

Hyderabad | Delhi | Ahmedabad | Bhopal | Pune | Bhubaneswar | Bengaluru Lucknow | Patna | Chennai | Vijayawada | Vizag | Tirupathi | Kukatpally | Kolkata

ESE – 2019 (PRELIMS)

Questions with Detailed Solutions

ELECTRONICS & TELECOMMUNICATION ENGINEERING

SET – C

ACE Engineering Academy has taken utmost care in preparing the **ESE-2019 PRELIMS** Examination solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (GATE/ESE/PSUs/PSC/GENCO/TRANSCO etc.,).

All Queries related to ESE - 2019 PRELIMS Solutions are to be sent to the following email address hyderabad@aceenggacademy.com | Contact Us:040-23234418,19,20

ESE – 2019 Prelims Examination

Electronics & Telecommunication Engineering

Subject Wise Weightage

Subjects	No. of Questions	Marks
Basic Electrical Engineering	10	20
Materials Science	11	22
Electronic Measurements and Instrumentation	11	22
Network Theory	16	32
Control Systems	11	22
Computer Organization and Architecture	13	26
Digital Circuits & Microprocessors	18	36
Electro Magnetics	14	28
Signals & Systems	5	10
Advanced Electronics	4	8
Analog and Digital Communication Systems	13	26
Advanced Communication	10	20
Analog Circuits	11	22
Basic Electronics Engineering	3	6
Total	150	300

	ACE Engineering Publications	(2)	ESE-2019 _ PRELIMS_Solutions			
01.	In a 440V, 50 Hz transformer, th	ne total iron loss is 3700 V	W. When the applied voltage is 220 V			
	at 25 Hz, the total iron loss is 750) W. The eddy current los	ss at the normal voltage and frequency			
	will be					
	(a) 1000 W (b) 1200 W	(c) 1400 W	(d) 1850 W			
01.	Ans: None					
Sol:	440V, 50Hz, 3700W					
	220V, 25Hz, 750W					
	$B_{max} = \frac{V}{f} = \frac{440}{50} = \frac{220}{25} = constant$					
	$W_h \propto f \Longrightarrow W_h = Af$					
	$W_e \propto f^2 \Rightarrow W_e = Bf^2$					
	$W_T = Af + Bf^2$					
	$\Rightarrow A(50) + B(50)^2 = 3700$					
	$A(25) + B(25)^2 = 750$					
	B = 1.76					
	∴ Eddy current loss at 50Hz is					
	$= Bf^{2} = (1.76) (50)^{2} = 1.76 (2500)^{2}$) = 4400 W				
		End of Solution				
02.	A transformer core is wound with	n a coil carrying an altern	ating current at a frequency of 50 Hz			
	The hysteresis loop has an area of 60000 units, when the axes are drawn in units of 10^{-4} Wb m					
	and 10^2 Am^{-1} . If the magnetization is uniform throughout the core volume of 0.01 m ³ , then the					
	hysteresis loss will be					
	(a) 200 W (b) 230 W	(c) 270 W	(d) 300 W			
02.	Ans: (d)					
Sol:	$P_h = Volume of core \times area of hyst$	steresis loop × number of	cycles			
	$= 0.01 \times 60000$ units $\times 50$					
	$= 0.01 \times 60000 \times 10^{-4} \times 10^{2} \times 50$					
	= 300 Watts	E-1-0-1-4				
		End of Solution				

	ACE Engineering Publications		(3)	E & TE _ (SET - C)
03.	The process of ev	vaporating a metal in a	n inert atmosph	ere and allowing it to condense on the
	surface of a cold f	inger, which is kept at l	iquid nitrogen t	emperature of 77 K, is known as
	(a) d.c. arc method	d (b) gas-pha	se condensation	
	(c) sonohydrolysis	d) flame p	yrolysis	
03.	Ans: (b)			
Sol:	Inert gas evaporat	ion - condensation tech	nique:-	
	-	finger, which is kept at	-	tere and allowing it to condense on the temperature of 77 K, is known as gas-
			hod used to pro	duce nano materials with a principle of
		———— Enc	l of Solution —	
04.	temperature?	-	-	nighest electrical conductivity at room
	(a) Silver	(b) Copper	(c) Gold	(d) Platinum
	Ans: (a)			
			•	
		nest electrical conductiv	vity at room tem	perature .
				perature .
	Silver has the high	Conductivity [(Ωm)		perature .
	Silver has the high	Conductivity [(Ω m)) 6.8 × 10 ⁷		perature .
	Silver has the high Metal Silver	Conductivity [(Ωm)) 6.8×10^7 6.0×10^7		perature .
04. Sol:	Silver has the high Metal Silver Copper	Conductivity [(Ωm)] 6.8×10^7 6.0×10^7 4.3×10^7		perature .
	Silver has the high Metal Silver Copper Gold	Conductivity [(Ωm)) 6.8×10^7 6.0×10^7 4.3×10^7 3.8×10^7		perature .
	Silver has the high Metal Silver Copper Gold Aluminium Iron	Conductivity [(Ωm)] 6.8×10^7 6.0×10^7 4.3×10^7 3.8×10^7 1.0×10^7		perature .
	Silver has the high Metal Silver Copper Gold Aluminium	Conductivity [(Ωm)] 6.8×10^7 6.0×10^7 4.3×10^7 3.8×10^7 1.0×10^7 0.94×10^7		perature .
	Silver has the high Metal Silver Copper Gold Aluminium Iron Platinum	Conductivity [(Ωm)] 6.8×10^7 6.0×10^7 4.3×10^7 3.8×10^7 1.0×10^7 0.94×10^7		perature .

	ACE Baginessing Publications	4 ESE-2019_PRELIMS_Solutions		
05.	Consider the following processes:			
	1. Sol-gel process			
	2. Electrodeposition			
	3. Plasma-enhanced vapour decomp	osition		
	4. Gas-phase condensation			
	5. Sputtering technique			
	The above processes are related to			
	(a) analysis of nano-powders	(b) sintering of nano-powders		
	(c) synthesis of nano-powders	(d) microwave sintering of nano-powders		
05.	Ans: (c)			
Sol:	The nanopowders are produced by (synthesis of nanopowders)		
	1. Sol-gel process			
	2. Electrodeposition			
	3. Plasma-enhanced vapour decomposition			
	4. Gas-phase condensation			
	5. Sputtering technique			
		End of Solution		
06.	In the superconducting state, the superconductor as per	flux lines of a magnetic field are ejected out of the		
	(a) Curie effect	(b) Faraday's effect		
	(c) Maxwell's effect	(d) Meissner effect		
06.	Ans: (d)			
Sol:	Meissner Effect: Expulsion of mag	netic fluxlines by the super conductor is known as Meissner		
	effect.			
		N SC SC		
	Normal Conductor	Superconductor		
		End of Solution		

	ACE Engineering Publications		$\left(\begin{array}{c} 7 \end{array} \right)$	E & TE _ (SET - C)	
	$I = \frac{V_{th}}{R_{th} + R_g}$	$-=\frac{V_{th}}{R_{th}+0}=\frac{V_{th}}{R_{th}}$			
	$0.1 \times 10^{-9} = -$	$\left(\frac{\Delta R}{4R + 2\Delta R} \times 20\right)$ 1000			
	$\Delta R = 20 \ \mu \Omega$				
			End of Solution		
10.	The inducta	nce of a 25 A electrody	namic ammeter chang	ges uniformly at the rate of 0.0035	
	μH/degree. 7	The spring constant is 10 ⁻	⁶ N m/degree. The ang	le of deflection at full scale will be	
	(a) 135°	(b) 125°	(c) 115°	(d) 105°	
10.	Ans: (b)				
Sol:	Electrodynar	nometor type Ammeter			
	$\theta = -\frac{1}{H}$	$\frac{I^2}{K_c} \frac{dM}{d\theta}$ in rad			
	$\frac{dM}{d\theta} = 0.003$	$5\mu H/\pi/180 = 0.2 \times 10^{-6}$ N	Jm/rad		
	$\theta = \frac{23}{10^{-6} \mathrm{Nm}}$	$\frac{5^2}{\text{/degree}} \times 0.2 \times 10^{-6} \text{Nm}/$	$rad = 125^{\circ}$		
			End of Solution		
11.		-		The voltmeter reads 100 V with a	
	probable error of ± 12 V and the ammeter reads 10 A with a probable error of ± 2 A The probable error in the computed value of the resistance will be nearly				
	(a) 0.6Ω	(b) 1.3 Ω	(c) 2.3 Ω		
11.	(a) 0.0 22 Ans: (c)	(0) 1.3 22	(0) 2.3 32	(d) 3.6 Ω	
Sol:	$V = 100 \pm 12$	V			
501.	$I = 10 \pm 2A$	•			
		$\frac{\partial \mathbf{R}}{\partial \mathbf{V}} = \frac{1}{\mathbf{I}} = \frac{1}{10}$			
		$\frac{\partial \mathbf{R}}{\partial \mathbf{I}} = \frac{-\mathbf{V}}{\mathbf{I}^2} = \frac{-100}{100} = -$	-1		
	gineering Publications	Hyderabad • Delbi • Bhonal • Pune • Bh	ubaneswar • Lucknow • Patna • Bengaluri	u • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad	

	ACE Augineering Fublications	8 ESE-2019_PRELIMS_Solutions
	Probable Error in resistance = $\sqrt{-1}$	$\frac{1}{10}^{2}(12)^{2} + (-1)^{2}(2)^{2}$
		44 + 4
	= 2.3	3
		End of Solution
12.	A temperature-sensing device car	be modeled as a first-order system with a time constant of 6 s
	It is suddenly subjected to a step	input of 25 °C - 150 °C. The indicated temperature in 10 s afte
	the process has started will be	
	(a) 118.2 °C	(b) 126.4 °C
	(c) 134.6 °C	(d) 142.8 °C
12.	Ans: (b)	
Sol:	For a first order system	
	$T(t) = T_{Fi} + [T_{in} - T_{Fi}]e^{-\frac{t}{\tau}}$	
	$=150^{\circ} + \left[25^{\circ} - 150^{\circ}\right] e^{-\frac{10}{6}}$	
	= 126.4°	
		End of Solution
13.	In a parallel circuit having two b	ranches, the current in one branch is $I_1 = 100 \pm 2$ A and in the
	other is $I_2 = 200 \pm 5$ A. Conside	ring errors in both I_1 and I_2 as limiting errors, the total curren
	will be	
	(a) 300 ± 5 A	(b) 300 ± 6 A
	(c) 300 ± 7 A	(d) 300 ± 8 A
13.	Ans: (c)	
Sol:	$I_1 = 100 \pm 2A, I_2 = 200 \pm 3A$	
	$I = I_1 + I_2 \implies I = 300A$	
	$\Delta \mathbf{I} = \Delta \mathbf{I}_1 + \Delta \mathbf{I}_2 \Longrightarrow \Delta \mathbf{I} = 2 + 5 = 7$	
	$I = (300 \pm 7) A$	
	× /	

	ACE Engineering Publications		(9)	E & TE _ (S	SET - C)	
14.	A 0-150 V vo	oltmeter has a guara	nteed accuracy of 1%	of full-scale reading. The	e voltag	
	measured by th	is instrument is 75 V.	The limiting error will	be		
	(a) 5%	(b) 4 %	(c) 3%	(d) 2%		
14.	Ans: (d)					
Sol:	(0 - 150V), % C	$GAE = \pm 1\%$ fsd				
	% LE in 75V?					
	$LE = \pm \frac{1}{100} \times 13$	$50V = \pm 1.5V$				
	$\% LE = \pm \frac{1.5V}{7.5V}$	$\times 100 = \pm 2\%$				
			End of Solution			
15.	A quartz piezoe	electric crystal having	a thickness of 2 mm ar	d voltage sensitivity of 0.05	5 V m/N	
	is subjected to a pressure of 1.5 MN/m^2 . The voltage output will be					
	(a) 165 V	(b) 174 V	(c) 183 V	(d) 192 V		
15.	Ans: (a)					
Sol:	t = 2mm					
	g = 0.055 Vm/M	N				
	$p = 1.5 \times 10^{6} N$	m/m^2				
	$E_0 = g.p.t$					
	$= 0.055 \times 1.$	$5 imes 10^6 imes 2 imes 10^{-3}$				
	$E_0 = 165V$					
			End of Solution			
16.	A resistance w	ire strain gauge with		bonded to a steel structural	membe	
	subjected to a stress of 100 MN/m^2 . The modulus of elasticity of steel is 200 GN/m^2 . The change					
	in the value of gauge resistance due to the applied stress will be					
	(a) 0.05%	(b) 0.10%	(c) 0.30%	(d) 0.60%		
16.	Ans: (b)					
Sol:	$G_f = 2$					
	stress = 100×100	10^{6} N/m ²				
	$Y_{\text{steel}} = 200 \times 1$	$0^9 \text{N}/m^2$				

	ACE Explaneering Publications 10 ESE-2019_PRELIMS_Solution	ons
	$\%\frac{\Delta R}{R} = ?$	
	$G_{f} = \frac{\Delta R}{\frac{R}{\left(\frac{\Delta \ell}{\ell}\right)}} = ?$	
	$\frac{\Delta R}{R} = G_f \frac{\Delta \ell}{\ell}$	
	$100 \times \frac{\Delta R}{R} = G_f \frac{1}{Y} \text{ stress} \times 100$	
	$= 2 \times \frac{1}{200 \times 10^9} \times 100 \times 10^6 \times 100$	
	$\frac{\Delta R}{R} = 0.1\%$	
	End of Solution	
17.	The applications of photomultipliers are seen in	
	(a) night vision equipment, medical equipment	
	(b) mechanical counters, timers	
	(c) translational, optical instruments	
	(d) ultrasonic transducer, infrared imaging	
17.	Ans: (a)	
Sol:	Photo multipliers are transducer which content UV radiation to electrical output; they h	iave
	applications in medical diagnostic, photography	
	End of Solution	
18.	A capacitance of 250 pF produces resonance with a coil at a frequency of $\left(\frac{2}{\pi}\right) \times 10^6$ Hz, while	le at
	the second harmonic of this frequency, resonance is produced by a capacitance of 50 pF.	The
	self-capacitance of the coil will be nearly	
	(a) 16.7 pF (b) 20.5 pF (c) 24.3 pF (d) 28.1 pF	
18.	Ans: (a)	
Sol:	Given that $f_1 = \frac{2}{\pi} \times 10^6 \text{Hz}$	
ACE Eng	ngineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahme	dabad

	ACE 11 E & TE _ (SET - C)
	$C_1 = 250 pF$
	and $f_2 = 2f_1$
	$C_2 = 50 pF$
	$n = \frac{f_2}{f_1} = \frac{2f_1}{f_1} = 2 \qquad C_d = \frac{C_1 - n^2 C_2}{n^2 - 1}$
	$C_{d} = \frac{250pF - (2)^{2} \times 50pF}{(2)^{2} - 1} = \frac{250pF - 200pF}{3} = \frac{50pF}{3} = 16.7pF$ End of Solution
19.	Consider the following data for twigs and links:
	N = Number of nodes
	L = Total number of links
	B = Total number of branches
	The total number of links associated with a tree is
	(a) $B - N + 1$ (b) $B - N - 1$ (c) $B + N + 1$ (d) $2B - N + 1$
19.	Ans: (a)
Sol:	Total number of links = number of loops
	= B - (N - 1)
	= B - N + 1 End of Solution
20.	In ABCD parameters, A and C are called
	(a) reverse current ratio and transfer admittance
	(b) reverse voltage ratio and transfer impedance
	(c) reverse current ratio and transfer impedance
	(d) reverse voltage ratio and transfer admittance
20.	Ans: (d)
Sol:	$\mathbf{V}_1 = \mathbf{A}\mathbf{V}_2 - \mathbf{B}\mathbf{I}_2$
	$I_1 = CV_2 - BI_2$
	$A = \frac{V_1}{V_2} \bigg _{I_2=0} \rightarrow \text{ Open - Circuit reverse voltage gain}$
	$C = \frac{I_1}{V_2}\Big _{I_2=0} \rightarrow \text{ Open - Circuit reverse transfer admittance}$
	End of Solution

ACE

ESE-2019 _ PRELIMS_Solutions

14

ACE

E & TE _ (SET - C)

15

	ACE Dagineering Publications	(16)	ESE-2019 _ PRELIMS_Solutions
25.	What is the condition for reciprocity	y and symmetry in Y-p	parameter representation?
	(a) $Y_{21} = Y_{11}$ and $Y_{22} = Y_{21}$	(b) $Y_{21} = Y_{12}$ and Y_{11}	$_{11} = Y_{22}$
	(c) $Y_{21} = Y_{22}$ and $Y_{11} = Y_{22}$	(d) $Y_{11} = Y_{22}$ and Y_{22}	$Y_{21} = Y_{22}$
25.	Ans: (b)		
Sol:	Condition for reciprocity: $Y_{12} = Y_2$	21	
	Condition for symmetry : $Y_{11} = Y_{22}$	2	
		End of Solution	
26.	In hybrid parameters h_{11} and h_{21} are	e called as	
	(a) input impedance and forward cu	rrent gain	
	(b) reverse voltage gain and output	admittance	
	(c) input impedance and reverse vol	ltage gain	
	(d) output impedance and forward c	current gain	
26.	Ans: (a)		
Sol:	$V_1 = h_{11} I_1 + h_{12} V_2$		
	$I_2 = h_{21} I_1 + h_{22} V_2$		
	$\mathbf{h}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} \Big _{\mathbf{V}_2 = 0} \longrightarrow \text{ short circuit input in}$	mpedance	
	$h_{21} = \frac{I_2}{I_1}\Big _{V_2=0} \rightarrow \text{short circuit forward}$	l current gain	
		End of Solution	
27.	Consider the following equations :		
	$V_1 = 6V_2 - 4I_2$		
	$I_1 = 7V_2 - 2I_2$		
	A, B, C and D parameters are		
	(a) 6, -4Ω , 7 mho and -2	(b) 6, 4 Ω , 7 mho an	d 2
	(c) –6, 4 Ω , –7 mho and 2	(d) 6, 4 Ω, -7 mho a	nd –2
27.	Ans: (b)		
Sol:	V_1^+ I_1 A B $I_2(-ve)$ - C D $ V_2$		
ACE En	gincering Publications Hyderabad • Delhi • Bhopal • Pune	Bhubaneswar • Lucknow • Patna • Ben	galuru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE		(17)	E & TE _ (S	SET - C)
	Given				
	$V_1 = 6V_2 - 4I_2$				
	$I_1 = 7V_2 - 2I_2$				
	$V_1 = AV_2 - BI_2$				
	$I_1 = CV_2 - DI_2$				
	By comparing, we	get			
	A = 6				
	$B = 4\Omega$				
	$C = 7\mho$				
	D = 2				
		E	End of Solution		
28.	A supply of 250 V	7, 50 Hz is applied to	a series RC circuit. If	the power absorbed by th	e resisto
	be 400 W at 160 V	, the value of the cap	pacitor C will be nearly	7	
	(a) 30.5 µF	(b) 41.5 µF	(c) 64.0 µF	(d) 76.8 µF	
8.	Ans: (b)				
Sol:	+	0V-+Vc_ C C V, 50Hz			

ACE

31.

19

E & TE _ (SET - C)

$$X_{c} = \frac{-j}{2\pi \times 50 \times 10^{6} \times 25 \times 10^{-9}} = -0.1273j$$

$$|i| = \frac{V}{|X_{c}|} = \frac{2.5}{|0.127j|} = 19.63\Omega$$

$$|V_{R}| = 19.63 \times 10 = 196.3$$

$$V_{m} = \sqrt{V_{R}^{2} + V_{C}^{2}} = \sqrt{(196.3)^{2} + (2.5)^{2}} = 196.3V$$

End of Solution
Consider the following open-loop transfer function :

$$G = \frac{K(s+2)}{(s+1)(s+4)}$$

The characteristic equation of the unity negative feedback will be

0

(a) (s+1)(s+4) + K (s+2) = 0
(b) (s+2)(s+1) + K (s+4) = 0
(c) (s+1)(s-2) + K (s+4) = 0

(d) (s+2)(s+4) + K(s+1) = 0

31. Ans: (a)

Sol: $\underline{CE} 1 + G(s) = 0$

$$\underline{CE} 1 + \frac{K(S+2)}{(S+1)(S+4)} = 0$$
$$\underline{CE} (S+1)(S+4) + K(S+2) = 0$$

End of Solution

32. The magnitude and phase relationship between the sinusoidal input and the steady-state output of a system is called as

(a) magnitude response

(b) transient response

(c) steady-state response

(d) frequency response

32. Ans: (d)

Sol: Frequency response is called as steady state output of a system to the sinusoidal input.

End of Solution

ACE Engineering Publications

	ACE ESE-2019_PRELIMS_Solutions
36.	The attenuation (magnitude) produced by a lead compensator at the frequency of maximum
	phase lead $\omega_m = \sqrt{ab}$ is
	(a) $\sqrt{\frac{b}{a}}$ (b) $\sqrt{a+b}$ (c) $\sqrt{b-a}$ (d) $\sqrt{\frac{a}{b}}$
36.	Ans: (d)
Sol:	$M = \sqrt{\frac{\omega^2 + a^2}{\omega^2 + b^2}} \bigg _{\omega = \sqrt{ab}} = \sqrt{\frac{ab + a^2}{a^2 + ab}} = \sqrt{\frac{a(b+a)}{b(a+b)}} = \sqrt{\frac{a}{b}}$
	End of Solution
37.	Consider the following statement:
	1. A computer will have a multiply instruction.
	2. Multiply instruction will be implemented by a special multiply unit.
	Which of the following is correct?
	(a) Both 1 and 2 are not architectural design issues
	(b) Both 1 and 2 are not organizational issues.
	(c) 1 is an architectural design issue while 2 is an organizational issue.
	(d) 1 is an organizational issue while 2 is an architectural design issue.
37.	Ans: (c)
Sol:	It is an architectural design issue whether a computer will have a multiply instruction where a
	organizational issue is whether the multiply instruction will be implemented by a specia
	multiply unit or by a mechanism that makes repeated use of the add unit of the system.
	End of Solution
38.	Consider a disk with an average seek time of 4 ms, rotational delay of 2 ms, rotation speed of
	15000 r.p.m. and 512-byte sectors with 500 sectors per track. A file occupies all of the sectors of
	5 adjacent tracks. After reading the first track, if remaining tracks can be read with no seek time
	then the time required in sequential organization to transfer the file will be nearly
	(a) 0.01 second (b) 0.034 second (c) 0.34 second (d) 3.4 seconds
38.	Ans: (b)
Sol:	In one rotation 1 track can be transferred.
	1 rotation time = $\frac{60 \sec}{15000} = \frac{60*1000 \operatorname{msec}}{15000} = 4 \operatorname{msec}.$
ACE En	ngineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	E & TE _ (SET - C			
	5 track transfer time = $4*5 = 20$ msec			
	5 track rotational delay = $2*5 = 10$ msec			
	seek time used once as given $= 4$ msec			
	Total time = $20 + 10 + 4 = 34$ msec = 0.034 sec			
20	End of Solution			
39.	Add 8 and 9 in BCD code.			
	(a) 00010111 (b) 00010001 (c) 01110111 (d) 10001001			
39 .	Ans: (a)			
Sol:				
	$8_{10} \rightarrow 1000$			
	$+9_{10}$ $+1001$			
	1 0000			
	$\frac{+0110}{10111} = 000101111$			
40.	End of Solution Convert the binary number 11000110 to Gray code.			
	(a) 00100101 (b) 10100100 (c) 11100110 (d) 10100101			
40.	Ans: (d)			
Sol:				
501.	$Binary \longrightarrow 1 1 0 0 0 0 1 1 0$			
	$Gray \rightarrow 1 0 1 0 0 1 0 1 \\ End of Solution $			
41.	The decimal value of the signed binary number 10101010 expressed in 2's complement will be			
	(a) -42 (b) -86 (c) -116 (d) -170			
41.	Ans: (b)			
Sol:	Given:			
	2's Complement number is 10101010			
	2's complement of given 2's complement number is $\Rightarrow -01010110$			
	$\Rightarrow -(2^6+2^4+2^2+2^1)$			
	$\Rightarrow -(64+16+4+2) = -86_{10}$			
	Decimal equivalent of given 2's complement number is $= -86_{10}$ End of Solution			

	ACE Engineering Publications	(24)	ESE-2019 _ PRELIMS_Solutions
42.	Which of the following st	tatements is/are correct?	
	1. An address generated b	by the CPU is commonly re	ferred to as a physical address.
	2. An address seen by the	e memory unit is commonly	referred to as a logical address.
	3. The run-time mapping	g from virtual to physical a	address is done by the memory management
	unit (MMU).		
	Select the correct answer	using the code given below	v.
	(a) 1 only	(b) 2 only	
	(c) 3 only	(d) 1, 2 and 3	
42.	Ans: (c)		
Sol:	\rightarrow CPU generally generation	tes logical address	
	\rightarrow Memory is accessed u	sing physical address	
	\rightarrow MMU translates logica	al or virtual address to phys	sical address.
		End of Solution	
43.	In a cache with 64-byte	cache lines, how many bit	s are used to determine which byte within a
	cache line an address poin	nts to ?	
	(a) 16	(b) 8	
	(c) 6	(d) 3	
43.	Ans: (c)		
Sol:	Cache line or block size =	$= 64B = 2^6 B$	
	Number of bits for determining byte number = 6-bits		
		End of Solution	
44.	A system has 64-bit virtu	al addresses and 43-bit phy	ysical addresses. If the pages are 8kB in size,
	the number of bits required for VPN and PPN will be respectively		
	(a) 51 bits and 30 bits	(b) 30 bits and 51 bits	
	(c) 51 bits and 13 bits	(d) 30 bits and 13 bits	
44.	Ans: (a)		
Sol:	$VPN = \frac{2^{64}}{2^3 \cdot 2^{10}} = 2^{51} \Longrightarrow 51$	– bits	
	$PPN = \frac{2^{43}}{2^3 \cdot 2^{10}} = 2^{30} \Longrightarrow 30$	– bits .	
		End of Solution	

	ACE 26 ESE-2019_PRELIMS_Solutions			
48.	Which of the following statements are correct?			
	1. A pseudoinstruction is a machine instruction.			
	2. A pseudoinstruction is an instruction to the assembler.			
	3. The ORG (origin) is an example of pseudoinstruction.			
	4. It is not possible to use ORG more than once in a program.			
	Select the correct answer using the code given below.			
	(a) 1 and 3 (b) 2 and 3 (c) 1 and 4 (d) 2 and 4			
48.	Ans: (b)			
Sol:	Pseudo instructions are special commands to the assembler about the positioning of the program			
	It can be used any number of times depending on the necessity.			
	Example: $ORG \rightarrow Origin$ is an example of pseudo instructions. It can be used to position the			
	program code, Input data etc.			
	End of Solution			
49.	The vector R_{AB} extends from A(1, 2, 3) to B. If the length of R_{AB} is 10 units and its direction i			
	given by $a = 0.6a_x + 0.64a_y + 0.48a_z$ the coordinates of <i>B</i> will be			
	(a) $7a_x + 4.8a_y + 4.8a_z$ (b) $6a_x + 6.4a_y + 4.8a_z$			
	(c) $7a_x + 8.4a_y + 7.8a_z$ (d) $6a_x + 8.4a_y + 7.8a_z$			
49.	Ans: (c)			
Sol:				
	A(1,2,3) \overline{R}_{AB} B(x,y,z)			
	••			
	$\overline{R}_{AB} = (x-1)\hat{a}_x + (y-2)\hat{a}_y + (z-3)\hat{a}_z$			
	$ \mathbf{R}_{AB} = \sqrt{(x-1)^2 + (y-2)^2 + (z-3)^2}$			
	Given $ \mathbf{R}_{AB} = 10$			
	$(x-1)^2 + (y-2)^2 + (z-3)^2 = 100$			
	$\hat{a}_{AB} = \frac{\overline{R}_{AB}}{ R_{AB} } = \frac{(x-1)\hat{a}_x + (y-2)\hat{a}_y + (z-3)\hat{a}_z}{10}$			
	Given $\hat{a}_{AB} = 0.6\hat{a}_x + 0.64\hat{a}_y + 0.48\hat{a}_z$			
ACE En	Igincering Publications (Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad			

	ACEE 27 E & TE _ (SET - C)			
	By comparison			
	$\frac{x-1}{10} = 0.6 \begin{vmatrix} \frac{y-2}{10} = 0.64 \\ y = 8.4 \end{vmatrix} = \frac{z-3}{10} = 0.48 \\ z = 7.8 \end{vmatrix}$			
	End of Solution			
50.	What is the value for the total charge enclosed in an incremental volume of 10^{-9} m ³ located at the			
	origin if $D = e^{-x} \sin ya_x - e^{-x} \cos ya_y + 2za_z C/m^2$?			
	(a) 8 nC (b) 4 nC (c) 2 nC (d) 1 nC			
50.	Ans: (c)			
Sol:	Given $\overline{D} = e^{-x} \sin y\hat{a}_x - e^{-x} \cos y\hat{a}_y + 2z\hat{a}_z C/m^2$			
	From Gauss's Law			
	$\Psi = Q_{enc} = \oint_{S} \overline{D}.\overline{ds}$			
	$Q_{enc} = \oint_{S} \overline{D} . \overline{ds}$			
	From Divergence theorem			
	$Q_{enc} = \int_{v} (\nabla . \overline{D}) dv$			
	$\nabla .\overline{\mathbf{D}} = \frac{\partial \mathbf{D}_{x}}{\partial x} + \frac{\partial \mathbf{D}_{y}}{\partial y} + \frac{\partial \mathbf{D}_{z}}{\partial z}$			
	$= -e^{-x} \sin y + e^{-x} \sin y + 2$			
	$\nabla . \overline{D} = 2$			
	$Q_{enc} = \int_{v} (\nabla . \overline{D}) dv = \int_{v} 2 dv$			
	$Q_{enc} = 2 \text{ (volume)} = 2 \times 10^{-9} = 2nC$			
	End of Solution			
51.	The unit vector extending from origin toward the point $G(2, -2, -1)$ is			
	(a) $\frac{2}{3}a_x + \frac{2}{3}a_y + \frac{1}{3}a_z$ (b) $-\frac{2}{3}a_x + \frac{2}{3}a_y + \frac{1}{3}a_z$			
	(c) $\frac{2}{3}a_x - \frac{2}{3}a_y - \frac{1}{3}a_z$ (d) $-\frac{2}{3}a_x - \frac{2}{3}a_y - \frac{1}{3}a_z$			

	ACE Engineering Publications	(29)	E & TE _ (SET - C
	When the load is termin	ated by a short circuit wave get reflected	d, and moves towards the sour
	So, inside the transmiss	ion line there exists two oppositely dire	ected waves, the combination
	two oppositely directed waves result a standing wave.		
	This standing wave reac	hes to maximum and minimum, continue	ously.
	The distance between tw	vo successive maximas $-\frac{\lambda}{2}$	
	The distance between tw	to successive minimas $-\frac{\lambda}{2}$	
	The distance between m	axima and minima is $-\frac{\lambda}{4}$	
		End of Solution	
4.	The characteristic imped	lance of an 80 cm long lossless transmis	ssion line having $L = 0.25 \ \mu H$
	and $C = 100 \text{ pF/m}$ will b	e	
	(a) 25 Ω	(b) 40 Ω	
	(c) 50 Ω	(d) 80 Ω	
54.	Ans: (c)		
ol:	Given		
	$L=0.25\times 10^{-6}~H/m$		
	$C = 100 \times 10^{-12} \text{ F/m}$		
	Characteristic impedanc	e	
	$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$		
	Given, loss less line		
	So, $R = G = 0$		
	$Z_{0} = \sqrt{\frac{L}{C}} = \sqrt{\frac{0.25 \times 10^{-6}}{100 \times 10^{-12}}}$	5 	
	$Z_0 = 50\Omega$		
		End of Solution	

		32	ESE-2019 _ PRELIMS_Solutions
58.	A 10 GHz signal is propagated in a	a waveguide whose w	all separation is 6 cm. The greatest
	number of half-waves of electric int	ensity will be possible	e to establish between the two walls.
	The guide wavelength for this mode of	of propagation will be	
	(a) 6.48 cm (b) 4.54 cm	(c) 2.48 cm	(d) 1.54 cm
58.	Ans: (b)		
Sol:	Given $f = 10 \text{ GHz}$		
	$\lambda = \frac{3 \times 10^8}{10 \times 10^9} = 3 \mathrm{cm}$		
	a = 6 cm		
	$\lambda_{\rm C} = \frac{2}{\sqrt{\left(\frac{\rm m}{\rm a}\right)^2 + \left(\frac{\rm n}{\rm b}\right)^2}}$		
	$\lambda_{\rm C}\big _{{\rm TE}_{\rm m0}} = \frac{2a}{m}$		
	$\lambda_{\rm C} \Big _{_{\rm TE_{10}}} = \frac{12}{1} = 12 {\rm cm}$		
	$\lambda_{\rm C}\big _{_{\rm TE_{20}}}=\frac{12}{2}=6cm$		
	$\lambda_{\rm C}\big _{\rm TE_{30}}=\frac{12}{3}=4\rm cm$		
	$\lambda_{\rm C}\big _{_{\rm TE_{40}}}=\frac{12}{4}=3cm$		
	For the propagation of the wave		
	$f > f_C$		
	$\lambda < \lambda_{\rm C}$		
	So, the maximum mode of propagation	on is	
	<u>TE₃₀</u>		
	$\lambda_{c} \mid_{TE_{30}} = 4cm$		
	$\lambda_{g} = \frac{\lambda}{\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{c}}\right)^{2}}} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{c}}\right)^{2}}}$	$\frac{3}{1 - \left(\frac{3}{4}\right)^2} = 4.54 \text{ cm}$ End of Solution	
ACE E	Engineering Publications Hyderabad • Delhi • Bhopal • Pune • B		ru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE 34 ESE-2019_PRELIMS_Solutions				
59.	In $TE_{m,n}$ mode, m and n are integers denoting the number of				
	(a) $\frac{1}{2}$ the wavelengths of intensity between each pair of walls				
	(b) $\frac{1}{3}$ the wavelengths of intensity between each pair of walls				
	(c) $\frac{1}{4}$ the wavelengths of intensity between each pair of walls				
	(d) $\frac{1}{8}$ the wavelengths of intensity between each pair of walls				
59.	Ans: (a)				
Sol:	<u>TE_{mn}</u>				
	m - number of half field (half wave lengths) variations along the larger dimension				
	n - number of half field (half wave lengths) variations along the smaller dimension				
	End of Solution				
60.	Consider the following statements with reference to dipole arrays:				
	1. In broadside array, all the dipoles are fed in the same phase from the same source.				
	2. In end-fire array, the magnitude of the current in each element is same and there is no phase				
	difference between these currents.				
	Which of the above statements is/are				
	(a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2				
60.	Ans: (a)				
Sol:	Array factor (AF) = $\frac{\sin \frac{n\Psi}{2}}{\sin \frac{\Psi}{2}}$				
	For 2 – element array				
	$AF = 2 \cos\left(\frac{\Psi}{2}\right)$				
	For maximum radiation $\psi = 0$.				
	$\delta + \beta d \cos \phi_{max} = 0$				
	If $\delta = 0$				
ACE En	gincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad				

ACE E & TE _ (SET - C) 35 i.e phase difference between two antennas is zero $\cos \phi_{max} = 0$ $\phi_{\text{max}} = \pm \frac{\pi}{2}$ max $\phi = 0$ array axis Here, maximum radiation is normal to the array axis, so the array is called as broad side array. If $\delta = \pm \beta d$ $\pm \beta d + \beta d \cos \phi_{max} = 0$ $\cos \phi_{\max} = \pm 1$ $\phi_{\text{max}} = 0, \pi$ array axis Here, maximum radiation is tangential to the array axis, so the array is called as end fire array. So, for the broad side array all the dipoles are fed in the same phase ($\delta = 0$) For the end fire array, the phase difference between the dipoles is, $\delta = \pm \beta d$ End of Solution 61. Which of the following are the advantages of Silicon over Insulator (SOI)? 1. Lower diffusion capacitance 2. Smaller parasitic delay and lower dynamic power consumption 3. Lower threshold voltages Select the correct answer using the code given below. (a) 1, 2 and 3 (b) 1 and 2 only (b)(c) 1 and 3 only (d) 2 and 3 only 61. Ans: (a) Sol: Lower parasitic capacitance due to isolation from bulk silicon which improves power consumption.

ACE Engineering Publications

	ACE 36 ESE-2019_PRELIMS_Solutions
	Higher performance at equivalent V _{DD} can work at low V _{DD} .
	Lower leakage current due to isolation, thus higher power efficient.
	Lower sub threshold slope of SOI is a result of a reasonable capacitance arrangement.
	End of Solution
62.	The finite state machine in which
	1. the output is a function of the current state and inputs
	2. the output is a function of only the current state
	Which of the following machines are respectively correct for these styles?
	(a) Mealy machine and Moore machine
	(b) Moore machine and Mealy machine
	(c) State machine and Mealy machine
	(d) State machine and State machine
62.	Ans: (a)
Sol:	In Mealy state machine the output depends on present state and the inputs
	i.e. $outputs = F(P.S, Inputs)$
	In Moore state machine, the output depends only on present state and doesn't depend on inputs i.e. $outputs = F(P.S)$
	End of Solution
63.	In EPROMs, applying a high voltage to the upper gate causes electrons to jump through the thin
	oxide onto the floating gate through the process known as
	(a) mask programming
	(b) one-time programming
	(c) avalanche injection or Fowler Nordheim tunneling
	(d) erasing
63.	Ans: (c)
Sol:	Applying a 'high voltage' to the control gate causes 'Avalanche Injection' in the EPROMS. Du
	to this electrons overcome the resistance offered by SiO ₂ layer and gets trapped on the floating
	gate.
	End of Solution

	ACE 37 E & TE _ (SET - C)
64.	What is the range of values of a and b for which the linear time-invariant system with impuls response
	$h(n) = \begin{cases} a^n, n \ge 0\\ b^n, n < 0 \end{cases}$
	is stable?
	(a) Both $ a < 1$ and $ b > 1$ are satisfied (b) Both $ a > 1$ and $ b < 1$ are satisfied
	(c) Both $ a > 1$ and $ b > 1$ are satisfied (d) Both $ a < 1$ and $ b > 1$ are satisfied
64.	Ans: (a)
Sol:	$h(n) = \begin{cases} a^n; & n \ge 0 \\ b^n; & n < 0 \end{cases}$
	LTI system stability condition is $\sum_{n=-\infty}^{\infty} h(n) < \infty$
	$\sum_{n=-\infty}^{\infty} h(n) = \sum_{n=-\infty}^{-1} b^n + \sum_{n=0}^{\infty} a^n$
	$\sum_{n=0}^{\infty} a^n \text{ is converges when } a < 1$
	$\sum_{n=-\infty}^{-1} \mathbf{b}^n \text{ is converges when } \mathbf{b} > 1$
65.	The special case of a finite-duration sequence is given as
	$x(n) = \{2, 4, 0, 3\}$
	The sequence $x(n)$ into a sum of weighted impulse sequences will be
	(a) $2\delta(n+1) + 4\delta(n) + 3\delta(n-2)$ (b) $2\delta(n) + 4\delta(n-1) + 3\delta(n-3)$
	(c) $2\delta(n) + 4\delta(n-1) + 3\delta(n-2)$ (d) $2\delta(n+1) + 4\delta(n) + 3\delta(n-1)$
65.	Ans: (a)
Sol:	
	4 9 3
	$x(n) = \{2, 4, 0, 3\}$ $\frac{2}{9}$
	$x(n) = 2\delta(n+1) + 4\delta(n) + 3\delta(n-2) \qquad -1 0 1 2 \qquad n$
	End of Solution

	ACEE 38 ESE-2019_PRELIMS_Solutions
66.	The two advantages of FIR filters over IIR filters are
	(a) they are guaranteed to be stable and non-linear
	(b) they are marginally stable and linear
	(c) they are guaranteed to be stable and may be constrained to have linear phase
	(d) they are marginally stable and non-linear

66. Ans: (c)

Sol: FIR filters are guaranteed to be stable since all poles lie at z = 0 and they are defined for finite number of samples.

They can have linear phase response if impulse response is symmetric (or) anti-symmetric

End of Solution

67. The frequency response and the main lobe width for rectangular window are

Sol:

	ACE Engineering Publications	(39)	E & TE _ (SET - C)	
68.	A controller that takes control of the buses and transfers data directly between source and			
	destination bypassing the microp	rocessor is known as		
	(a) DMA controller	(b) read-write controller		
	(c) high-speed controller	(d) master-slave controll	er	
68.	Ans: (a)			
Sol:	The Input Devices can access the memory directly without the help of microprocessor is called			
	DMA Transfer. This process is achieved by using DMA controller, which is tailor made for			
	DMA operations.			
		End of Solution		
69.	A 2-byte instruction which accept	pts the data from the input po	ort specified in the second byte and	
	loads into the accumulator is			
	(a) OUT <8-bit port address>	(b) IN <8-bit port addres	s>	
	(c) OUT R <8-bit port address>	(d) IN R <8-bit port addr	ress>	
69.	Ans: (b)			
Sol:	The Instruction used to read a by	te from an input device is IN	8 Bit address	
		- End of Solution		
70.	Consider the following instruction	n:		
	EI			
	MVI A, 08H			
	SIM			
	It means			
	(a) disable all interrupts	(b) enable all interrupts		
	(c) disable RST 7.5 and 6.5	(d) enable RST 7.5 and 6	5.5	
70.	Ans: (b)			
Sol:	$EI \rightarrow Enable all Interrupts$			
	$A = 08_{\rm H} = 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0$			
	SIM RS	ST 7.5, 6.5, 5.5 are inmasked		
	Masking ^{i.e} is enabled	. all interrupts are enabled		
		- End of Solution		
ACE F	ngincering Publications Hyderabad • Delhi • Bhopal • F	Pune • Bhubaneswar • Lucknow • Patna • Bengaluru •	Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad	

	ACE 40 ESE-2019_PRELIMS_Solutions					
71.	The instruction BC 0x15 means					
	(a) jump 15 bytes relative to the program counter					
	(b) copy and load 15 words in reverse direction to the program counter					
	(c) move to a location by 15 bits to the program counter					
	(d) redirect (jump) to a location by 15 words relative to the program counter					
71.	Ans: (a)					
Sol:	All conditional jumps are short jumps.					
	End of Solution					
72.	Which of the following constraints are to be considered by the designer while designing an embedded system?					
	1. Selecting the microcontroller as a controlling device					
	2. Selecting the language to write the software					
	3. Partitioning the tasks between hardware and software to optimize the cost					
	Select the correct answer suing the code given below.					
	(a) 1, 2 and 3 (b) 1 and 2 only (c) 1 and 3 only (d) 2 and 3 only					
72.	Ans: (c)					
Sol:	In an Embedded system design, the task of a designer are mix of selecting the appropriate					
	hardware (micro controller) and task partitioning.					
	End of Solution					
73.	Which one of the following is the correct combination for a layer providing a service by means					
	of primitives in an open systems interconnection?					
	(a) Request, Indication, Response and Confirm					
	(b) Request, Inform Response and Service					
	(c) Request, command, Response and Action					
	(d) Request, Confirm, Indication and Action					
73.	Ans: (a)					
Sol:	Request primitive induces an indication primitive.					
	If an indication primitive requires a reply, a response primitive may be issued.					
	This response primitive will induce a confirmation primitive.					
	End of Solution					

	ACE		(42)	ESE-2019 _ PRELIMS_Solutions		
74.	A network uses a fully interconnected mesh topology to connect 10 nodes together. The number					
	of links required wi	ll be				
	(a) 35	(b) 40	(c) 45	(d) 50		
74.	Ans: (c)					
Sol:	Number of links $=$	$\frac{n(n-1)}{2} = \frac{10*9}{2}$	= 45			
75.	Which of the follow	ving are the adva	End of Solution	nal		
15.	1. Greater link effic	-		ng :		
		•	n traffic congestion occu	rs		
			en transmitter and receive			
	4. No time is taken					
	Select the correct ar					
	(a) 1 and 3	(b) 1 and 2	(c) 2 and 3	(d) 3 and 4		
75.	Ans: (b)		()			
Sol:	Packet switching lea	ads better channe	el utilization.			
	In packet switching no need to establish the connection.					
			End of Solution			
76.	A message consisting of 2400 bits is to be passed over an internet. The message is passed to					
	transport layer which appends a 150-bit header, followed by the network layer which uses a 120-					
	bit header. Network layer packets are transmitted via two networks, each of which uses a 26-bit					
	header. The destination network only accepts up to 900 bits long. The number of bits, including					
	headers delivered to the destination network, is					
	(a) 2706 bits	(b) 2634 bits	(c) 2554 bits	(d) 2476 bits		
76.	Ans: (a)					
Sol:	Step 1: Data + Transport header = $2400 + 150 = 2550$ bits					
	Step 2: The data field of each internet packet is $900 - 26 = 874$ bits					
	So transport layer data is encapsulated into three internet packets.					
	Packet 1: 874 bits					
	Packet 2: 874 bits					

	ACE (43) E & TE _ (SET - C)					
	Packet 3: 802 bits					
	Packet 1 and 2 are each of 900 bits, Packet 3 is 802 + 26 bits, or 828 bits long The number of bits delivered to destination network is					
	$=(900\times2)+828+(3\times26)$					
	= 2706 bits					
	End of Solution					
77.	In a communication network, 4 T1 streams are multiplexed to form 1 T2 stream and 7 T1 streams are multiplexed to form 1 T3 stream. Further 6 T3 streams are multiplexed to form 1 T4					
	stream. If each T1 stream is of 1.544 Mbps, the data rate of 1 T4 stream should be					
	(a) 211.8 Mbps (b) 232.6 Mbps (c) 243.4 Mbps (d) 274.2 Mbps					
77.	Ans: (d)					
Sol:	The bit rate of T-1 system = 1.544 Mbps					
	$R_b = 1.544 \times 4 \times 7 \times 6 = 260 \text{ Mbps}$					
	But synchronization requires additional bits so the bit rate = 274.2 Mbps					
	Note: There is a printing mistake. $7T_2$ streams are multiplexed to form $1T_3$ stream, but given $7T_1$.					
	End of Solution					
78.	Which of the following statements are correct regarding CDMA?					
	1. It is similar to GSM.					
	2. It allows each station to transmit over the entire frequency spectrum all the time.					
	3. It assumes that multiple signals add linearly.					
	Select correct answer using the code given below.					
	(a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3					
78.	Ans: (c)					
Sol:	1. CDMA and GSM both are different because, CDMA uses Code division for multiple access whereas GSM uses TDM and FDM.					
	2. CDMA allows each station to transmit over entire frequency spectrum all the time because it doesn't use FDM technique.					
	3. CDMA consists of RAKE receiver due to which CDMA assumes that multiple signals					
	(Multipath fading signals) add linearly.					
	Option (c) is correct if the 3 rd statement is "multipath signals" instead of "multiple signals". End of Solution					

	ACE Engineering Publications	(44)	ESE-2019 _ PRELIMS_Solutions			
79.	Which of the following regarding	ng cellular systems wit	h small cells are correct?			
	1. Higher capacity and robustne	SS				
	2. Needless transmission power and have to deal with local interference only					
	3. Frequency planning and infrastructure needed					
	4. These require both circuit swi	itching and packet swi	tching			
	Select the correct answer using t	et the correct answer using the code given below.				
	(a) 1, 2 and 4	(b) 1, 3 and 4				
	(c) 1, 2 and 3	(d) 2, 3 and 4				
79.	Ans: (c)					
Sol:	Small cell size provides higher	capacity. Generally w	ve go for smaller cell size in metro cities to			
	provide service to more numb	er of mobile phones	provided frequency planning is properly			
	managed.					
		- End of Solution				
80.	A satellite is orbiting in the equ		eriod from perigee to perigee of 12 h. If the			
	eccentricity = 0.002, $i = 0^\circ$, K_1	$= 66063.17 \text{km}^2, \mu =$	$3.99 \times 10^{14} \text{ m}^3/\text{s}^2$ and the earth's equatorial			
	radius = 6378.14 km, the semi-n	najor axis will be				
	(a) 34232 km	(b) 30424 km				
	(c) 26612 km	(d) 22804 km				
80.	Ans: (c)					
Sol:	$n = \sqrt{\frac{\mu}{a^3}} \left(\frac{1 + k_1 \left[1 - 1.5 \sin^2 i \right]}{a^2 (1 - e^2)^{1.5}} \right)$					
	i = 0,					
	$n = \frac{2\pi}{P}$					
	P = anormalistic period. $P = 12h$	$hr = 12 \times hr = 12 \times 60 \times 60$	Osec			
	2π $\overline{3.99 \times 10^{14}}$ $\lceil 1 + \rangle$	66063.17[1-0]				
	$\frac{2\pi}{12 \times 60 \times 60} = \sqrt{\frac{3.99 \times 10^{14}}{a^3}} \left[\frac{1+1}{a^2}\right]$	$(1 - (0.002)^2)^{1.5}$				
	\Rightarrow a = 26612km.					
		- End of Solution				
ACE En	gincering Publications Hyderabad • Delhi • Bhopal •		a • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad			

	ACE Engineering Publications		(45)	E & TE _ (SET - C)			
81.	A single-mode optical fiber has a beat length of 8 cm at 1300 nm. The value of birefringence B						
	will be nearly						
	(a) 1.6×10 ⁻⁵	(b) 2.7×10^{-5}	(c) 3.2×10^{-5}	(d) 4.9×10^{-5}			
81.	Ans: (a)						
Sol:	The birefringence	(B) of the fiber is a meas	ure of the difference in	the effective indices of two orthogonal			
	modes.						
	The minimum len	gth of the fiber over whi	ch the state of polariza	tion comes back to the original state is			
	called beat length	'L'.					
	$L = \frac{\lambda}{B}$						
	$B = \frac{\lambda}{L}$						
	$\lambda = 1300 \text{ nm}$						
	L = 8 cm						
	$B = \frac{\lambda}{L} = \frac{1300 \times 1}{8 \times 10^{-5}}$	$\frac{0}{2} = 1.6 \times 10^{-5}$					
		E	nd of Solution				
82.	Which one of t	he following instrume	ents is useful while	measuring the optical power as a			
	function of wave	length?					
	(a) Optical powe	r attenuator	(b) Optical power	er meter			
	(c) Optical spect	rum analyzer	(d) Optical retur	m loss tester			
82.	Ans: (c)						
Sol:	Optical spectrum analyzer is used to measure the spectral characteristics of light. The OSA						
	displays the optical power as a function wavelength.						
			nd of Solution				
83.		ormance monitoring inv					
	(a) transport layer monitoring, optical signal monitoring and protocol performance monitoring						
	(b) physical layer, network layer and application layer monitoring						
	(c) data-link laye	r, presentation layer an	d session layer monit	toring			
	(d) transport laye	er, session layer and app	olication layer monito	oring			
ACE En	gineering Publications	łyderabad ∙ Delhi ∙ Bhopal ∙ Pune ∙ Bhuba	neswar • Lucknow • Patna • Bengaluru	• Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad			

	ACE
3	Engineering Publications

Directions:

The following **six (6)** items consist of two statements, one labelled as 'Statement (I)' and the other as 'Statement (II)'. You are to examine these two statements carefully and select the answers to these items using the code given below:

Code:

- (a) Both Statement (I) and Statement (II) are individually true and Statement (II) is the correct explanation of Statement (I)
- (b) Both Statement (I) and Statement (II) are individually true but Statement (II) is **not** the correct explanation of Statement (I)
- (c) Statement (I) is true but Statement (II) is false
- (d) Statement (I) is false but Statement (II) is true

85. Statement (I):

Sign-magnitude representation is rarely used in implementing the integer portion of the ALU.

Statement (II):

There are two representations of zero in sign-magnitude representation.

85. Ans: (a)

Sol: In sign magnitude form and 1's complement form, the disadvantage is '0' has two representations.

Only 2's complement form has unique representation of 0. Hence 2's complement form is preferred.

End of Solution

86. Statement (I):

Dynamic loading gives better memory space utilization.

Statement (II):

In dynamic loading, an unused routine is never loaded.

86. Ans: (a)

Sol: In dynamic loading a library is loaded only when it is executed so less memory will be required. Unused library are never loaded.

End of Solution

ACE Engineering Publications

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE 48 ESE-2019_PRELIMS_Solutions
87.	Statement (I):
	SRAM is used for cache memory and DRAM is used for main memory.
	Statement (II):
	SRAM is somewhat faster than DRAM.
87.	Ans: (a)
Sol:	SRAM is used for External cache memory as it is faster than DRAM.
	DRAM is used for primary memory of the computer.
	End of Solution
88.	Statement (I):
	In a multiuser system, each user is assigned a section of usable memory area and is not allowe
	to go out of the assigned memory area.
	Statement (II):
	In multiuser system there is a software mechanism to prevent unauthorized access of memory b
	different users.
88.	Ans: (d)
Sol:	Multiple users programs can be reside any where in memory to provide efficient memor
	utilization. OS provide protection by preventing unauthorized access.
89.	Statement (I): End of Solution
	The external surface of a crystal is an imperfection in itself as the atomic bonds do not exten
	beyond the surface.
	Statement (II):
	The external surfaces have surface energies that are related to the number of bonds broken at th
	surface.
89.	Ans: (a)
Sol:	The external surface of a crystal is an imperfection in itself as the atomic bonds do not exten
	beyond the surface. External surfaces have surface energies that are related to the number of
	bonds broken of the surface.
	Example: Consider a close packed plane as the surface of a close packed crystal. An atom on th
	surface of this crystal has six nearest bonding neighbours on the surface plane, three below i
	and none above.
	End of Solution

	agineering Publications	(49)	E & TE _ (SET - C)		
90.	Statement (I):				
	By organizing various	s 'optical functions' into an 'array structu	are' via nano-pattern replication		
	'spatial integration' is e	established.			
	Statement (II):				
	By adding a nano-opti	ic layer or layers to functional optical ma	terials, the 'hybrid integration' is		
	possible to be achieved	d.			
90.	Ans: (b)				
Sol:	Nano-optic elements	consists of numerous nano scale struct	ure created by replicating nano		
	pattern masters, with s	patial integration method is established.			
	In hybrid integration n	method, discreate nono-optic devices are j	produced by adding a nano-optic		
	layer or layers.				
	Statement (I) and Sta	tement (II) are correct and Statement (I	II) is not correct explanation o		
	Statement (I).				
		End of Solution			
91.	The peak-to-peak ripple voltage for a half-wave rectifier and filter circuit operating at 60Hz,				
	which has a 680 μ F reservoir capacitor, an average output of 28V and 200 Ω load resistance, will				
	be nearly				
	(a) 2.5V	(b) 3.4V			
	(c) 4.3V	(d) 5.2V			
91.	Ans: (b)				
Sol:	Given frequency, $f = 6$	50Hz			
	$C=680\mu F~=28V$				
	$V_{output average} = 28V$				
	$R_L = 200\Omega$				
	peak to peak ripple voltage with HWR + Capacitor filter,				
	$V - \frac{V_{dc}}{V}$				
	$V_{r_{p,p}} = \frac{V_{dc}}{f_C R_L}$				
	$=\frac{28}{60\times680\mu\times200}$	_			
	$\therefore Vr_{p.p} = 3.4V$	J			
	ч-ү-ү-ү-, с ,	End of Solution			

ACE

ESE-2019 _ PRELIMS_Solutions

52

	ACE Engineering Publications	(53)	E & TE _ (SET - C)				
95.	The output voltage from a 5-b	it ladder type DAC that	at has a digital input of 11010, and by				
	assuming $0 = 0V$ and $1 = +10V$,	, is nearly					
	(a) 26.0V (b) 16.3V	(c) 10.3V	(d) 8.1V				
95.	Ans: (d)						
Sol:	$11010_2 = 26_{10}$						
	The output of 5-Bit DAC for 11010 input is						
	$= 26 \times \frac{10}{2^5} = \frac{260}{32} = 8.1 \mathrm{V}$						
		- End of Solution -					
96.	An 8-bit D/A converter has step	size of 20mV. The ful	ll-scale output and the resolution will be				
	nearly						
	(a) 5.1 V and 0.3% (b) 4.6V a	und 0.4% (c) 5.1 V ar	nd 0.4% (d) 4.6 V and 0.3%				
96.	Ans: (c)						
Sol:	(i) Full scale output = $(2^{N} - 1) \times$ stepsize						
	$=(2^8-1)\times 20 \text{ mV}$						
	$= 255 \times 20 \text{ mV} = 5.1 \text{V}$						
	(ii) Resolution = $\frac{1}{2^{N}-1} \times 100$						
	$=\frac{1}{2^8-1}\times 100 = \frac{100}{255} = 0.3921\%$						
	= 0.4%						
		- End of Solution -					
97.	For 555 astable multivibrator, if		0 k Ω , $R_{\rm B} = 50$ k Ω , the frequency and the				
	duty cycle will be nearly						
	(a) 1.6kHz and 54.5%	(b) 1.3Hz and 54.5	%				
	(c) 1.6kHz and 46.5%	(d) 1.3kHz and 46.	5%				
97.	Ans: (b)						
Sol:	Given 555 Astable multivibrator	• • • • •					
	$C = 0.01 \mu F$						
	$R_A = 10k\Omega$						

	ACE Engineering Publications	54 ESE-2019 _ PRELIMS_Solutions
	$R_{\rm B} = 50 \mathrm{k}\Omega,$	
	The frequency of oscillation	
	$f = \frac{1.4}{(R_{\rm A} + 2R_{\rm B})C} = \frac{1.4}{0.0011}$	
	\therefore f = 1.27kHz \approx 1.3kHz	
	% Duty cycle, $D = \frac{R_A + R_B}{R_A + 2R_B} =$	$\frac{60k}{110k} = 54.5\%$
	∴ D = 54.5%	
		- End of Solution
98.	Consider the following expression	
		$-A.B.\overline{C}.D + A.B.C.D.E + A.B.\overline{C}.\overline{D}.\overline{E} + A.B.\overline{C}.D.E$
		ng theorems of Boolean algebra will be
	(a) $A + B$	(b) $A \oplus B$
	(c) (A + B) (A.B)	(d) A.B
98.	Ans: (d)	
Sol:		$AB\overline{C}D + ABCDE + AB\overline{C}\overline{D}\overline{E} + AB\overline{C}\overline{D}\overline{E}$
	$\Rightarrow ABCD + AB\overline{C}\overline{D}(1 + \overline{E}) + AB\overline{C}$	$\overline{D} + ABC\overline{D} + (AB\overline{C}DE)$
	$\Rightarrow ABCD + AB\overline{D} + AB\overline{C}DE + A$	BCD
	$\Rightarrow \underline{\underline{ABCD}} + \underline{ABD} + \underline{ABD}$	
	$\Rightarrow ABD + AB\overline{D}$	
	\Rightarrow A.B	
		- End of Solution
99.	An electric power generating st	tation supplies power to three loads A, B and C. Only a single
	generator is required when any	v one load is switched on. when more than one load is on, an
	auxiliary generator must be sta auxiliary generator will be	rted. The Boolean equation for the control of switching of the
	(a) $AA + BB + CC$	(b) $ABC + BCA + CAB$
	(c) $AB + AC$	(d) $AB + AC + BC$

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications

ACE Engineering Publications

55)

E & TE _ (SET - C)

99. Ans: (d)

Sol:

A	В	С	Auxiliary generator ON condition (F)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

 $F = \sum m(3, 5, 6, 7)$

End of Solution

- 100. Which one of the following types of instructions will be used to copy from the source to the destination location?
 - (a) Arithmetic instructions
 - (b) Data transfer instructions
 - (c) Logical instructions
 - (d) Machine control instructions

100. Ans: (b)

Sol: In a microcomputer, the copy of data from one location to another is achieved by data transfer instructions.

ACE Engineering Publications

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE Engineering Publications		(56)	ESE-2019 _ PRELIMS_Solutions		
101.	A cascaded arrangement of flip-flops, where the output of one flip-flop drives the clock input of					
	the following flip-flop,	is known as				
	(a) synchronous counte	r	(b) ripple count	ter		
	(c) ring counter		(d) up counter			
101.	Ans: (b)					
Sol:	It is an Asynchronous of	ounter which i	s also called as "Rippl	e counter".		
			End of Solution			
102.	The number of flip-flop	-	onstruct an 8-bit shift	-		
	(a) 32 (b) 16	(c) 8	(d) 4		
102.	Ans: (c)					
Sol:	A 8-bit shift register is	built using 8 D	-FlipFlops.			
100		· · · · · · · · · · · · · · · · · · ·	End of Solution	· 1 1 61 0		
103.	Which one of the following specifications does not fit for a single-mode fiber?					
	(a) The bandwidth is 1 GHz/km.					
	(b) The digital communication rate is excess of 2000 Mbytes/s.					
	(c) More than 100000 voice channels are available.					
100	(d) The mode field diar	neter (MFD; sp	pot size) is larger than	the core diameter.		
103.	Ans (a)	1 .1 1	.1 . 6 .1 . 1 . 1			
Sol:	Bandwidth does not de		C			
104.	End of Solution For a binary FSK signal with a mark frequency of 49 kHz, a space frequency of 51 kHz and ar					
104.	input bit rate of 2 kbps, the peak frequency deviation will be					
	1 1	b) 1.0kHz	(c) 2.0kHz	(d) 4.0 kHz		
104.	Ans: (b)	0) 1.0KHZ	(0) 2.08112	(u) 4.0 MIZ		
Sol:	Assume unmodulated carrier frequency f_c					
501.	mark frequency $f_m = f_c + \Delta f$					
	space frequency $f_s = f_c - \Delta f$					
	space frequency $I_s = I_c - \Delta I$ where Δf = frequency deviation					
	$f_m - f_s = 2\Delta f$	e viution				
)k				
	$\Delta f = \frac{f_{\rm m} - f_{\rm s}}{2} = \frac{51k - 49}{2}$	= 1 kHz	End of Colution			
	gincering Publications Hyderabad		End of Solution	ru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedaba		

	S8 ESE-2019_PRELIMS_Solutions
105.	A random process X(t) is defined as $X(t) = 2 \cos(2\pi t + Y)$
	where Y is a discrete random variable with $P(Y = 0) = \frac{1}{2}$ and $P\left(Y = \frac{\pi}{2}\right) = \frac{1}{2}$.
	The mean $\mu_x(1)$ is
	(a) $\frac{1}{4}$ (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) 1
105.	Ans: (d)
Sol:	$X(t) = 2\cos[2\pi t + Y]$
	$= 2\cos 2\pi t \cos Y + 2\sin 2\pi t . \sin Y$
	$X(1) = 2\cos 2\pi . \cos Y + 2\sin 2\pi . \sin Y$
	$= 2\cos Y + 2 \times 0 \times \sin Y$
	$= 2 \cos Y$
	$E[X(1)] = 2E[\cos Y]$
	$= 2\left(\cos 0 \times \frac{1}{2}\right) + 2\left(\cos \frac{\pi}{2} \times \frac{1}{2}\right)$
	$= \left(2 \times 1 \times \frac{1}{2}\right) + \left(2 \times 0 \times \frac{1}{2}\right)$
	= 1
	End of Solution
106.	A source produces three symbols A, B and C with probabilities $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{4}$ and
	$P(C) = \frac{1}{4}$. The source entropy is
	(a) $\frac{1}{2}$ bit/symbol (b) 1 bit/symbol (c) $1\frac{1}{4}$ bit/symbol (d) $1\frac{1}{2}$ bit/symbol
106.	Ans: (d)
Sol:	$P(A) = \frac{1}{2}$ $P(B) = \frac{1}{4}$ $P(C) = \frac{1}{4}$
	Entropy H = $\frac{1}{2}\log_2 2 + \frac{1}{4}\log_2 4 + \frac{1}{4}\log_2 4 = \frac{1}{2} + \frac{2}{4} + \frac{2}{4} = 1\frac{1}{2}$ bits / symbol End of Solution
ACE En	gineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE	(59)	E & TE _ (SET - C)
107.	An AM wave with modu	lation index 0.8 has total si	deband power of 4.85kW. The carrier power
	and the total power radiat	ted will be nearly	
	(a) 12.2kW and 20kW	(b) 15.2kW and 20kW	
	(c) 12.2kW and 25kW	(d) 15.2kW and 25kW	
107.	Ans: (b)		
Sol:	$\mu = 0.8$		
	$P_{\rm SB}=4.85\rm{kW}=\frac{P_{\rm c}\mu^2}{2}$		
	$P_{\rm c} = \frac{4.85 \times 10^3 \times 2}{0.64}$		
	Carrier power = $P_c = 15.2$	2 kW	
	Total power = $P_c + P_{SB}$		
	= 15.2 + 4.8	.5	
	$P_t = 20 \text{ KW}$		
		End of Solution	
108.	A 360 W carrier is simul	ltaneously modulated by tw	o audio waves with modulation percentages
	of 55 and 65 respectively	. The effective modulation	index and the total power radiated are
	(a) 0.85 and 490.5W	(b) 0.65 and 490.5W	
	(c) 0.85 and 450.5W	(d) 0.65 and 450.5W	
108.	Ans: (a)		
Sol:	$P_c = 360 \text{ W}$		
	$\mu_1 = 0.55$ $\mu_2 = 0.65$		
	$\mu_t^2 = 0.55^2 + 0.65^2 = 0.30$	025 + 0.4225 = 0.725	
	$\mu_t=\sqrt{0.725}=0.85$		
	$P_{t} = P_{c} + \frac{P_{c}\mu_{t}^{2}}{2} = 360 + 130$	0.5 = 490.5 W	
		End of Solution	
109.	An amplitude modulated	l amplifier has a radio freq	uency output of 50W at 100% modulation.
	The internal loss in the m	odulator is 10W. The unmo	dulated carrier power is
	(a) 40W (b)) 50W (c) 60W	7 (d) 80W

	ACE Engineering Publications	60	ESE-2019_PRELIMS_Solutions
109.	Ans: (a)		
Sol:	$P_t = 50W + 10W = 60W$		
	$\mu = 1$		
	$P_{t} = P_{c} \left[1 + \frac{\mu^{2}}{2} \right]$		
	$60 = P_c \left[1 + \frac{1}{2} \right]$		
	$60 = P_c \times \frac{3}{2}$		
	$P_{\rm c} = \frac{60 \times 2}{3} = \frac{120}{3} = 40 \rm W$		
110.	For an FM receiver with an inp	out signal-to-noise ratio	of 29dB, a noise figure of 4 dB and an FM
	improvement factor of 16dB, th	he pre-detection and pos	t-detection signal-to-noise ratios are
	(a) 25 dB and 41 dB	(b) 30 dB and 49	dB
	(c) 25 dB and 49 dB	(d) 30 dB and 41	dB
110.	Ans: (a)		
Sol:	$\left(\frac{S}{N}\right)_{o} = \frac{1}{NF} \left(\frac{S}{N}\right)_{i}$		
	$\left(\frac{S}{N}\right)_{o} = -4dB + 29dB$		
	= 25 dB = pre-detector s	signal to noise ratio	
	Improvement factor = 16dB		
	So, post detector signal to nois	e ratio = $25 + 16$	
		=41dB	
		End of Solution	
111.	For Gaussian and white cha	nnel noise, the capacit	y of a low-pass channel with a usable
	bandwidth of 3000 Hz and $\frac{S}{N}$	$=10^3$ at the channel outp	put will be
	(a) 15000 bits/s (b) 2000	00 bits/s (c) 25000	bits/s (d) 30000 bits/s
ACE En	gincering Publications Hyderabad • Delhi • Bhopa	al • Pune • Bhubaneswar • Lucknow • Patna	• Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications

E & TE _ (SET - <u>C</u>)

	agineering Publications
111.	Ans (d)
Sol:	$B = 3 \text{ kHz}, \qquad \frac{S}{N} = 10^3$
	$C = B \log_2 \left[1 + \frac{S}{N} \right]$
	$C = 3 \times 10^3 \log_2 \left[1 + 10^3 \right]$
	$C \approx 3 \times 10^3 \times \log_2 2^{10} = 30 \text{ kbps}$
	C = 30,000 bps
	End of Solution
112.	For a PM modulator with a deviation sensitivity $K = 2.5 \text{ rad/V}$ and a modulating signal
	$v_{\rm m}(t) = 2 \cos(2\pi \ 2000t)$, the peak phase deviation m will be
	(a) 1.25 rad (b) 2.5 rad
	(c) 5.0 rad (d) 7.5 rad
112.	Ans: (c)
Sol:	K = 2.5 rad/volt
	$V_{\rm m}(t) = 2 \cos (2\pi \ 2000t)$
	Phase deviation = $\Delta \phi = K A_m$
	$= 2.5 \times 2$
	= 5 rad
	End of Solution
113.	In a PCM system, non-uniform quantization leads to
	(a) increased quantizer noise
	(b) simplification of the quantization process
	(c) higher average SNR
	(d) increased bandwidth
113.	Ans: (c)
Sol:	If uniform quantization is used, low amplitude signals of voice are quantized to the same value.
	This problem is eliminated using non-uniform quantization. If non-uniform quantization is used
	the average SNR will increase. End of Solution

ACE Engineering Publications (Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE 62 ESE-2019_PRELIMS_Solutions
114.	The bandwidth required in DPCM is less than that of PCM because
	(a) the number of bits per code is reduced resulting in a reduced bit rate
	(b) the difference signal is larger in amplitude than actual signal
	(c) more quantization levels are needed
	(d) the successive samples of signal often differ in amplitude
114.	Ans: (a)
Sol:	The dynamic range in DPCM is less when compared with PCM. It requires less number of
	quantization levels. So number of bits/code is reduced resulting in reducing in bit rate. As the bit
	rate reduces, bandwidth decreases.
115.	For the given transfer function
	$G(s) = \frac{Y(s)}{R(s)} = \frac{1}{s^2 + 3s + 2}$
	the response $y(t)$ for a step input $r(t) = 5u(t)$ will be
	(a) $\left[\frac{5}{2} - 5e^{-t} + \frac{5}{2}e^{-2t}\right]u(t)$
	(b) $\left[\frac{5}{2}-5e^{-t}\right]u(t)$
	$(c)\left[\frac{5}{2}+\frac{5}{2}e^{-2t}\right]u(t)$
	$(d)\left[-5e^{-t}+\frac{5}{2}e^{-2t}\right]u(t)$
	where u(t) is a unit step input.
115.	Ans: (a)
Sol:	$\frac{Y(s)}{R(s)} = \frac{1}{s^2 + 3s + 2} = \frac{1}{(s+1)(s+2)}$
	$Y(s) = \frac{5}{s(s+1)(s+2)} = \frac{5}{2s} - \frac{5}{s+1} + \frac{5}{2(s+2)}$
	Apply, ILT
	$y(t) = \left(\frac{5}{2} - 5e^{-t} + \frac{5}{2}e^{-2t}\right)u(t)$
A CE-E	eincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE Engineering Publications		64	ESE-2019 _ PRELIMS_Solutions
116.	The price for improvement	in sensitivity b	by the use of fee	edback is paid in terms of
	(a) loss of system gain			
	(b) rise of system gain			
	(c) improvement in transie	nt response, del	layed response	
	(d) poor transient response			
116.	Ans: (a)			
Sol:	With feedback, sensitivi	ty improved	by factor of	$\left(\frac{1}{1+\mathrm{GH}}\right)$. Hence gain reduces by
	factor $\frac{1}{(1+GH)}$			
		End	of Solution	
117.	Consider a feedback system	n with the chara	acteristics equat	tion
	$1 + K \frac{1}{s(s+1)(s+2)} = 0$			
	The asymptotes of the thr	ee branches of	root locus plot	t of this system will form the following
	angles with the real axis			
	(a) 60°, 120° and 300°	(b) 6	50°, 120° and 18	80°
	(c) 60°, 180° and 300°	(d) 4	40°, 120° and 20	00°
117.	Ans: (c)			
Sol:	$G(s)H(s) = \frac{K}{S(S+1)(S+2)}$			
	Number of asymptotes $= 3$			
	Angle of asymptotes, $\theta = \frac{1}{2}$	$\frac{2q+1}{(p-z)}$	q = 0, 1, 2	
	= 6	0°, 180°, 300°		
118.	If the characteristic equation		of Solution	n is given by
	$s^4 + 20s^3 + 15s^2 + 2s + K =$		5	
	then the range of values of	K for the syste	m to be stable v	will be
	-	-	(c) $1 < K < 2$	
	gineering Publications Hyderabad • Delhi	Bhonal . Duno . Dhuhar	war - Lucknow - Dotno - D	ngaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	65 E & TE _ (SET - C)				
118.	Ans: (b)				
Sol:	$\underline{CE} s^4 + 20s^3 + 15s^2 + 2s + K = 0$				
	$\begin{vmatrix} s_4 \\ s_3 \end{vmatrix} \begin{bmatrix} 1 \\ 20 \end{bmatrix} = \begin{bmatrix} 15 \\ 2 \end{bmatrix} K$				
	s^2 14.9				
	$s^{1} \left(\frac{14.9 - 10K}{14.9} \right) > 0 (s) \Rightarrow K < 1.49$				
	s^0 K>0 (s) 0 <k<1.49< th=""></k<1.49<>				
110	End of Solution				
119.	For a Type-2 system, the steady-state errors for unit step and unit ramp input are				
	(a) 0 and ∞ (b) ∞ and 0 (c) 0 and 0 (d) ∞ and ∞				
119.	Ans: (c)				
Sol:	For type - 2 system $K_p \& K_v$ are ∞ hence steady state errors are 0 & 0.				
120.	End of Solution Consider the following statements regarding a parabolic function:				
	1. A parabolic function is one degree faster than the ramp function.				
	2. A unit parabolic function is defined as				
	$\begin{bmatrix} t^2 & t \end{bmatrix}$				
	$f(t) = \begin{cases} \frac{t^2}{2}, & \text{for } t > 0\\ 0, & \text{otherwise} \end{cases}$				
	0, otherwise				
	3. Laplace transform of unit parabolic function is $\frac{1}{s^3}$.				
	Which of the above statements are correct?				
	(a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3				
120.	Ans: (d)				
Sol:	\Rightarrow Ramp = tu(t)				
	Parabolic = $\frac{t^2}{2}u(t)$				
	Parabolic is one degree faster than ramp				
	$= L[t^2/2] = \frac{1}{s^3}$				
	$\frac{-L[t^{2}/2] - \frac{1}{s^{3}}}{\text{End of Solution}}$				
ACE Eng	gineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad				

	ACE Baginessing Publications	66	ESE-2019 _ PRELIMS_Solutions
121.	Consider a common-emitter cu	rrent gain of $\beta = 150$ and a b	ase current of $i_B = 15 \mu A$. If the
	transistor is biased in the forward	d active mode, the collector and	l emitter current will be
	(a) 2.25 mA and 2.27 mA	(b) 3.25 mA and 2.27 mA	
	(c) 2.25 mA and 1.37 mA	(d) 3.25 mA and 1.37 mA	
121.	Ans: (a)		
Sol:	Given $\beta_{dc} = 150$ and $i_B = 15 \mu A$		
	Biased in forward active		
	$\therefore I_{C} = \beta_{dc}I_{B} = 150 \times 15\mu = 2.25$	mA	
	$I_{\rm E} = (1 + \beta_{\rm dc}) I_{\rm B} = 151 \times 15\mu = 2.$	27mA	
		- End of Solution	
122.	The input to a bridge rectifier i		l.c. output voltage and the ripple
	factor with R_L of 100 Ω and cap	acitor filter of 1000 µF are	
	(a) 207 V and 0.028 (b)	325 V and 0.028	
	(c) 207 V and 0.020 (d)) 325 V and 0.020	
122.	Ans: (b)		
Sol:	Given bridge rectifier, V_i = 230V	rms,	
	f = 50Hz		
	$R_L = 100\Omega$		
	Capacitor filter, $C = 1000 \mu f$		
	Ripple factor, for FWR $r = \frac{1}{4\sqrt{3}}$	$\frac{1}{f_{\rm C}R_{\rm L}} = \frac{1}{4\sqrt{3} \times 50 \times 1000 \times 10^{-6}}$	$\frac{1}{100} = 0.028$
	$V_{DC} = V_m = \sqrt{2}V_{rms} = 230\sqrt{2} = 2$	325V	
100		- End of Solution	
123.	The effect of reduction in effecti		-
102	(a) Hall effect (b) Early (effect (c) Zener effect	(d) Miller effect
123.	Ans: (b)	adulation is the mainting in the	width of the bass is a bir star
Sol:	The Early effect or base width m		-
	transistor due to a variation in th		rse dias voltage.
ACE En	ngineering Publications Hyderabad • Delhi • Bhopal •	Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Ch	ennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahme

	ACE Engineering Publications		(68)	ESE-2019 _ PRELIMS_Solutions			
126.	What is the frequency of	What is the frequency of oscillator for an RC phase-shift oscillator with R of 10 k Ω and C of					
	$0.001 \ \mu\text{F}$ in each of its three	ee RC section	s?				
	(a) 5.0 kHz (b) :	5.5 kHz	(c) 6.0 kHz	(d) 6.5 kHz			
126.	Ans: (d)						
Sol:	Given RC phase shift osci	llator of three	RC sections,				
	$f = \frac{1}{2\pi RC\sqrt{6}} = \frac{1}{2 \times \pi \times 10^{5}}$	$\frac{1}{\times 10^3 \times 0.001 \times 0.001}$	$\frac{10^{-6} \times \sqrt{6}}{10^{-6} \times \sqrt{6}} = 6.5 \text{ kHz}$				
		F	nd of Solution				
127.	When there is no clock sig			s, they are referred to as			
	(a) complex CMOS logic	circuits (b) static CMOS logic c	circuits			
	(c) NMOS transmission ga	ates (d) random PMOS logic	c circuits			
127.	Ans: (b)						
Sol:	-	Static logic circuits allow versatile implementation of logic functions based on static or steady- state behaviour of simple CMOS structures.					
	A typical static logic gate	A typical static logic gate generates its output levels as long as the power supply is provided.					
	Unclocked CMOS logic is	a static CMC	OS logic circuit.				
100			nd of Solution				
128.		t logic that m	iinimizes power dissij	pation and maximizes device densit			
	is called	(1	× · · · · ·				
	(a) pass transistor logic) sequential logic circ				
	(c) NMOS SRAM cell	(d) NMOS transmissior	n gate			
128.	Ans: (d)						
Sol:	IN[$\begin{bmatrix} C \\ \hline \\ M_1 \\ \hline \\ M_2 \\ \hline \\ M_1 \\ \hline \\ M_2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	DUT				
	The above figure shows a	transmission	gate, if M ₁ is on the	n M_2 is off and vice-versa. Thus th			
	power dissipation is less in	n transmissior	n gate.				
	perior anonparior io recom		8				

	ACE Pablication		(69)	E & TE _ (SET - C)	
129.	The ideal op-amp has				
	(a) infinite voltage gain and zero input impedance				
	(b) infinite voltage g	ain and infinite b	andwidth		
	(c) zero voltage gain	and infinite CM	RR		
	(d) zero output imped	dance and zero C	CMRR		
129.	Ans: (b)				
Sol:	An ideal op-amp pro	perties			
	Infinite open loop vo	ltage gain			
	Infinite input imped	ance			
	Zero output impedan	ce			
	Zero noise contributi	on (infinite CMI	RR)		
	Zero DC output offse	et			
	Infinite bandwidth				
			End of Solution		
130.	A d.c. voltage supply	v provides 60 V	when the output is unlo	oaded. When connected to a load, the	
	output drops to 56 V. The value of the voltage regulation is				
	(a) 3.7%	(b) 5.7%	(c) 7.1%	(d) 9.1%	
130.	Ans: (c)				
Sol:	$V_{DC} = 60V$, without	load \Rightarrow V _{NL} = 60)V		
	$V_{DC} = 56V$ with load $\Rightarrow V_{FL} = 56V$				
	$\therefore \% \text{ resolution } = \frac{V_{\text{NL}} - V_{\text{FL}}}{V_{\text{FL}}} \times 100 = 7.1\%$				
			End of Solution		
131.	In optical communication, the maximum angle in which external light rays may strike the				
	air/glass interface and still propagate down the fiber is called as				
	(a) critical angle		(b) numerical aperture		
	(c) angle of refraction	n	(d) acceptance angle		
131.	Ans: (d)				
Sol:	Acceptable angle is	defined as the	maximum angle in wł	nich the light ray enters the air-core	
	interface, and propag	ate through the o	core.		
			End of Solution		

	ACE		(72)	ESE-2019 _ PRELIMS_Solutions
136.	A car is travellin	g at 72 km/h. If the le	ength of an axle is 2	m and the vertical component of the
	earth's magnetic	field is 40 μ Wb/m ² , th	e e.m.f generated in	the axle of the car is
	(a) 2.6 mV	(b) 2.2 mV	(c) 1.6 mV	(d) 1.2 mV
136.	Ans: (c)			
Sol:	v = 72 km/hr			
	$v = 72 \times \frac{5}{18} = 20$	m / s		
	l = 2 m			
	$\mathbf{B} = 40 \times 10^{-6} \text{ We}$	p/m^2		
	emf generated in	the axle of the car is		
	$V_{emf} = Blv$			
	= 40×1	$0^{-6} \times 2 \times 20$		
	$V_{emf} = 16 \times 10^{-4}$	= 1.6 mV		
		I	End of Solution	
137.	In a telephone receiver, the size of each of the two poles is 1.2cm×0.2cm and the flux between			
	each pole and the	diaphragm is 3×10^{-6}	Wb. The force attrac	ted to the poles will be nearly
	(a) 0.15 N	(b) 0.20 N	(c) 0.30 N	(d) 0.40 N
137.	Ans: (a)			
Sol:	The force betwee	n two poles of the ma	gnet.	
	$F = \frac{B^2 A}{2\mu_0}$			
	Φ^2	9×10^{-12}		
	$\Gamma = \frac{1}{2A\mu_0} = \frac{1}{2\times 1}$	$\frac{9 \times 10^{-12}}{1.2 \times 10^{-2} \times 0.2 \times 10^{-2}}$	$\times 4\pi \times 10^{-7}$	
	$F = \frac{9 \times 10^{-10}}{2 \times 12 \times 2 \times 10^{-10}}$	$\frac{12}{12}$ $-\frac{13}{4\pi}$		
	$F = \frac{9 \times 10^{-12+13}}{48 \times 4\pi}$			
	$F = \frac{9 \times 10^1}{48 \times 4\pi} = \frac{90}{60}$	<u>)</u> 3		
	$F = 0.149 N \approx 0.12$	-	End of Solution	
ACE Eng	gincering Publications			ıru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE	(75)	E & TE _ (SET - C)	
141.	Ans: (c)			
Sol:	1. Speed of shunt motor dr	roops slightly from no load to full lo	oad. So statement 1 is correct.	
	2. For the same input start	ting torque of series motor is high	because $T_L \alpha I_a^2$, so statement 2 is	
	also correct.			
	3. Statement 3 is wrong as	shut motor drives variable load wit	th slight change in speed.	
		End of Solution		
142.	Consider the following ma	terials:		
	1. Lead peroxide			
	2. Sponge lead			
	3. Dilute sulphuric acid			
	Which of the above are act	tive materials of a lead-acid battery	?	
	(a) 1 and 2 only	(b) 1 and 3 only		
	(c) 2 and 3 only	(d) 1, 2 and 3		
142.	Ans: (d)			
Sol:	The main active materials	required to construct a lead acid ba	ttery are	
	1. Lead peroxide (PbO ₂)			
	2. Sponge Lead (Pb)			
	3. Dilute sulphuric acid (H	(2SO ₄)		
		End of Solution		
143.	Which of the following sta	tements are correct for a fully charge	ged lead-acid cell?	
	1. Gassing occurs at both e	electrodes.		
	2. The terminal voltage is 2.6 V			
	3. The specific gravity of the electrolyte is 1.21.			
	Select the correct answer u	using the code given below.		
	(a) 1 and 2 only	(b) 1 and 3 only		
	(c) 2 and 3 only	(d) 1, 2 and 3		
143.	Ans: (d)			
Sol:	In a fully charged lead aci	d cell gassing occurs at both electro	odes, the terminal voltage is around	
	2.1V and the specific gravity of the electrolyte is 1.21. End of Solution			

	ACE Engineering Publications	76 ESE-2019_PRELIMS_Soluti	ions		
144.	Which of the following statements are correct for synchronous motors?				
	1. Synchronous motors are well-suited for direct connection to reciprocating compressors.				
	2. Over-excited synchronous motors are most commonly used for power factor improvement.				
	3. Synchronous motors are generally used for current regulation of long transmission lines.				
	Select the correct answer us	ng the code given below.			
	(a) 1, 2 and 3	(b) 1 and 3 only			
	(c) 1 and 2 only	(d) 2 and 3 only			
144.	Ans: (a)				
Sol:	1. Synchronous motors are well suited for loads where constant speed is required, so it is				
	suited for reciprocating compressors.				
	2. Over excited synchronou	s motors, p.f. tends to approach unity with increase in load so	it is		
	used for power factor correction.				
	3. By using synchronous mo	tor we can control the reactive power of the line by which curre	nt in		
	the line can be changed.				
		End of Solution			
145.	Which crystal system requires six lattice parameters to fully specify its unit cell?				
	(a) Triclinic	(b) Monoclinic			
	(c) Cubic	(d) Hexagonal			
145.	Ans: (a)				
Sol:	For Triclinic Lattice system,				
	$a \neq b \neq c$				
	$\alpha\neq\beta\neq\gamma\neq90^{o}$				
	All six lattice parameters required to define a triclinic unit cell.				
		End of Solution			
146.	The minimum cation-to-anion radius ratio for the coordination number 3 is				
	(a) 0.175	(b) 0.155			
	(c) 0.135	(d) 0.115			
146.	Ans: (b)				
Sol:	For this coordination, the small cation is surrounded by three anions to form an equilateral				
	triangle as shown below - triangle ABC, the center of all four ions are coplanar.				
ACE E	ngineering Publications Hyderabad • Delhi • E	hopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahm	edabad		

ACE 78 ESE-2019 _ PRELIMS_Solutions 148. Consider the following data for copper: Energy for vacancy formation is 0.9 eV/atom Atomic weight is 63.5 g/mol Density is 8.4 g/cm³ at 1000 °C The equilibrium number of vacancies per cubic meter at 1000 °C will be (a) 3.2×10^{20} (b) 3.2×10^{25} (d) 2.2×10^{25} (c) 2.2×10^{20} 148. Ans: (d) Sol: Given: Energy for vacancy formation $(Q_v) = 0.9 \text{ eV/atom}$ Atomic weight $(A_{cu}) = 63.5$ g/mol Density (ρ) = 8.4g /cm³ $\frac{N_V}{N} = e^{-\frac{Q_v}{kT}} = 2.7 \times 10^{-4}$

For
$$1m^3$$
, $N = \rho \times \frac{N_A}{A_{cu}} \times 1 = 8 \times 10^{28}$ sites

 $N_V = (2.7 \times 10^{-4}) (8 \times 10^{28}) \text{ sites} = 2.2 \times 10^{25} \text{ vacancies}$ End of Solution

NEW DELHI WORLD BOOK FAIR 05th - 13th January, 2019

Stall No.: 72 in Hall No. H-12; Pragati Maidan; New Delhi

9266700077, 7838971777

	ACE Engineering Publications		(79) E & TE _ (SET - C)			
149.	Which of the following are electrical insulating materials?					
	1. Lucite	2. Mica	3. Bakelite			
	Select the correct a	elect the correct answer using the code given below				
	(a) 1 and 2 only		(b) 1 and 3 only			
	(c) 2 and 3 only		(d) 1, 2 and 3			
149.	Ans: (d)					
Sol:	Lucite, Mica, Bakelite are insulators.					
	Lucite is a trade name of polymethyl metha crylate, a synthetic organic compound of high					
	molecular weight.					
	Properties:					
	(1) More dimensional stability					
	(2) Good resistance to weathering and shock					
	(3) Colourless & tr	ansparent				
	(4) Insulator					
150.	End of Solution The magnitude of the energy gap for an insulator is					
	(a) less than 1 eV		(b) between 2 eV to 3 eV			
	(c) more than 3 eV		(d) between 1 eV to 2 eV			
150.	Ans: (c)					
Sol:	If the energy gap >3ev, then it is called an insulator. End of Solution					

