac{Y(s)}{U(s)}=\frac{M_{1} \Delta_{1}}{\Delta} \\
& =\frac{\mathrm{G}_{4} \mathrm{G}_{3} \mathrm{G}_{6}\left(1-\left(\mathrm{G}_{2} \mathrm{H}_{2}+\mathrm{G}_{3} \mathrm{H}_{3}\right)\right)}{1-\left(\mathrm{G}_{1} \mathrm{H}_{1}+\mathrm{G}_{2} \mathrm{H}_{2}+\mathrm{G}_{3} \mathrm{H}_{3}+\mathrm{G}_{5} \mathrm{H}_{4}+\mathrm{G}_{6} \mathrm{H}_{5}\right)+\left(\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{3} \mathrm{H}_{3}+\right.} \\
& \mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{5} \mathrm{H}_{4}+\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{6} \mathrm{H}_{5}+\mathrm{G}_{2} \mathrm{H}_{2} \mathrm{G}_{5} \mathrm{H}_{4}+ \\
& \mathrm{G}_{2} \mathrm{H}_{2} \mathrm{G}_{6} \mathrm{H}_{5}+\mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{5} \mathrm{H}_{4}+\mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{6} \mathrm{H}_{5} \text {) } \\
& -\left(\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{5} \mathrm{H}_{4}+\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{6} \mathrm{H}_{5}\right)
\end{aligned}
$$

Number of forward paths form $\mathrm{U}(\mathrm{s})$ to $\mathrm{X}_{5}(\mathrm{~s})=1$
$\frac{\mathrm{X}_{5}(\mathrm{~s})}{\mathrm{U}(\mathrm{s})}=\frac{\mathrm{M}_{1} \Delta_{1}}{\Delta}$
Where $\mathrm{M}_{1}=\mathrm{G}_{4}$

$$
\begin{aligned}
& \Delta_{1}=1-\left(\mathrm{L}_{2}+\mathrm{L}_{3}+\mathrm{L}_{5}\right)+\left(\mathrm{L}_{2} \mathrm{~L}_{5}+\mathrm{L}_{3} \mathrm{~L}_{5}\right) \\
& =1-\left(\mathrm{G}_{2} \mathrm{H}_{2}+\mathrm{G}_{3} \mathrm{H}_{3}+\mathrm{G}_{6} \mathrm{H}_{5}\right)+\left(\mathrm{G}_{2} \mathrm{H}_{2} \mathrm{G}_{6} \mathrm{H}_{5}+\mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{6} \mathrm{H}_{5}\right) \\
& \frac{X_{5}(s)}{U(s)}=\frac{G_{4}\left(1-\left(G_{2} H_{2}+G_{3} H_{3}+G_{6} H_{5}\right)+\left(G_{2} H_{2} G_{6} H_{5}+G_{3} H_{3} G_{6} H_{5}\right)\right)}{1-\left(G_{1} H_{1}+G_{2} H_{2}+G_{3} H_{3}+G_{5} H_{4}+G_{6} H_{5}\right)+\left(G_{1} H_{1} G_{3} H_{3}+\right.} \\
& \mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{5} \mathrm{H}_{4}+\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{6} \mathrm{H}_{5}+\mathrm{G}_{2} \mathrm{H}_{2} \mathrm{G}_{5} \mathrm{H}_{4}+ \\
& \mathrm{G}_{2} \mathrm{H}_{2} \mathrm{G}_{6} \mathrm{H}_{5}+\mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{5} \mathrm{H}_{4}+\mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{6} \mathrm{H}_{5} \text {) } \\
& -\left(G_{1} H_{1} G_{3} H_{3} G_{5} H_{4}+G_{1} H_{1} G_{3} H_{3} G_{6} H_{5}\right)
\end{aligned}
$$

8(b) A $440 \mathrm{~V}, 50 \mathrm{~Hz}$, 6-pole, Y-connected induction motor has following parameters per phase referred to the stator:

$$
\mathrm{R}_{\mathrm{s}}=\mathrm{R}_{\mathrm{r}}^{\prime}=0.3 \Omega, \mathrm{X}_{\mathrm{s}}=\mathrm{X}_{\mathrm{r}}^{\prime}=1.0 \Omega \text { and } \mathrm{X}_{\mathrm{m}}=40 \Omega
$$

The nominal full load slip is $\mathbf{0 . 0 5}$.
The motor is to be braked by plugging from its initial full load condition. Determine initial braking torque without braking resistor $\left(\mathrm{R}_{\mathrm{B}}\right)$.

Also find the value of \mathbf{R}_{B} so that braking current is limited to 1.5 times the full load current. What will be the corresponding braking torque as a ratio of full load torque?

Note: Assume braking resistor \mathbf{R}_{B} is connected to rotor circuit.
Sol: 6-pole, $50 \mathrm{~Hz} \rightarrow \omega_{\mathrm{s}}=\frac{4 \pi \mathrm{f}}{\mathrm{P}}=\frac{4 \pi \times 50}{6}=\frac{100 \pi}{3} \mathrm{mech} \mathrm{rad} / \mathrm{sec}$
From given data, approximate equivalent circuit per phase (without R_{b}) is shown below.

$\mathrm{I}_{2}=\frac{440}{\sqrt{3} \sqrt{6.3^{2}+4}}=38.43 \mathrm{~A}$
Corresponding developed torque $(=$ load torque $)=\frac{3 \times 38.43^{2} \times 6 \times 3}{100 \pi}=253.9 \mathrm{~N}-\mathrm{m}$
Now two of the supply lines are interchanged, reversing the direction of rotation of the stator mmf. (This is called plugging). The rotor now quickly comes to a stop, when the supply is to be removed. Immediately after plugging, slip $=2-0.05=1.95$.

New developed torque (which opposes rotor rotation)

$$
=\frac{3 \times\left(\frac{440}{\sqrt{3}}\right)^{2}(0.3) \times 3}{1.95 \times 100\left[\left(0.3+\frac{0.3}{1.95}\right)^{2}+4\right]}=\frac{440^{2} \times 0.9}{195(4.2)}=212.7 \mathrm{~N}-\mathrm{m}
$$

Load torque opposes rotation, as always
Total braking torque $=212.7+253.9=466.6 \mathrm{~N}-\mathrm{m}$

Braking resistance $\mathbf{R}_{\mathbf{b}}$ introduced into the rotor circuit at the same instant as plugging:

Before plugging, $\mathrm{T}_{\mathrm{d}}=$ load torque $=253.9 \mathrm{~N}-\mathrm{m}$
Immediately after plugging, slip changes to 1.95 , as before.
New rotor current $=\frac{\left(\frac{440}{\sqrt{3}}\right)}{\sqrt{\left(0.3+\frac{0.3+R_{\mathrm{b}}}{1.95}\right)^{2}+4}}=1.5 \times 38.43=57.65 \mathrm{~A}$ (given)
R_{b} can be found from the above and works out to 6.8Ω.
New developed torque (which opposes rotation)

$$
=\frac{3 \times 57.65^{2} \times 7.1 \times 3}{1.95 \times 100 \pi}=346.7 \mathrm{~N}-\mathrm{m} .
$$

Adding the load torque, which also opposes rotation, total braking torque $=346.7+253.9=600 \mathrm{~N}-\mathrm{m}$. (Adding R_{b} both reduces the rotor current as well as increases braking torque).

8(c) A generator is connected by a double line to an infinite bus, the voltage of which is $\mathrm{V}=\mathbf{1} \mathrm{pu}$ as shown in the figure. Per unit values of reactances and voltages are indicated in the figure. A three-phase short circuit occurs at the point P. The circuit breakers A and B open simultaneously and remain open. The mechanical power supplied to the generator before the fault is $\mathbf{P}_{\mathrm{m}}=\mathbf{1} \mathrm{pu}$.
(i) Determine the electrical powers $P_{e 1}, P_{e 2}$ and $P_{e 3}$ before, during and post the fault
(ii) Draw on the same graph, power angle curve for $\mathbf{P}_{\mathrm{e} 1}, \mathrm{P}_{\mathrm{e} 2}$ and $\mathbf{P}_{\mathrm{e} 3}$.
(iii)Calculate the angles δ_{0}, δ_{1} and $\delta_{\text {max }}$ where δ_{0} is the initial power angle, δ_{1} is the post fault power angle and $\delta_{\text {max }}$ is the maximum power angle.

Sol: (i) Before fault: (Reactance diagram)

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{e}_{1}}=\frac{\mathrm{EV}}{\mathrm{X}_{\mathrm{eq} 1}} \\
& \mathrm{P}_{\mathrm{e}_{1}}=\frac{1.3 \times 1}{0.7} \\
& \mathrm{P}_{\mathrm{e}_{1}}=1.857 \\
& \mathrm{X}_{\text {eq } 1}=0.3+(0.15+0.3+0.15) \|(0.15+0.3+0.15)+0.1 \\
& \mathrm{X}_{\text {eq } 1}=0.7
\end{aligned}
$$

During fault:

$\Downarrow_{\mathrm{Y} \text { to }} \Delta$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{e}_{2}}=\frac{\mathrm{EV}}{\mathrm{X}_{\mathrm{eq} 2}}=\frac{1.3 \times 1}{2.2}=0.591 \mathrm{pu} \\
& \mathrm{P}_{\mathrm{e}_{2}}=0.591 \mathrm{pu}
\end{aligned}
$$

N A A P	61	ESE Mains-2019 Paper-2

Post fault:
$P_{e_{3}}=\frac{E V}{X_{\text {eq } 3}}$

$\mathrm{P}_{\mathrm{e}_{3}}=\frac{1.3 \times 1}{1}$
$\mathrm{P}_{\mathrm{e}_{3}}=1.3$
$X_{\text {eq3 }}=0.3+(0.15+0.3+0.15)+0.1$
$X_{\text {eq }}=1 \mathrm{pu}$
$\therefore \mathrm{P}_{\mathrm{e}_{1}}=1.857$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{e}_{2}}=0.591 \\
& \mathrm{P}_{\mathrm{e}_{3}}=1.3
\end{aligned}
$$

(ii)

(iii) $\mathrm{P}_{\mathrm{e}_{1}} \sin \delta_{0}=\mathrm{P}_{\mathrm{m}}$

$$
\begin{aligned}
& 1.857 \sin \delta_{0}=1 \\
& \delta_{0}=32.58^{\circ} \\
& \mathrm{P}_{\mathrm{e}_{3}} \sin \delta_{1}=\mathrm{P}_{\mathrm{m}} \\
& 1.3 \sin \delta_{1}=1 \\
& \delta_{1}=50.3^{\circ} \\
& \delta_{\max }=180^{\circ}-\delta_{1} \\
& \delta_{\max }=129.7^{\circ}
\end{aligned}
$$

Hearty Congratulations to our GATE-2019 Toppers

Hearty Congratulations to our ESE-2018 Toppers

\& MANY MORE...

48
 AIR $\mathrm{I}^{\text {st }}$ in GATE in ESE

Subscribe to our > Youtube Channel www.youtube.com/aceacademyhyd for Latest Videos on Preparation Strategy \& Tips for ESE I GATE I PSUs
© www.aceenggacademy.com Contact: 040-23234418,19,20-24750437

