

# ESE 2019

## **Preliminary Examination**

Detailed Solutions of Electronics & Telecom Engg. (Set-A)

Scroll down for detailed solutions

#### www.madeeasy.in

Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | Ph: 011-45124612, 9958995830

Delhi | Hyderabad | Noida | Bhopal | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna



#### ESE 2019 | Preliminary Examination Electronics & Telecom Engg. | Set-A

| Expe   | Expected Cutof of ESE 2019 Prelims |         |         | Actual Cutof of ESE 2018 Prelims |        |     |     | ms  |     |
|--------|------------------------------------|---------|---------|----------------------------------|--------|-----|-----|-----|-----|
| Branch | Gen                                | OBC     | SC      | ST                               | Branch | Gen | OBC | SC  | ST  |
| CE     | 180-190                            | 170-180 | 150-160 | 150-160                          | CE     | 207 | 194 | 169 | 188 |
| ME     | 190-200                            | 180-190 | 160-170 | 160-170                          | ME     | 256 | 255 | 220 | 223 |
| EE     | 230-240                            | 220-230 | 190-200 | 190-200                          | EE     | 230 | 218 | 190 | 191 |
| E&T    | 210-220                            | 200-210 | 170-180 | 170-180                          | E&T    | 213 | 206 | 173 | 155 |

### **E&T Paper Analysis ESE 2019 Prelims Exam**

| SI. | Subjects                       | Number of Questions |
|-----|--------------------------------|---------------------|
| 1   | Material Science               | 13                  |
| 2   | EDC                            | 4                   |
| 3   | Analog Electronics             | 11                  |
| 4   | Network Theory 15              |                     |
| 5   | Control Systems 12             |                     |
| 6   | Electromagnetic Theory 14      |                     |
| 7   | Measurement 11                 |                     |
| 8   | Communication Systems 11       |                     |
| 9   | Advance Communications 14      |                     |
| 10  | Advance Electronics 5          |                     |
| 11  | Baisc Electrical Engineering 8 |                     |
| 12  | Computer Organization          | 10                  |
| 13  | Signals and Systems            | 4                   |
| 14  | Digital Electronics            | 10                  |
| 15  | Microprocessors                | 8                   |

#### **UPSC ESE/IES Prelims 2019**

Electronics & Telecom Engg. analysis and expected cutoff by MADE EASY faculty https://youtu.be/RInTT4Yxh\_A

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 🕢 www.madeeasy.in





| 7.   | When there is no clock signal applied to CMOS logic circuits, they are(a) complex CMOS logic circuits(b) static CMOS logic circuits(c) NMOS transmission gates(d) random PMOS logic circuit                                                   |                                        |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Ans. | (b)                                                                                                                                                                                                                                           | End of Solution                        |
| 8.   | One form of NMOS circuit logic that minimizes power dissipation, and ma                                                                                                                                                                       |                                        |
|      | density is called(a) pass transistor logic(b) sequential logic circuit(c) NMOS SRAM cell(d) NMOS transmission gate                                                                                                                            |                                        |
| Ans. | (a)                                                                                                                                                                                                                                           | End of Solutio                         |
| 9.   | The ideal op-amp has<br>(a) infinite voltage gain and zero input impedance<br>(b) infinite voltage gain and infinite bandwidth<br>(c) zero voltage gain and infinite CMRR<br>(d) zero output impedance and zero CMRR                          |                                        |
| Ans. | (b)                                                                                                                                                                                                                                           |                                        |
| 10.  | A d.c. voltage supply provides 60 V when the output is unloaded. When<br>a load, the output drops to 56 V. The value of the voltage regulation i<br>(a) 3.7% (b) 5.7%<br>(c) 7.1% (d) 9.1%                                                    |                                        |
| Ans. | (c)<br>Unloaded, $V_{NL} = 60 \text{ V}$<br>Loaded, $V_{FL} = 56 \text{ V}$                                                                                                                                                                   |                                        |
|      | % Regulation = $\frac{V_{NL} - V_{FL}}{V_{FL}} \times 100 = \frac{60 - 56}{56} \times 100 = 7.1\%$                                                                                                                                            |                                        |
| 11.  | In optical communication, the maximum angle in which external light r<br>the air/glass interface and still propagate down the fiber is called as<br>(a) critical angle (b) numerical aperture<br>(c) angle of refraction (d) acceptance angle | <b>End of Solutio</b><br>ays may strik |
| Ans. | (d)                                                                                                                                                                                                                                           |                                        |
|      |                                                                                                                                                                                                                                               | End of Solution                        |



| Ans.  | (c)<br>H = MC                                  | ۸t                                                                                                          |
|-------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|       | C = 4.2                                        |                                                                                                             |
|       |                                                | $\times 10^3 \times 4.2 \times (95 - 15)$                                                                   |
|       | = 5040                                         | 000 J = 504 kJ                                                                                              |
|       | Heat loss due to radiation                     |                                                                                                             |
|       | $H_{\rm loss} = 15 >$<br>$H_{\rm loss} = 63 +$ |                                                                                                             |
|       | Total heat = 504                               |                                                                                                             |
|       | $H = V \times$                                 |                                                                                                             |
|       | $567 \times 10^3 = 100$                        |                                                                                                             |
|       | I = 6.3                                        | A                                                                                                           |
|       |                                                | End of Solution                                                                                             |
| 15.   | A heater element is made of ni                 | chrome wire having resistivity equal to 100 $	imes$ 10 <sup>-8</sup> $\Omega$ r                             |
|       |                                                | ength of the wire required to get a resistance of 40 s                                                      |
|       | will be nearly                                 | (12) 7 22                                                                                                   |
|       | (a) 9 m<br>(c) 5 m                             | (b) 7 m<br>(d) 3 m                                                                                          |
|       |                                                |                                                                                                             |
| Ans.  | (c)                                            |                                                                                                             |
|       | $R = \frac{\rho l}{A} =$                       | $= \frac{\rho l}{\pi d^2 / 4} \implies \frac{\rho l \cdot 4}{\pi d^2}$                                      |
|       | $I - \frac{\pi d^2}{2}$                        | $\frac{R^2 \cdot R}{4} = \frac{\pi (0.4 \times 10^{-3})^2 \times 40}{100 \times 10^{-8} \times 4}$          |
|       | · · · · · · · · · · · · · · · · · · ·          | 4 $100 \times 10^{-8} \times 4$                                                                             |
|       | <i>l</i> = 5 m                                 |                                                                                                             |
|       |                                                | End of Solution                                                                                             |
| 16.   | -                                              | the length of an axle is 2 m and the vertical componer                                                      |
|       |                                                | 40 $\mu$ Wb/m <sup>2</sup> , the e.m.f. generated in the axle of the ca                                     |
|       | is<br>(a) 2.6 mV                               | (b) 2.2 mV                                                                                                  |
|       | (c) 1.6 mV                                     | (d) 1.2 mV                                                                                                  |
| Ans.  | (c)                                            |                                                                                                             |
| -115. |                                                | $JWb/m^2$ , $l = 2m$                                                                                        |
|       |                                                |                                                                                                             |
|       | V = 72 k                                       | $\frac{1000 \text{ m}}{3600 \text{ sec}}$                                                                   |
|       | E – Div                                        | $= \left(40 \times 10^{-6} \times 2 \times 72 \times \frac{1000}{3600}\right) \text{V} = 1.6 \text{ mV}$    |
|       | Generated - DIV                                | $= \left( 40 \times 10^{\circ} \times 2 \times 72 \times \frac{3600}{3600} \right)^{\circ} = 1.011^{\circ}$ |
|       |                                                | End of Solution                                                                                             |
|       |                                                |                                                                                                             |
|       |                                                |                                                                                                             |





|             | $\Rightarrow$                                                                                                                                                                                                                                                                                                            | $I_{a_2} = \frac{50}{0.9} = \frac{500}{9}$                                                                                                                                                                                                               | (ii                                       |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|             | From equation (i),                                                                                                                                                                                                                                                                                                       | $\frac{N_1}{N_1} = \frac{E_{b_1}}{E_{b_1}} \times \frac{\phi_2}{\Phi_2}$                                                                                                                                                                                 |                                           |
|             |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                          |                                           |
|             | ⇒                                                                                                                                                                                                                                                                                                                        | $\frac{960}{N_2} = \frac{(200 - 0.2 \times 50)}{\left(200 - 0.2 \times \frac{500}{9}\right)} \times \frac{0.9\phi_1}{\phi_1}$                                                                                                                            |                                           |
|             | $\Rightarrow$                                                                                                                                                                                                                                                                                                            | $N_2 = 1060 \text{ rpm}$                                                                                                                                                                                                                                 |                                           |
| 21.         | Which of the followi                                                                                                                                                                                                                                                                                                     | ng statements are correct for d.c. sh                                                                                                                                                                                                                    | End of Solution                           |
|             | •                                                                                                                                                                                                                                                                                                                        | nt motor is sufficiently constant.                                                                                                                                                                                                                       |                                           |
|             |                                                                                                                                                                                                                                                                                                                          | rent input, its starting torque is not as<br>e directly coupled to a load such as a                                                                                                                                                                      |                                           |
|             |                                                                                                                                                                                                                                                                                                                          | nswer using the code given below.                                                                                                                                                                                                                        |                                           |
|             | (a) 2 and 3 only<br>(c) 1 and 2 only                                                                                                                                                                                                                                                                                     | (b) 1 and 3 only<br>(d) 1, 2 and 3                                                                                                                                                                                                                       |                                           |
| Ans.        | (c)                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                          |                                           |
|             | DC shunt motors sh                                                                                                                                                                                                                                                                                                       | ould never be started with heavy lo                                                                                                                                                                                                                      | ads such as fan.<br><u>End of Solutio</u> |
| 22.         | Consider the followir                                                                                                                                                                                                                                                                                                    | ng materials:                                                                                                                                                                                                                                            |                                           |
|             | 1. Lead peroxide                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                          |                                           |
|             |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                          |                                           |
|             | <ol> <li>Sponge lead</li> <li>Dilute sulphuric</li> </ol>                                                                                                                                                                                                                                                                | acid                                                                                                                                                                                                                                                     |                                           |
|             | 3. Dilute sulphuric Which of the above                                                                                                                                                                                                                                                                                   | are active materials of a lead-acid                                                                                                                                                                                                                      | oattery?                                  |
|             | <ol> <li>Dilute sulphuric</li> <li>Which of the above</li> <li>(a) 1 and 2 only</li> </ol>                                                                                                                                                                                                                               | are active materials of a lead-acid<br>(b) 1 and 3 only                                                                                                                                                                                                  | oattery?                                  |
| Ans.        | 3. Dilute sulphuric Which of the above                                                                                                                                                                                                                                                                                   | are active materials of a lead-acid                                                                                                                                                                                                                      | oattery?                                  |
| Ans.        | <ul><li>3. Dilute sulphuric</li><li>Which of the above,</li><li>(a) 1 and 2 only</li><li>(c) 2 and 3 only</li></ul>                                                                                                                                                                                                      | are active materials of a lead-acid<br>(b) 1 and 3 only                                                                                                                                                                                                  |                                           |
| Ans.<br>23. | <ul> <li>3. Dilute sulphuric</li> <li>Which of the above,</li> <li>(a) 1 and 2 only</li> <li>(c) 2 and 3 only</li> <li>(d)</li> <li>Which of the followin</li> <li>1. Gassing occurs</li> </ul>                                                                                                                          | are active materials of a lead-acid<br>(b) 1 and 3 only<br>(d) 1, 2 and 3<br>ng statements are correct for a fully o<br>at both electrodes.                                                                                                              | End of Solution                           |
|             | <ul> <li>3. Dilute sulphuric</li> <li>Which of the above,</li> <li>(a) 1 and 2 only</li> <li>(c) 2 and 3 only</li> <li>(d)</li> <li>Which of the followint</li> <li>1. Gassing occurs</li> <li>2. The terminal vol</li> </ul>                                                                                            | are active materials of a lead-acid<br>(b) 1 and 3 only<br>(d) 1, 2 and 3<br>ng statements are correct for a fully o<br>at both electrodes.                                                                                                              | End of Solution                           |
|             | <ul> <li>3. Dilute sulphuric</li> <li>Which of the above,</li> <li>(a) 1 and 2 only</li> <li>(c) 2 and 3 only</li> <li>(d)</li> <li>Which of the followint</li> <li>1. Gassing occurs</li> <li>2. The terminal vol</li> <li>3. The specific grad</li> <li>Select the correct and</li> </ul>                              | are active materials of a lead-acid (b) 1 and 3 only<br>(d) 1, 2 and 3<br>ng statements are correct for a fully of<br>at both electrodes.<br>tage is 2.6 V.<br>wity of the electrolyte is 1.21.<br>nswer using the code given below.                     | End of Solution                           |
|             | <ul> <li>3. Dilute sulphuric</li> <li>Which of the above,</li> <li>(a) 1 and 2 only</li> <li>(c) 2 and 3 only</li> <li>(d)</li> <li>Which of the followint</li> <li>1. Gassing occurs</li> <li>2. The terminal vol</li> <li>3. The specific gravity</li> </ul>                                                           | are active materials of a lead-acid<br>(b) 1 and 3 only<br>(d) 1, 2 and 3<br>ng statements are correct for a fully of<br>at both electrodes.<br>tage is 2.6 V.<br>wity of the electrolyte is 1.21.                                                       | End of Solution                           |
|             | <ul> <li>3. Dilute sulphuric</li> <li>Which of the above,</li> <li>(a) 1 and 2 only</li> <li>(c) 2 and 3 only</li> <li>(d)</li> <li>Which of the followint</li> <li>1. Gassing occurs</li> <li>2. The terminal vol</li> <li>3. The specific grading</li> <li>Select the correct and</li> <li>(a) 1 and 2 only</li> </ul> | are active materials of a lead-acid (b) 1 and 3 only<br>(d) 1, 2 and 3<br>ng statements are correct for a fully of<br>at both electrodes.<br>tage is 2.6 V.<br>wity of the electrolyte is 1.21.<br>nswer using the code given below.<br>(b) 1 and 3 only | End of Solution                           |

| MADE EASY | India's Best Institute for IES, GATE & PSUs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ESE 2019   Preliminary Examinati<br>Electronics & Telecom Engg.   Set-                                                                                                             |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24.       | 2. Over-excited synchronous motors improvement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | correct for synchronous motors?<br>or direct connection to reciprocating compressors<br>are most commonly used for power facto<br>used for current regulation of long transmission |
|           | Select the correct answer using the cor<br>(a) 1, 2 and 3<br>(c) 1 and 2 only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | de given below.<br>(b) 1 and 3 only<br>(d) 2 and 3 only                                                                                                                            |
| Ans.      | (a)<br>Over excited synchronous motors take<br>VAR to systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s leading current and supply lagging reactiv                                                                                                                                       |
| 25.       | Which crystal system requires six lattic<br>(a) Triclinic<br>(c) Cubic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>End of Solution</i><br>ce parameters to fully specify its unit cell?<br>(b) Monoclinic<br>(d) Hexagonal                                                                         |
| Ans.      | (a)<br>For triclinic crystal system<br>$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$<br>$a \neq b \neq c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>c</i> , α, β, γ) are required to fully specify unit cel                                                                                                                         |
| 26.       | The minimum cation-to-anion radius rat<br>(a) 0.175<br>(c) 0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    |
| Ans.      | <b>(b)</b><br>Radius ratio range for <i>CN</i> = 3 is 0.155<br>Minimum radius ratio = 0.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                    |
| 27.       | <ul> <li>Which of the following- materials are cannot an exact the following- materials are cannot an exact the composites-Carbides, Borides, Nitriana and composites-Particulate reinforced and a solution of the composite and a composite a</li></ul> | des and Silicides<br>combinations of oxides and non-oxides                                                                                                                         |
| Ans.      | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | End of Solution                                                                                                                                                                    |
| orporate  | e Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 🖂 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nfo@madeeasy.in 📀 www.madeeasy.in 🛛 Page 1                                                                                                                                         |

|          | India's Best Institute for IES, GATE & PSUs Electronics & Telecom Engg.   Set                                                                                                                                                                                                                      |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28.      | Consider the following data for copper:<br>Energy for vacancy formation is 0.9 eV/atom<br>Atomic weight is 63.5 g/mol<br>Density is 8.4 g/cm <sup>3</sup> at 1000°C<br>The equilibrium number of vacancies per cubic meter at 1000 °C will be<br>(a) $3.2 \times 10^{20}$ (b) $3.2 \times 10^{25}$ |
|          | (c) $2.2 \times 10^{20}$ (d) $2.2 \times 10^{25}$                                                                                                                                                                                                                                                  |
| Ans.     | (d)<br>Density of atoms (N) = $\frac{N_A \rho}{M_{at}} = \frac{6.023 \times 10^{23} \times 8.4}{63.5} \simeq 8 \times 10^{22} \text{ cm}^{-3}$                                                                                                                                                     |
|          | The density of vacansies at 1000°C can be given by,                                                                                                                                                                                                                                                |
|          | $N_v = N e^{-Q_v / kT}$<br>$Q_v = Activation energy = 0.9 eV$                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                                                                                                                                                    |
|          | So, $N_v = 8 \times 10^{22} e^{-\frac{(0.5 \text{ eV})}{(8.62 \times 10^{-5} \text{ eV/K})(1273 \text{ K})}} \text{ cm}^{-3}$                                                                                                                                                                      |
|          | = $2.2 \times 10^{19}$ vacancies/cm <sup>3</sup><br>= $2.2 \times 10^{25}$ vacancies/m <sup>3</sup>                                                                                                                                                                                                |
|          | <ol> <li>Lucite 2. Mica 3. Bakelite</li> <li>Select the correct answer using the code given below.</li> <li>(a) 1 and 2 only</li> <li>(b) 1 and 3 only</li> <li>(c) 2 and 3 only</li> <li>(d) 1, 2 and 3</li> </ol>                                                                                |
| Ans.     | (d)<br>End of Solution                                                                                                                                                                                                                                                                             |
| 30.      | The magnitude of the energy gap for an insulator is<br>(a) less than 1 eV (b) between 2 eV to 3 eV<br>(c) more than 3 eV (d) between 1 eV to 2 eV                                                                                                                                                  |
| Ans.     | (c)<br>Insulators are bad conductors of current and they have larger band-gap.                                                                                                                                                                                                                     |
| 31.      | In a 440 V, 50 Hz transformer, the total iron loss is 3700 W. When the applied voltag<br>is 220 V at 25 Hz, the total iron loss is 750 W. The eddy current loss at the normal voltag<br>and frequency will be                                                                                      |
|          | (a) 1000 W(b) 1200 W(c) 1400 W(d) 1850 W                                                                                                                                                                                                                                                           |
| prograte | e Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 🕟 www.madeeasy.in Page                                                                                                                                                                                                           |
| aponate  | age www.madeeasy.m                                                                                                                                                                                                                                                                                 |



| 34.  | Which one of the following materials is l temperature?                                          | having the highest electrical conductivity at roor                 |  |  |  |
|------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|
|      | (a) Silver                                                                                      | (b) Copper                                                         |  |  |  |
|      | (c) Gold                                                                                        | (d) Platinum                                                       |  |  |  |
| Ans. | (a)                                                                                             |                                                                    |  |  |  |
|      |                                                                                                 | End of Solution                                                    |  |  |  |
| 35.  | Consider the following processes 1. Sol-gel process                                             |                                                                    |  |  |  |
|      | 2. Electrodeposition                                                                            |                                                                    |  |  |  |
|      | 3. Plasma-enhanced vapour decomp                                                                | osition                                                            |  |  |  |
|      | 4. Gas-phase condensation                                                                       |                                                                    |  |  |  |
|      | 5. Sputtering technique                                                                         |                                                                    |  |  |  |
|      | The above processes are related to (a) analysis of nano-powders                                 | (b) sintering of nano-powders                                      |  |  |  |
|      | (c) synthesis of nano-powders                                                                   | (d) microwave sintering of nano-powders                            |  |  |  |
| Ans. | (c)                                                                                             |                                                                    |  |  |  |
|      | · · /                                                                                           | End of Solution                                                    |  |  |  |
| 36.  | In the superconducting state, the flux                                                          | lines of a magnetic field are ejected out of th                    |  |  |  |
|      | superconductor as per                                                                           |                                                                    |  |  |  |
|      | (a) Curie effect                                                                                | <ul><li>(b) Faraday's effect</li><li>(d) Meissner effect</li></ul> |  |  |  |
| A    | (c) Maxwell's effect                                                                            |                                                                    |  |  |  |
| Ans. | (d)<br>Meissner's effect: Repulsion of magnetic flux lines from the interior of superconducting |                                                                    |  |  |  |
|      | material, when material is in supercon                                                          | nducting state, is called Meissner's effect.                       |  |  |  |
| 37.  | A pull type of instrument as compare                                                            | End of Solution                                                    |  |  |  |
| 57.  | A null type of instrument as compare<br>(a) has a higher accuracy                               | (b) is less sensitive                                              |  |  |  |
|      | (c) is more rugged                                                                              | (d) is faster in response                                          |  |  |  |
| Ans. | (a)                                                                                             |                                                                    |  |  |  |
|      |                                                                                                 | End of Solution                                                    |  |  |  |
| 38.  |                                                                                                 | ge of 7 $\Omega$ in the unknown resistance arm of th               |  |  |  |
|      |                                                                                                 | ion of 3 mm of the galvanometer. The sensitivit                    |  |  |  |
|      | and the deflection factor will be nearly (a) 0.23 mm/ $\Omega$ and 2.3 $\Omega$ /mm             | y (b) 0.43 mm/ $\Omega$ and 2.3 $\Omega$ /mm                       |  |  |  |
|      | (c) 0.23 mm/ $\Omega$ and 1.3 $\Omega$ /mm                                                      |                                                                    |  |  |  |
|      |                                                                                                 |                                                                    |  |  |  |
|      |                                                                                                 |                                                                    |  |  |  |



|        |                                                          | $(25)^2$ $\times 0.0035 \times 10^{-6}  \text{H/dogroo} = 2.18  \text{rad}$                            |
|--------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|        |                                                          | $= \frac{(25)^2}{10^{-6}} \times 0.0035 \times 10^{-6} \text{ H/degree} = 2.18 \text{ rad}$            |
|        |                                                          | $\theta = 2.18 \times \frac{180^{\circ}}{\pi} = 125^{\circ}$                                           |
|        |                                                          | End of Solutio                                                                                         |
| 41.    | A resistance is determine                                | ined by voltmeter- ammeter method. The voltmeter reads 100                                             |
|        |                                                          | of $\pm 12$ V and the ammeter reads 10 A with a probable error                                         |
|        |                                                          | error in the computed value of the resistance will be nearly                                           |
|        | (a) 0.6 Ω<br>(c) 2.3 Ω                                   | <ul><li>(b) 1.3 Ω</li><li>(d) 3.6 Ω</li></ul>                                                          |
| Ans.   | (d)                                                      |                                                                                                        |
| / 110. |                                                          | V 100 V ± 12 100 ± 12%                                                                                 |
|        |                                                          | $R = \frac{V}{A} = \frac{100 \text{ V} \pm 12}{10 \text{ A} \pm 2} = \frac{100 \pm 12\%}{10 \pm 20\%}$ |
|        |                                                          | $= 10 \pm 32\% = 10 \pm 3.2 \Omega$                                                                    |
|        |                                                          | End of Solutio                                                                                         |
| 42.    | A temperature-sensing                                    | g device can be modeled as a first-order system with a tin                                             |
|        |                                                          | uddenly subjected to a step input of 25°C-150°C. The indicate                                          |
|        | (a) 118.2 °C                                             | fter the process has started will be<br>(b) 126.4 °C                                                   |
|        | (c) 134.6 °C                                             | (d) 142.8 °C                                                                                           |
| Ans.   | (b)                                                      |                                                                                                        |
|        | $\tau$ = 6 sec, $t$ = 10 sec                             |                                                                                                        |
|        | θ                                                        | $\theta(t) = \theta_f(1 - e^{-t/\tau}) + \theta_i \times e^{-t/\tau}$                                  |
|        |                                                          | $= 150(1 - e^{-10/6}) + 25 \times e^{-10/6}$                                                           |
|        |                                                          | $= 121.66 + 4.721 = 126.38^{\circ}C$                                                                   |
|        |                                                          | End of Solutio                                                                                         |
| 43.    |                                                          | ving two branches, the current in one branch is $I_1 = 100 \pm 2$                                      |
|        | and in the other is $I_2 =$<br>the total current will be | 200 ± 5 A. Considering errors in both $I_1$ and $I_2$ as limiting error                                |
|        | (a) $300 \pm 5 \text{ A}$                                | (b) 300 ± 6 A                                                                                          |
|        | (c) 300 ± 7 A                                            | (d) 300 ± 8 A                                                                                          |
| Ans.   | (c)                                                      |                                                                                                        |
|        |                                                          | $I = I_1 + I_2 = (100 \pm 2) + (200 \pm 5) = 300 \pm 7 \text{ A}$                                      |
|        |                                                          | End of Solutio                                                                                         |
|        |                                                          |                                                                                                        |
|        |                                                          |                                                                                                        |

|         | India's Best Institute for IES, GATE & PSL                                                                                                                                          | ESE 2019   Preliminary Examinati<br>Electronics & Telecom Engg.   Set-,                                                                                                                                         |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 44.     |                                                                                                                                                                                     | nteed accuracy of 1% of full-scale reading. The voltage<br>75 V. The limiting error will be<br>(b) 4%<br>(d) 2%                                                                                                 |
| Ans.    | (d)                                                                                                                                                                                 |                                                                                                                                                                                                                 |
|         | $Limiting error = \frac{150}{75}$                                                                                                                                                   |                                                                                                                                                                                                                 |
| 45.     |                                                                                                                                                                                     | End of Solution<br>naving a thickness of 2 mm and voltage sensitivity c<br>pressure of 1.5 MN/m <sup>2</sup> . The voltage output will be<br>(b) 174 V<br>(d) 192 V                                             |
| Ans.    | (a)                                                                                                                                                                                 |                                                                                                                                                                                                                 |
|         | $V_0 = gpt$<br>= 0.05<br>= 165                                                                                                                                                      | 55 V-m/N $\times$ 1.5 $\times$ 10 <sup>6</sup> N/m <sup>2</sup> $\times$ 2 $\times$ 10 <sup>-3</sup> m<br>V                                                                                                     |
| 46.     | member subjected to a stress                                                                                                                                                        | with a gauge factor of 2 is bonded to a steel structura<br>of 100 MN/m <sup>2</sup> . The modulus, of elasticity of steel i<br>value of gauge resistance due to the applied stress wi<br>(b) 0.10%<br>(d) 0.60% |
| Ans.    |                                                                                                                                                                                     |                                                                                                                                                                                                                 |
| 7 (110. | $G_f = 2$<br>Stress = 100                                                                                                                                                           | × 10 <sup>6</sup> N/m <sup>2</sup><br>× 10 <sup>9</sup> N/m <sup>2</sup>                                                                                                                                        |
|         |                                                                                                                                                                                     | $\frac{\text{Stress}}{Y} = \frac{100 \times 10^6}{200 \times 10^9} = 0.5 \times 10^{-3}$                                                                                                                        |
|         | $\Delta R = G_f \varepsilon$ $\Rightarrow \qquad \frac{\Delta R}{R} = 2 \times$                                                                                                     | $0.5 \times 10^{-3} \times 100 = 0.1\%$                                                                                                                                                                         |
|         | The applications of photomultip                                                                                                                                                     | End of Solution                                                                                                                                                                                                 |
| 47.     | <ul> <li>(a) night vision equipment, me</li> <li>(b) mechanical counters, timers</li> <li>(c) translational, optical instrum</li> <li>(d) ultrasonic transducer, infrare</li> </ul> | dical equipment<br>s<br>nents                                                                                                                                                                                   |
| 47.     | <ul><li>(a) night vision equipment, me</li><li>(b) mechanical counters, timers</li><li>(c) translational, optical instrum</li></ul>                                                 | dical equipment<br>s<br>nents                                                                                                                                                                                   |

| Ans. | (a)                                                                                                                  |
|------|----------------------------------------------------------------------------------------------------------------------|
| 115. | Photo-multipliers have very high sensitivity and they can be used in night vision                                    |
|      | equipment medical equilibrium for precise capture of image or object.                                                |
|      | End of Solution                                                                                                      |
| 48.  | A capacitance of 250 pF produces resonance with a coil at a frequency of $\left(\frac{2}{\pi}\right) \times 10^6$ H. |
|      | while at the second harmonic of this frequency, resonance is produced by a capacitand                                |
|      | of 50 pF. The self-capacitance of the coil will be nearly<br>(a) 16.7 pF (b) 20.5 pF                                 |
|      | (c) 24.3 pF (d) 28.1 pF                                                                                              |
| Ans. | (a)                                                                                                                  |
|      | For $n = 2 \Rightarrow$ double frequency                                                                             |
|      | $C_d = \frac{C_1 - n^2 C_2}{n^2 - 1} = \frac{C_1 - 4C_2}{3}$                                                         |
|      | $C_d = \frac{n^2 - 1}{n^2 - 1} = \frac{3}{3}$                                                                        |
|      | $=\frac{250-4\times50}{2}=\frac{50}{2}=16.67  \text{pF}$                                                             |
|      | Alternate Solution:                                                                                                  |
|      |                                                                                                                      |
|      | $f = \frac{1}{2\pi\sqrt{L(C_s + C)}}$                                                                                |
|      |                                                                                                                      |
|      | $\frac{2}{\pi} \times 10^6 = \frac{1}{2\pi\sqrt{L(C_{\rm s} + 250 \times 10^{-12})}}$ Coil with self capacitance     |
|      |                                                                                                                      |
|      | $(4 \times 10^6)^2 = \frac{1}{L(C_s + 250 \times 10^{-12})} \dots$                                                   |
|      | For second harmonic frequency,                                                                                       |
|      | $2 \times \frac{2}{\pi} \times 10^6 = \frac{1}{2\pi \sqrt{L(C_s + 50 \times 10^{-12})}}$                             |
|      | $\pi \qquad 2\pi \sqrt{L(C_s + 50 \times 10^{-12})}$                                                                 |
|      | $4(4 \times 10^{6})^{2} = \frac{1}{L(C_{c} + 50 \times 10^{-12})} \dots ($                                           |
|      |                                                                                                                      |
|      | From equation (i) and (ii), we get,<br>$C_s = 16.67 \text{ pF}$                                                      |
|      | End of Solution                                                                                                      |
| 10   |                                                                                                                      |
| 19.  | Consider the following data for twigs and links :<br>N = Number of nodes                                             |
|      | L = Total number of links                                                                                            |
|      | B = Total number of branches                                                                                         |
|      | The total number of links associated with a tree is<br>(a) $B - N + 1$ (b) $B - N - 1$                               |
|      | (c) $B + N + 1$ (d) $2B - N + 1$                                                                                     |

Γ







| IADE EASY | India's Best Institute for IES, GATE & PSUs Electronics & Telecom Engg.   Set-                                                                                                                                                                                                                                       |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 56.       | <ul> <li>In hybrid parameters, h<sub>11</sub> and h<sub>21</sub> are called as</li> <li>(a) input impedance and forward current gain</li> <li>(b) reverse voltage gain and output admittance</li> <li>(c) input impedance and reverse voltage gain</li> <li>(d) output impedance and forward current gain</li> </ul> |
| Ans.      | (a)                                                                                                                                                                                                                                                                                                                  |
|           | $V_1 = h_{11}I_1 + h_{12}V_2$ $V_2$                                                                                                                                                                                                                                                                                  |
|           | If $V_2 = 0$ , $h_{11} = \frac{V_1}{I_1} = h_i$ = Input impedance                                                                                                                                                                                                                                                    |
|           | $I_2 = h_{21}I_1 + h_{22}V_2$                                                                                                                                                                                                                                                                                        |
|           | If $V_2 = 0$ , $h_{21} = \frac{I_2}{I_1} = h_f$ = forward current gain                                                                                                                                                                                                                                               |
| 57.       | End of Solution Consider the following equations:                                                                                                                                                                                                                                                                    |
|           | $V_1 = 6V_2 - 4I_2$                                                                                                                                                                                                                                                                                                  |
|           | $I_1 = 7V_2 - 2I_2$<br>A, B, C and D parameters are                                                                                                                                                                                                                                                                  |
|           | (a) 6, -4 Ω, 7 mho and -2 (b) 6, 4 Ω, 7 mho and 2                                                                                                                                                                                                                                                                    |
|           | (c) -6, 4 $\Omega$ , -7 mho and 2 (d) 6, 4 $\Omega$ , -7 mho and -2                                                                                                                                                                                                                                                  |
| Ans.      | (b) $V_1 = AV_2 - BI_2$                                                                                                                                                                                                                                                                                              |
|           | $I_1 = CV_2 - DI_2$                                                                                                                                                                                                                                                                                                  |
|           | Compare the equations,<br>A = 6; $B = 4$ ; $C = 7$ ; $D = 2$                                                                                                                                                                                                                                                         |
|           | End of Solution                                                                                                                                                                                                                                                                                                      |
| 58.       | A supply of 250 V, 50 Hz is applied to a series RC circuit. If the power absorbed b                                                                                                                                                                                                                                  |
|           | the resistor be 400 W at 160 V, the value of the capacitor <i>C</i> will be nearly<br>(a) $30.5 \mu\text{F}$ (b) $41.5 \mu\text{F}$                                                                                                                                                                                  |
|           | (c) $64.0 \mu\text{F}$ (d) $76.8 \mu\text{F}$                                                                                                                                                                                                                                                                        |
| Ans.      | (b)                                                                                                                                                                                                                                                                                                                  |
|           | The power absorbed by the resistor is                                                                                                                                                                                                                                                                                |
|           | $P = \frac{V_R^2}{R}$                                                                                                                                                                                                                                                                                                |
|           | $400 = \frac{160^2}{R}$ ; $R = 64 \Omega$ 250 V, 50 Hz                                                                                                                                                                                                                                                               |
|           | Total current through the circuit is                                                                                                                                                                                                                                                                                 |
|           | $I_R = I_{\text{total}} = \frac{V_R}{R} = \frac{160}{64} = 2.5 \text{ A}$                                                                                                                                                                                                                                            |
|           | 11 04                                                                                                                                                                                                                                                                                                                |
|           | $Z = \frac{V}{I_{\text{total}}} = \frac{250}{2.5} = 100 \Omega$                                                                                                                                                                                                                                                      |
|           |                                                                                                                                                                                                                                                                                                                      |







|                                                                                              | India's Best Institute for IES, GATE & PSUs Electronics & Telecom Engg.   Set-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Ans.                                                                                         | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| $f = \frac{1}{0.69(R_A + 2R_B)C} = \frac{1}{0.69[10 \times 10^3 + 2 \times 50 \times 10^3]}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                                              | $0.69(R_A + 2R_B)C = 0.69[10 \times 10^\circ + 2 \times 50 \times 10^\circ] \times 10^\circ$<br>= 1.3 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                                              | $\%D.C = \frac{R_A + R_B}{R_A + 2R_B} \times 100 = \frac{60k}{100 k} \times 100 = 54.5\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                                                                              | End of Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 68.                                                                                          | Consider the following expression:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| A·B                                                                                          | $\cdot C \cdot D + A \cdot B \cdot \overline{C} \cdot \overline{D} + A \cdot B \cdot C \cdot \overline{D} + A \cdot B \cdot \overline{C} \cdot D + A \cdot B \cdot \overline{C} \cdot D \cdot E + A \cdot B \cdot \overline{C} \cdot \overline{D} \cdot \overline{E} + A \cdot B \cdot \overline{C} \cdot D \cdot E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                              | The simplification of this by using theorems of Boolean algebra will be<br>(a) $A + B$ (b) $A \oplus B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                                              | (c) $(A + B) (A \cdot B)$ (d) $A \cdot B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Ans.                                                                                         | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                                                              | = $ABCD + AB\overline{CD} + ABC\overline{D} + AB\overline{CD} + ABCDE + AB\overline{CD}\overline{E} + AB\overline{C}DE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                                              | $= AB[\overline{C}\overline{D} + \overline{C}D + C\overline{D} + CD] + ABCDE + AB\overline{C}\overline{E} + AB\overline{C}D\overline{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                                                                              | $= A \cdot B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                              | End of Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                                              | An electric power generating station supplies power to three loads A, B and C. Onl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                              | An electric power generating station supplies power to three loads $A$ , $B$ and $C$ . Only<br>a single generator is required when any one load is switched on. When more than on<br>load is on, an auxiliary generator must be started. The Boolean equation for the control<br>of switching of the auxiliary generator will be<br>(a) $AA + BB + CC$ (b) $ABC + BCA + CAB$<br>(c) $AB + AC$ (d) $AB + AC + BC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                              | <ul> <li>a single generator is required when any one load is switched on. When more than on load is on, an auxiliary generator must be started. The Boolean equation for the control of switching of the auxiliary generator will be</li> <li>(a) AA + BB + CC</li> <li>(b) ABC + BCA + CAB</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 69.<br>Ans.                                                                                  | a single generator is required when any one load is switched on. When more than on<br>load is on, an auxiliary generator must be started. The Boolean equation for the contro<br>of switching of the auxiliary generator will be<br>(a) $AA + BB + CC$ (b) $ABC + BCA + CAB$<br>(c) $AB + AC$ (d) $AB + AC + BC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                              | a single generator is required when any one load is switched on. When more than on<br>load is on, an auxiliary generator must be started. The Boolean equation for the control<br>of switching of the auxiliary generator will be<br>(a) $AA + BB + CC$ (b) $ABC + BCA + CAB$<br>(c) $AB + AC$ (d) $AB + AC + BC$<br>(d)<br>$\frac{A \ B \ C}{0 \ 0 \ 0} \ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                              | a single generator is required when any one load is switched on. When more than on<br>load is on, an auxiliary generator must be started. The Boolean equation for the control<br>of switching of the auxiliary generator will be<br>(a) $AA + BB + CC$ (b) $ABC + BCA + CAB$<br>(c) $AB + AC$ (d) $AB + AC + BC$<br>(d)<br>$\frac{A \ B \ C}{0 \ 0 \ 0}$ 0<br>0 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                              | a single generator is required when any one load is switched on. When more than on<br>load is on, an auxiliary generator must be started. The Boolean equation for the control<br>of switching of the auxiliary generator will be<br>(a) $AA + BB + CC$ (b) $ABC + BCA + CAB$<br>(c) $AB + AC$ (d) $AB + AC + BC$<br>(d)<br>$\frac{A \ B \ C}{0 \ 0 \ 0} \ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                              | a single generator is required when any one load is switched on. When more than on<br>load is on, an auxiliary generator must be started. The Boolean equation for the control<br>of switching of the auxiliary generator will be<br>(a) $AA + BB + CC$ (b) $ABC + BCA + CAB$<br>(c) $AB + AC$ (d) $AB + AC + BC$<br>(d)<br>$\frac{A \ B \ C}{0 \ 0 \ 0} \ 0$<br>$\frac{A \ B \ C}{0 \ 0 \ 1} \ 0$<br>$0 \ 1 \ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                              | a single generator is required when any one load is switched on. When more than on<br>load is on, an auxiliary generator must be started. The Boolean equation for the control<br>of switching of the auxiliary generator will be<br>(a) $AA + BB + CC$ (b) $ABC + BCA + CAB$<br>(c) $AB + AC$ (d) $AB + AC + BC$<br>(d)<br>$\frac{A \ B \ C}{0 \ 0 \ 0}$ $\frac{A \ B \ C}{0 \ 0 \ 1}$ $\frac{A \ B \ C}{0 \ 0 \ 1}$ $\frac{A \ B \ C}{0 \ 1 \ 1}$ $\frac{A \ B \ C}{1 \ 0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                              | a single generator is required when any one load is switched on. When more than on<br>load is on, an auxiliary generator must be started. The Boolean equation for the control<br>of switching of the auxiliary generator will be<br>(a) $AA + BB + CC$ (b) $ABC + BCA + CAB$<br>(c) $AB + AC$ (d) $AB + AC + BC$<br>(d)<br>$\frac{A \ B \ C}{0 \ 0 \ 0}$ 0<br>0 0 1 0<br>0 0 1 0<br>0 1 0 0<br>0 1 1 1 1<br>1 0 0 0<br>1 0 1 1 1<br>1 0 1 1<br>1 0 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                                              | a single generator is required when any one load is switched on. When more than on<br>load is on, an auxiliary generator must be started. The Boolean equation for the control<br>of switching of the auxiliary generator will be<br>(a) $AA + BB + CC$ (b) $ABC + BCA + CAB$<br>(c) $AB + AC$ (d) $AB + AC + BC$<br>(d)<br>$\frac{A \ B \ C}{0 \ 0 \ 0}$ $\frac{A \ B \ C}{0 \ 0 \ 1}$ $\frac{A \ B \ C}{0 \ 0 \ 1}$ $\frac{A \ B \ C}{0 \ 1 \ 1}$ $\frac{A \ B \ C}{1 \ 0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                              | a single generator is required when any one load is switched on. When more than on<br>load is on, an auxiliary generator must be started. The Boolean equation for the control<br>of switching of the auxiliary generator will be<br>(a) $AA + BB + CC$ (b) $ABC + BCA + CAB$<br>(c) $AB + AC$ (d) $AB + AC + BC$<br>(d)<br>$\frac{A \ B \ C}{0 \ 0 \ 0}$<br>$\frac{A \ B \ C}{0 \ 0}$<br>$\frac{B \ C}{0 \ 0}$<br> |  |  |  |
|                                                                                              | a single generator is required when any one load is switched on. When more than on<br>load is on, an auxiliary generator must be started. The Boolean equation for the control<br>of switching of the auxiliary generator will be<br>(a) $AA + BB + CC$ (b) $ABC + BCA + CAB$<br>(c) $AB + AC$ (d) $AB + AC + BC$<br>(d)<br>$\frac{A \ B \ C}{0 \ 0 \ 0} \ 0$<br>(d)<br>$\frac{A \ B \ C}{0 \ 0 \ 0} \ 0$<br>0 0 1 0<br>0 0 1 0<br>0 1 0<br>0 1 1 1<br>1 0 0<br>1 0 1<br>1 1 1 1<br>1 1 0 1<br>1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |



|           | Image: Section State Section State Section State Section State Section State Section Secting Secting Section Section Section Section Section Se |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ans.      | (b)<br>$f_{L} = 49 \text{ kHz}$ $R_{b} = 2 \text{ kbps}$ $f_{H} = 51 \text{ kHz}$ Peak frequency deviation<br>$\Rightarrow \qquad 2\Delta f = f_{H} - f_{L}$ $2\Delta f = 51 \text{ k} - 49 \text{ k}$ $\Rightarrow \qquad \Delta f = 1 \text{ kHz}$ End of Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 75.       | A random process $X(t)$ is defined as<br>$X(t) = 2\cos(2\pi t + Y)$ where Y is a discrete random variable with $P(Y = 0) = \frac{1}{2}$ and $P\left(Y = \frac{\pi}{2}\right) = \frac{1}{2}$ . The mean<br>$\mu_x(1)$ is<br>(a) $\frac{1}{4}$ (b) $\frac{1}{3}$<br>(c) $\frac{1}{2}$ (d) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Ans.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 76.       | A source produces three symbols A, B and C with probabilities $P(A) = \frac{1}{2}$ , $P(B) = \frac{1}{4}$<br>and $P(C) = \frac{1}{4}$ . The source entropy is<br>(a) $\frac{1}{2}$ bit/symbol (b) 1 bit/symbol<br>(c) $1\frac{1}{4}$ bits/symbol (d) $1\frac{1}{2}$ bits/symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Corporate | Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 🕢 www.madeeasy.in Page 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |





| 81.  | For Gaussian and White channel noise, the capacity of a low-pass channel with a usable                                                                                                                                                                                                                                                               |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|      | bandwidth of 3000 Hz and $\frac{S}{N} = 10^3$ at the channel output will be                                                                                                                                                                                                                                                                          |  |  |  |
|      | (a) 15000 bits/s (b) 20000 bits/s<br>(c) 25000 bits/s (d) 30000 bits/s                                                                                                                                                                                                                                                                               |  |  |  |
| Ans. | (d)                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|      | $B = 3000 \text{ Hz}$ $\frac{S}{N} = 10^3$                                                                                                                                                                                                                                                                                                           |  |  |  |
|      | $C = B\log_2\left(1+\frac{S}{N}\right) = 3k \cdot \log_2(1+10^3)$                                                                                                                                                                                                                                                                                    |  |  |  |
|      | = 29.9 kbps ≈ 30000 bps                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 82.  | End of SolutionFor a PM modulator with a deviation sensitivity $K = 2.5$ rad/V and a modulating signal $v_m(t) = 2\cos(2\pi 2000t)$ , the peak phase deviation $m$ will be(a) 1.25 rad(b) 2.5 rad(c) 5.0 rad(d) 7.5 rad                                                                                                                              |  |  |  |
| Ans. | (c)<br>Phase sensitivity, $K = 2.5 \text{ rad/V}$<br>$V_m(t) = 2\cos(2\pi \times 2000t)$<br>Peak phase deviation = $K_p A_m$<br>= 2.5 × 2 = 5 rad                                                                                                                                                                                                    |  |  |  |
| 83.  | In a PCM system, non-uniform quantization leads to<br>(a) increased quantizer noise<br>(c) higher average SNR<br>(d) increased bandwidth                                                                                                                                                                                                             |  |  |  |
| Ans. | (c)                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 84.  | End of Solution<br>The bandwidth required in DPCM is less than that of PCM because<br>(a) the number of bits per code is reduced resulting in a reduced bit rate<br>(b) the difference signal is larger in amplitude than actual signal<br>(c) more quantization levels are needed<br>(d) the successive samples of signal often differ in amplitude |  |  |  |
| Ans. | (a)                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|      | End of Solution                                                                                                                                                                                                                                                                                                                                      |  |  |  |



Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 info@madeeasy.in 🕢 www.madeeasy.in

Page 32





|          | Image: End State |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 91.      | Consider the following open-loop transfer function:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|          | $G = \frac{K(s+2)}{(s+1)(s+4)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|          | The characteristic equation of the unity negative feedback will be<br>(a) $(s + 1)(s + 4) + K(s + 2) = 0$ (b) $(s + 2)(s + 1) + K(s + 4) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|          | (c) $(s + 1)(s - 2) + K(s + 4) = 0$ (d) $(s + 2)(s + 4) + K(s + 1) = 0$<br>(d) $(s + 2)(s + 4) + K(s + 1) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Ans.     | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|          | q(s) = 1 + G(s)H(s) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|          | $q(s) = 1 + \frac{K(s+2)}{(s+1)(s+4)} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|          | q(s) = (s + 1) (s + 4) + K(s + 2) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 92.      | <i>End of Solution</i><br>The magnitude and phase relationship between the sinusoidal input and the steady-stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|          | output of a system is called as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|          | (a) magnitude response (b) transient response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|          | (c) steady-state response (d) frequency response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Ans.     | (d)<br>Magnitude and phase relation between sinusoidal input and the steady state output<br>such that input amplitude and phase kept constant and input frequency is varied is<br>called frequency response of LTI system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|          | End of Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 93.      | A transfer function having all its poles and zeros only in the left-half of the s-plane i called                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|          | <ul><li>(a) a minimum-phase function</li><li>(b) a complex transfer function</li><li>(c) an all-pass transfer function</li><li>(d) a maximum-phase transfer function</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Ans.     | (a)<br>A system is said to be minimum phase if it has all finite zeros and poles in left si<br>of <i>s</i> -plane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|          | End of Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 94.      | The frequency where magnitude <i>M</i> has a peak value in frequency response is know as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|          | (a) normalized frequency(b) resonant frequency(c) peak frequency(d) tuned frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Ans.     | (b)<br>Resonant frequency is that at which the magnitude of frequency response is maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|          | End of Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| orporate | • Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 info@madeeasy.in 💽 www.madeeasy.in 🖉 Page 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |

| MADE EASY | India's Best Institute for IES, GATE & PSUs                                                                                  | ESE 2019   Preliminary Examination<br>Electronics & Telecom Engg.   Set-A |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|
| 95.       | . For a lead compensator having transfer function                                                                            |                                                                           |  |  |  |
|           | $G_{c}(s) = \frac{(s + z_{c})}{(s + p_{c})} = \frac{\left(s + \frac{1}{\tau}\right)}{\left(s + \frac{1}{\alpha\tau}\right)}$ |                                                                           |  |  |  |
|           | 1. $\alpha = \frac{Z_c}{p_c} < 1$                                                                                            |                                                                           |  |  |  |
|           | 2. $\alpha = \frac{Z_c}{p_c} > 1$<br>3. $\tau > 0$                                                                           |                                                                           |  |  |  |
|           |                                                                                                                              | (b) 1 and 3                                                               |  |  |  |
| Ans.      |                                                                                                                              | (d) 2 and 3                                                               |  |  |  |
| A115.     | S. (b)<br>$G_c(s) = \frac{s + z_c}{s + p_c} < 1$                                                                             |                                                                           |  |  |  |
|           | ero should be dominant.                                                                                                      |                                                                           |  |  |  |
|           |                                                                                                                              |                                                                           |  |  |  |
|           |                                                                                                                              | End of Solution                                                           |  |  |  |
| 96.       | The attenuation (magnitude) produced by a lead compensator at the frequency maximum phase lead $\omega_m$ = $\sqrt{ab}$ is   |                                                                           |  |  |  |
|           | (a) $\sqrt{\frac{b}{a}}$                                                                                                     | (b) $\sqrt{a+b}$                                                          |  |  |  |
|           | (c) $\sqrt{b-a}$                                                                                                             | (d) $\sqrt{\frac{a}{b}}$                                                  |  |  |  |
| Ans.      | (d)                                                                                                                          |                                                                           |  |  |  |
|           | $G_c = \frac{s+a}{s+b}$                                                                                                      |                                                                           |  |  |  |
|           | $M$ at $\omega_m = \frac{1}{\sqrt{\alpha}}$ (amplified                                                                       | cation)                                                                   |  |  |  |
|           | Attenuation = $\sqrt{\alpha} = \sqrt{\frac{a}{b}}$                                                                           |                                                                           |  |  |  |
|           | $\therefore \qquad \alpha = \frac{a}{b}$                                                                                     |                                                                           |  |  |  |
|           |                                                                                                                              | End of Solution                                                           |  |  |  |
|           |                                                                                                                              |                                                                           |  |  |  |
| Corporate | e Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 🖂 in                                                                        | fo@madeeasy.in 💽 www.madeeasy.in Page 36                                  |  |  |  |


- Quality Teaching
- 🗸 Comprehensive Study Material
- 🗸 Well Planned Curriculum
- 🗸 Professionally Managed

Announcing

# **NEW BATCHES** for **ESE 2020** & **GATE 2020**

## 1 Yr/2Yrs CLASSROOM COURSES

#### ••• Early start ••• Extra edge

- > Suitable for college going, working professionals and passed out aspirants.
- For Evening (Regular) Batches classes will be held 6-7 days in a week for 3-4 hrs/day.
   \* Classes may be extended on weekends & public holidays.
- For **Morning (Regular) Batches** classes will be held 6-7 days in a week for 6 hrs/day.
- For Weekend Batches classes will be conducted on weekends and public holidays.
  \* Classes may be conducted on weekdays during semester breaks.

|                          |    | Delhi          | Noida       |
|--------------------------|----|----------------|-------------|
| σ                        | CE | 12-Jan-2019    | 12-Jan-2019 |
| ken                      | ME | 12-Jan-2019    | 12-Jan-2019 |
| <b>Neeken</b><br>3atches | EE | 13-Jan-2019    | 13-Jan-2019 |
| <b>2</b> Ø               | EC | 13-Jan-2019    | 13-Jan-2019 |
|                          | CS | 19-Jan-2019    |             |
|                          | CE | 15-Jan-2019, 1 | 4-Feb-2019  |
| lar<br>les               | ME | 15-Jan-2019, 1 | 4-Feb-2019  |
| egula:<br>atche:         | EE | 17-Jan-2019, 1 | 8-Feb-2019  |
| a g                      | EC | 17-Jan-2019    |             |
|                          | CS | 16-May-2019    |             |

### **Batches Commencement Dates**

| Rest of India (Regular Batches |                         |  |
|--------------------------------|-------------------------|--|
| Patna                          | 25 <sup>th</sup> Feb'19 |  |
| Lucknow                        | 20 <sup>th</sup> Feb'19 |  |
| Bhopal                         | 14 <sup>th</sup> Jan'19 |  |
| Indore                         | 20 <sup>th</sup> Feb'19 |  |
| Pune                           | 14 <sup>th</sup> Jan'19 |  |
| Hyderabad                      | 17 <sup>th</sup> Feb'19 |  |
| Bhubaneswar                    | 24 <sup>th</sup> Jan'19 |  |
| Kolkata                        | 15 <sup>th</sup> Jan'19 |  |
| Jaipur                         | 17 <sup>th</sup> Feb'19 |  |

## **Admission open**

Corporate office : 44-A/1, Kalu Sarai, New Delhi - 1100 16 🕓 011-45124612, 9958995830

 Delhi
 Hyderabad
 Noida
 Jaipur
 Bhopal
 Lucknow
 Indore
 Bhubaneswar
 Pune
 Kolkata
 Patna

 011-45124612
 040-66774612
 0120-6524612
 0141-4024612
 0755-4004612
 09919111168
 0731-4029612
 09040299888
 020-26058612
 8981888880
 0612-23566



| VADE EASY | India's Best Institute for IES, GATE & PSUs Electronics & Telecom Engg.   Set-A                                                                                                                                                                                                                                                                                                                             |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ans.      | (a)                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | $(8)_{10} + (9)_{10} = (17)_{10}$<br>In BCD, $(17)_{10} = 00010111$<br>End of Solution                                                                                                                                                                                                                                                                                                                      |
| 100.      | Convert the binary number 11000110 to Gray code(a) 001000101(b) 10100100(c) 11100110(d) 10100101                                                                                                                                                                                                                                                                                                            |
| Ans.      | (d)                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | 1 1 0 0 0 1 1 0 : Binary                                                                                                                                                                                                                                                                                                                                                                                    |
|           | 1 0 1 0 0 1 0 1 : Gray code                                                                                                                                                                                                                                                                                                                                                                                 |
|           | End of Solution                                                                                                                                                                                                                                                                                                                                                                                             |
| 101.      | The decimal value of the signed binary number 10101010 expressed in 2's complement will be                                                                                                                                                                                                                                                                                                                  |
|           | (a) -42 (b) -86                                                                                                                                                                                                                                                                                                                                                                                             |
|           | (c) -116 (d) -170                                                                                                                                                                                                                                                                                                                                                                                           |
| Ans.      | (b)<br>10101010> -N                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Take 1's complementary                                                                                                                                                                                                                                                                                                                                                                                      |
|           | 0 1 0 1 0 1 0 1                                                                                                                                                                                                                                                                                                                                                                                             |
|           | $   \overline{) 0 1 0 1 0 1 1 0}   N = 86 $                                                                                                                                                                                                                                                                                                                                                                 |
|           | 10101010→-86                                                                                                                                                                                                                                                                                                                                                                                                |
| 102.      | <ul> <li><i>End of Solution</i></li> <li>Which of the following statements is/are correct?</li> <li>1. An address generated by the CPU is commonly referred to as a physical address</li> <li>2. An address seen by the memory unit is commonly referred to as a logical address.</li> <li>3. The run-time mapping from virtual to physical address is done by the memory management unit (MMU).</li> </ul> |
|           | Select the correct answer using the code given below.<br>(a) 1 only (b) 2 only<br>(c) 2 only (d) 1 0 and 2                                                                                                                                                                                                                                                                                                  |
| Ans.      | (c) 3 only (d) 1, 2 and 3 (d)                                                                                                                                                                                                                                                                                                                                                                               |
|           | (U) End of Solution                                                                                                                                                                                                                                                                                                                                                                                         |
|           |                                                                                                                                                                                                                                                                                                                                                                                                             |





|             | India's Best Institute for IES, GATE & PSUs ESE 2019   Preliminary Examination<br>Electronics & Telecom Engg.   Set-A                              |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 109.        | The vector $R_{AB}$ extends from A(1, 2, 3) to B. If the length of $R_{AB}$ is 10 units and its direction is given by                              |
|             | $a = 0.6\hat{a}_x + 0.64\hat{a}_y + 0.48\hat{a}_z$                                                                                                 |
|             | the coordinates of <i>B</i> will be                                                                                                                |
|             | (a) $7\hat{a}_x + 4.8\hat{a}_y + 4.8\hat{a}_z$ (b) $6\hat{a}_x + 6.4\hat{a}_y + 4.8\hat{a}_z$                                                      |
|             | (c) $7\hat{a}_x + 8.4\hat{a}_y + 7.8\hat{a}_z$ (d) $6\hat{a}_x + 8.4\hat{a}_y + 7.8\hat{a}_z$                                                      |
| Ans.        | (c)<br>As $R_{AB}$ length is 10 units                                                                                                              |
|             | $\vec{R}_{AB} = \left  \vec{R}_{AB} \right  \vec{a}$                                                                                               |
|             | $\vec{R}_{AB} = 10\vec{a} = 6\hat{a}_x + 6.4\hat{a}_y + 4.8\hat{a}_z$                                                                              |
|             | $\vec{A}$ radial vector = $\hat{a}_x + 2\hat{a}_y + 3\hat{a}_z$                                                                                    |
|             | $\vec{R}_{AB} = \vec{B} - \vec{A}$                                                                                                                 |
|             | $\vec{B} = \vec{R}_{AB} + \vec{A}$                                                                                                                 |
|             | $\therefore \qquad \vec{B} = 10a + \vec{A} = 7\hat{a}_x + 8.4\hat{a}_y + 7.8\hat{a}_z$                                                             |
|             | End of Solution                                                                                                                                    |
| 110.        | What is the value for the total charge enclosed in an incremental volume of $10^{-9}$ m <sup>3</sup> located                                       |
|             | at the origin if $D = e^{-x} \sin y \hat{a}_x - e^{-x} \cos y \hat{a}_y + 2z \hat{a}_z C/m^2$ ?                                                    |
|             | (a) 8 nC (b) 4 nC<br>(c) 2 nC (d) 1 nC                                                                                                             |
| <b>A</b> po |                                                                                                                                                    |
| Ans.        | (c) $\vec{\nabla} \cdot \vec{D} = \rho_{\mu}$                                                                                                      |
|             | $\Rightarrow \qquad \rho_{v} = \frac{\partial D_{x}}{\partial x} + \frac{\partial D_{y}}{\partial y} + \frac{\partial D_{z}}{\partial z}$          |
|             | $\vec{\nabla} \cdot \vec{D} = -e^{-x} \sin y + e^{-x} \sin y + 2$                                                                                  |
|             | At origin, $\vec{\nabla} \cdot \vec{D} = 2$                                                                                                        |
|             | :. $Q = \rho_v dV = 2 \times 10^{-9} \text{ m}^3 = 2 \text{ nC}$                                                                                   |
|             | End of Solution                                                                                                                                    |
| 111.        | The unit vector extending from origin toward the point $G(2, -2, -1)$ is                                                                           |
|             | (a) $\frac{2}{3}\hat{a}_x + \frac{2}{3}\hat{a}_y + \frac{1}{3}\hat{a}_z$ (b) $-\frac{2}{3}\hat{a}_x + \frac{2}{3}\hat{a}_y + \frac{1}{3}\hat{a}_z$ |
|             | (c) $\frac{2}{3}\hat{a}_x - \frac{2}{3}\hat{a}_y - \frac{1}{3}\hat{a}_z$ (d) $-\frac{2}{3}\hat{a}_x - \frac{2}{3}\hat{a}_y - \frac{1}{3}\hat{a}_z$ |
|             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                               |
|             |                                                                                                                                                    |
|             |                                                                                                                                                    |
| Corporate   | e Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 📀 www.madeeasy.in 🛛 Page 41                                                      |

| 112.<br>Ans. (<br>113. | Ground waves progress along the s<br>(a) horizontally<br>(c) elliptically<br>(d)<br>Ground waves are vertically polarize<br>For a lossless line terminated in a sho<br>are separated by<br>(a) $\frac{\lambda}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{2\hat{a}_x - 2\hat{a}_y - \hat{a}_z}{\sqrt{2^2 + 2^2 + 1^2}} = \frac{2}{3}\hat{a}_x - \frac{2}{3}\hat{a}_y - \frac{1}{3}\hat{a}_z$ End of Solutio surface of the earth and must be polarized (b) circularly (d) vertically d waves using vertical antennas with a small heigh End of Solutio port circuit, the stationary voltage minima and maxim (b) $\frac{\lambda}{2}$ |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 112.<br>Ans. (<br>113. | $\overrightarrow{OG} = 2\hat{a}_x - 2\hat{a}_x$ $\overrightarrow{a} = \frac{\overrightarrow{OG}}{ \overrightarrow{OG} } = -\frac{2\hat{a}_x}{ \overrightarrow{OG} } = -\frac{2\hat{a}_x}$ | $\frac{2\hat{a}_x - 2\hat{a}_y - \hat{a}_z}{\sqrt{2^2 + 2^2 + 1^2}} = \frac{2}{3}\hat{a}_x - \frac{2}{3}\hat{a}_y - \frac{1}{3}\hat{a}_z$ End of Solutio surface of the earth and must be polarized (b) circularly (d) vertically d waves using vertical antennas with a small heigh End of Solutio port circuit, the stationary voltage minima and maxim (b) $\frac{\lambda}{2}$ |
| Ans. (<br>113.         | $\vec{a} = \frac{\vec{OG}}{ \vec{OG} } = \frac{\vec{OG}} = \frac{\vec{OG}}{ \vec{OG} } = \frac{\vec{OG}}{ \vec{OG} } = \vec{OG$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{2\hat{a}_x - 2\hat{a}_y - \hat{a}_z}{\sqrt{2^2 + 2^2 + 1^2}} = \frac{2}{3}\hat{a}_x - \frac{2}{3}\hat{a}_y - \frac{1}{3}\hat{a}_z$ End of Solutio surface of the earth and must be polarized (b) circularly (d) vertically d waves using vertical antennas with a small heigh End of Solutio port circuit, the stationary voltage minima and maxim (b) $\frac{\lambda}{2}$ |
| Ans. (<br>113.         | Ground waves progress along the s<br>(a) horizontally<br>(c) elliptically<br>(d)<br>Ground waves are vertically polarize<br>For a lossless line terminated in a sho<br>are separated by<br>(a) $\frac{\lambda}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | End of Solution<br>surface of the earth and must be polarized<br>(b) circularly<br>(d) vertically<br>and waves using vertical antennas with a small heigh<br>End of Solution<br>port circuit, the stationary voltage minima and maxim<br>(b) $\frac{\lambda}{2}$                                                                                                                  |
| Ans. (<br>113.         | (a) horizontally<br>(c) elliptically<br>(d)<br>Ground waves are vertically polarize<br>For a lossless line terminated in a sho<br>are separated by<br>(a) $\frac{\lambda}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | surface of the earth and must be polarized<br>(b) circularly<br>(d) vertically<br>ed waves using vertical antennas with a small heighther<br><i>End of Solutio</i><br>port circuit, the stationary voltage minima and maxim<br>(b) $\frac{\lambda}{2}$                                                                                                                            |
| Ans. (<br>113.         | (a) horizontally<br>(c) elliptically<br>(d)<br>Ground waves are vertically polarize<br>For a lossless line terminated in a sho<br>are separated by<br>(a) $\frac{\lambda}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) circularly<br>(d) vertically<br>ed waves using vertical antennas with a small heigh<br><i>End of Solutio</i><br>port circuit, the stationary voltage minima and maxim<br>(b) $\frac{\lambda}{2}$                                                                                                                                                                              |
| Ans. (<br>113.         | (c) elliptically<br>(d)<br>Ground waves are vertically polarize<br>For a lossless line terminated in a sho<br>are separated by<br>(a) $\frac{\lambda}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (d) vertically<br>ad waves using vertical antennas with a small heigh<br><i>End of Solutio</i><br>port circuit, the stationary voltage minima and maxim<br>(b) $\frac{\lambda}{2}$                                                                                                                                                                                                |
| Ans. (<br>113.         | (d)<br>Ground waves are vertically polarize<br>For a lossless line terminated in a sho<br>are separated by<br>(a) $\frac{\lambda}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bd waves using vertical antennas with a small heigh<br><i>End of Solutio</i><br>port circuit, the stationary voltage minima and maxim<br>(b) $\frac{\lambda}{2}$                                                                                                                                                                                                                  |
| 113.                   | Ground waves are vertically polarize<br>For a lossless line terminated in a sho<br>are separated by<br>(a) $\frac{\lambda}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | End of Solution<br>port circuit, the stationary voltage minima and maximina $(b) \frac{\lambda}{2}$                                                                                                                                                                                                                                                                               |
|                        | are separated by<br>(a) $\frac{\lambda}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | port circuit, the stationary voltage minima and maxim<br>(b) $\frac{\lambda}{2}$                                                                                                                                                                                                                                                                                                  |
|                        | are separated by<br>(a) $\frac{\lambda}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (b) $\frac{\lambda}{2}$                                                                                                                                                                                                                                                                                                                                                           |
| i                      | are separated by<br>(a) $\frac{\lambda}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (b) $\frac{\lambda}{2}$                                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b) $\frac{\lambda}{2}$                                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                 |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d) $\frac{\lambda}{4}$                                                                                                                                                                                                                                                                                                                                                           |
|                        | (c) $\frac{\lambda}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(\alpha) \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                            |
| -                      | (d) Pariodicity of standing wave is $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and distrace between maxima to minima is $\lambda/2$                                                                                                                                                                                                                                                                                                                              |
|                        | renoticity of standing wave is M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | End of Solutio                                                                                                                                                                                                                                                                                                                                                                    |
| 114.                   | The characteristic impedance of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | an 80 cm long lossless transmission line havir                                                                                                                                                                                                                                                                                                                                    |
|                        | $L = 0.25 \ \mu$ H/m and C = 100 pF/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                 |
|                        | <ul> <li>(a) 25 Ω</li> <li>(a) 50 Ω</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) 40 Ω<br>(d) 20 Ω                                                                                                                                                                                                                                                                                                                                                              |
|                        | (c) 50 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (d) 80 Ω                                                                                                                                                                                                                                                                                                                                                                          |
| Ans. (                 | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                   |
|                        | $Z_o = \sqrt{\frac{L}{C}} = \sqrt{\frac{L}{C}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{0.25 \times 10^{-6}}{100 \times 10^{-12}} = \sqrt{0.25} \times 100 = 50$                                                                                                                                                                                                                                                                                                   |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | End of Solutio                                                                                                                                                                                                                                                                                                                                                                    |
| 115.                   | It is required to match a 200 Q load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d to a 300 $\Omega$ transmission line to reduce the SW                                                                                                                                                                                                                                                                                                                            |
| i                      | along the line to 1. If it is connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d directly to the load, the characteristic impedance                                                                                                                                                                                                                                                                                                                              |
|                        | of the quarterwave transformer use (a) 275 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d for this purpose will be<br>(b) 260 Ω                                                                                                                                                                                                                                                                                                                                           |
|                        | (c) 245 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (d) 230 Ω                                                                                                                                                                                                                                                                                                                                                                         |
| Ans. (                 | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                   |
|                        | $Z'_0 = \sqrt{200 \times 3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del>300</del> = 245 Ω                                                                                                                                                                                                                                                                                                                                                            |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | End of Solutio                                                                                                                                                                                                                                                                                                                                                                    |
|                        | ffice: 44-A/1, Kalu Sarai, New Delhi-110016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 🖂 info@madeeasy.in 💽 www.madeeasy.in 🛛 Page                                                                                                                                                                                                                                                                                                                                       |







| MADE EASY | MADE EASY       ESE 2019   Preliminary Examination         India's Best Institute for IES, GATE & PSUs       Electronics & Telecom Engg.   Set-A                                                                                                                                                                       |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ans.      | (a)<br>$h[n] = a^n u[n] + b^n u[-n-1]$                                                                                                                                                                                                                                                                                 |
|           | $H(z) = \frac{1}{1 - az^{-1}} - \frac{1}{1 - bz^{-1}}  a  <  z  <  b $<br>For system to be stable, $ a  < 1$ and $ b  > 1$ .                                                                                                                                                                                           |
| 125.      | The special case of a finite-duration sequence is given as<br>$x(n) = \{2, 4, 0, 3\}$ $\uparrow$                                                                                                                                                                                                                       |
|           | The sequence $x(n)$ into a sum of weighted impulse sequences will be<br>(a) $2\delta(n + 1) + 4\delta(n) + 3\delta(n - 2)$ (b) $2\delta(n) + 4\delta(n - 1) + 3\delta(n - 3)$<br>(c) $2\delta(n) + 4\delta(n - 1) + 3\delta(n - 2)$ (d) $2\delta(n + 1) + 4\delta(n) + 3\delta(n - 1)$                                 |
| Ans.      | (a)                                                                                                                                                                                                                                                                                                                    |
|           | So,<br>$x[n] = \{2, 4, 0, 3\}$ $\hat{x}[n] = 2\delta[n + 1] + 4\delta[n] + 3\delta[n - 2]$                                                                                                                                                                                                                             |
| 126.      | End of Solution<br>The two advantages of FIR filters over IIR- filters are.<br>(a) they are guaranteed to be stable and non-linear<br>(b) they are marginally stable and linear.<br>(c) they are. guaranteed to be stable and may be constrained to have linear phase<br>(d) they are marginally stable and non-linear |
| Ans.      | (c)<br>FIR filters are always stable and can have linear phase.                                                                                                                                                                                                                                                        |
| 127.      | The frequency response and the main lobe width for rectangular window are<br>(a) $\frac{\sin \frac{\omega N}{2}}{\sin \frac{\omega}{2}}$ and $\frac{4\pi}{N}$ (b) $\frac{\sin \frac{\omega N}{2}}{\frac{\omega}{2}}$ and $\frac{\pi}{N}$                                                                               |
|           | (c) $\frac{\sin\frac{\omega}{2}}{\sin\frac{\omega N}{2}}$ and $\frac{2\pi}{N}$ (d) $\frac{\sin\frac{\omega N}{4}}{\sin\frac{\omega}{2}}$ and $\frac{8\pi}{N}$                                                                                                                                                          |
| Ans.      | (a)<br>For rectangular window, main lobe width is $\frac{4\pi}{N}$ and frequency response is $\frac{\sin \frac{\omega N}{2}}{\sin \frac{\omega}{2}}$ .                                                                                                                                                                 |
|           |                                                                                                                                                                                                                                                                                                                        |
| Corporate | Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖾 info@madeeasy.in 📀 www.madeeasy.in Page 46                                                                                                                                                                                                                              |



| ADE EASY | India's Best Institute for IES, GATE & PSUs Electronics & Telecom Engg.   Set-A                                                                                                                                                                                                                                                                                                        |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 131.     | <ul> <li>The instruction BC 0 × 15 means</li> <li>(a) jump 15 bytes relative to the program counter</li> <li>(b) copy and load 15 words in reverse direction to the program counter</li> <li>(c) move to a location by 15 bits to the program counter</li> <li>(d) redirect (jump) to a location by 15 words relative to the program counter</li> </ul>                                |
| Ans.     | (a)<br>Note: There is no instruction as BC in the instructions set of a microprocessor. It should have been JC $\rightarrow$ Jump if carry to 0 $\times$ 15.                                                                                                                                                                                                                           |
| 100      | End of Solution                                                                                                                                                                                                                                                                                                                                                                        |
| 132.     | Which of the following constraints are to be considered by the designer while designing an embedded system?                                                                                                                                                                                                                                                                            |
|          | <ol> <li>Selecting the microcontroller as a controlling device</li> <li>Selecting the language to write the software</li> </ol>                                                                                                                                                                                                                                                        |
|          | 3. Partitioning the tasks between hardware and software to optimize the cost                                                                                                                                                                                                                                                                                                           |
|          | Select the correct answer using the code given below.<br>(a) 1, 2 and 3 (b) 1 and 2 only                                                                                                                                                                                                                                                                                               |
|          | (c) 1 and 3 only (d) 2 and 3 only                                                                                                                                                                                                                                                                                                                                                      |
| Ans.     | (a)<br>All the three statements are considered by the designer while designing an embedded<br>system.                                                                                                                                                                                                                                                                                  |
|          | End of Solution                                                                                                                                                                                                                                                                                                                                                                        |
| 133.     | <ul> <li>Which one of the following is the correct combination for a layer providing a service by means of primitives in an open systems interconnection?</li> <li>(a) Request, Indication, Response and Confirm</li> <li>(b) Request, Inform, Response and Service</li> <li>(c) Request, Command, Response and Action</li> <li>(d) Request, Confirm, Indication and Action</li> </ul> |
| Ans.     | (a)<br>In OSI model there is layered architecture and the service primitives are used to define<br>client server model.                                                                                                                                                                                                                                                                |
|          | Request + Indication                                                                                                                                                                                                                                                                                                                                                                   |
|          | Client Ack + Response Server                                                                                                                                                                                                                                                                                                                                                           |
|          | End of Solution                                                                                                                                                                                                                                                                                                                                                                        |
| 134.     | A network uses a fully interconnected mesh topology to connect 10 nodes together. The                                                                                                                                                                                                                                                                                                  |
|          | number of links required will be<br>(a) 35 (b) 40                                                                                                                                                                                                                                                                                                                                      |
|          | (c) 45 (d) 50                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                                                                                                                                                                                                                                                                                                        |

|          | India's Best Institute for IES, GATE & PSUs Electronics & Telecom Engg.   Set-A                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ans.     | (c)<br>For a fully connected mesh set <i>n</i> is number of nodes, hence number of links<br>$= \frac{n(n-1)}{2} = \frac{(10)(10-1)}{2} = 45$<br>End of Solution                                                                                                                                                                                                                                                                                                                                                                           |
| 135.     | <ul> <li>Which of the following are the advantages of packet switching?</li> <li>1. Greater link efficiency than circuit switching</li> <li>2. Connections are not blocked when traffic congestion occurs</li> <li>3. Direct channel established between transmitter and receiver</li> <li>4. No time is taken to establish connection</li> <li>Select the correct answer using the code given below.</li> <li>(a) 1 and 3</li> <li>(b) 1 and 2</li> <li>(c) 2 and 3</li> <li>(d) 3 and 4</li> </ul>                                      |
| Ans.     | (b)<br>The link is shared between number of users and no dedicated connection is there. It<br>also supports first come first serve basis hence the blocking is addressed.                                                                                                                                                                                                                                                                                                                                                                 |
| 136.     | End of SolutionA message consisting of 2400 bits is to be passed over an internet. The message is<br>passed to the transport layer which appends a 150-bit header, followed by the network<br>layer which uses a 120-bit header. Network layer packets are transmitted via two<br>networks, each of which uses a 26-bit header. The destination network only accepts up<br>to 900 bits long. The number of bits, including headers delivered to the destination<br>network, is(a) 2706 bits(b) 2634 bits<br>(c) 2554 bits                 |
| Ans.     | (a)<br>Number of message bits = 2400 bits<br>TL segment = Data + Header = $150 + 2400 = 2550$ bits<br>Data supported by network = $900 - 26$ bits = $874$ bits<br>Packet 1 = $874$ bits<br>Packet 2 = $874$ bits<br>Packet 2 = $874$ bits<br>Packet 3 = $802$ bits<br>Total = $2550$ bits<br>Total number of bits including header as well as travelling through two different network.<br>Hence, the number of bits delivered to the destination network is equal to,<br>(26 + 26 + 874) + (26 + 26 + 874) + (26 + 26 + 802) = 2706 bits |
| orporate | e Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 💽 www.madeeasy.in Page 49                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|      | MADE       EASY         India's Best Institute for IES, GATE & PSUs       ESE 2019   Preliminary Examinati         Electronics & Telecom Engg.       Set-                                                                                                                                                                                                                                                                                                                                                                         |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 137. | In a communication network, 4 <i>T</i> 1 streams are multiplexed to form 1 <i>T</i> 2 stream and 7 T1 streams are multiplexed to form 1 T3 stream. Further 6 T3 streams are multiplexed to form 1 T4 stream. If each T1 stream is of 1.544 Mbps, the data rate of 1 T4 stream should be <ul> <li>(a) 211.8 Mbps</li> <li>(b) 232.6 Mbps</li> <li>(c) 243.4 Mbps</li> <li>(d) 274.2 Mbps</li> </ul>                                                                                                                                |
| Ans. | (d)<br>$4T_{1} = 1T_{2}$ $7T_{2} = 1T_{3}$ $6T_{3} = 1T_{4}$ $T_{1} = 1.544 \text{ Mbps}$ $T_{4} = ?$ $4T_{1} = T_{2} = 6.312 \text{ Mbps}$                                                                                                                                                                                                                                                                                                                                                                                       |
|      | $7T_2 = 28T_1 = 44.736 \text{ Mbps } (T_3)$<br>$6T_3 = 1T_4 = 274.2 \text{ Mbps}$<br><b>Note:</b> There is a printing error in the given question, the statement should be like:<br>"In a communication network, 4 T1 streams are multiplexed to form 1 T2 stream and<br>7 T2 streams are multiplexed to form 1 T3 stream. Further 6 T3 streams are multiplexed<br>to form 1 T4 stream."                                                                                                                                          |
| 138. | End of SolutionWhich of the following statements are correct regarding CDMA?1. It is similar to GSM.2. It allows each station to transmit over the entire frequency spectrum all the time3. It assumes that multiple signals add linearly.Select the correct answer using the code given below.(a) 1 and 2 only(b) 1 and 3 only(c) 2 and 3 only(d) 1, 2 and 3                                                                                                                                                                     |
| Ans. | (c)<br>In CDMA there is no concept of frequency reuse and it is more secure by using codes<br>Hence, each station can transmit over entire frequency spectrum as each signal is<br>having different codes. With the help of rake receiver multiple signals can add linearly<br><i>End of Solution</i>                                                                                                                                                                                                                             |
| 139. | <ul> <li>Which of the following regarding cellular systems with small cells are correct?</li> <li>1. Higher capacity and robustness</li> <li>2. Needless transmission power and have to deal with local interference only</li> <li>3. Frequency planning and infrastructure needed</li> <li>4. These require both circuit switching and packet switching</li> <li>Select the correct answer using the code given below</li> <li>(a) 1, 2 and 4</li> <li>(b) 1, 3 and 4</li> <li>(c) 1, 2 and 3</li> <li>(d) 2, 3 and 4</li> </ul> |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|         | ndia's Best Institute for IES, GA                                                                       | ESE 2019   Preliminary Examinat<br>Electronics & Telecom Engg.   Set                                                                                                                                                                                                         |
|---------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ans.    | of users are more and of<br>Size $\downarrow$ d $\downarrow$ hence less in<br>Small cells requires more |                                                                                                                                                                                                                                                                              |
|         |                                                                                                         | End of Solution                                                                                                                                                                                                                                                              |
| 140.    | 12 h. If the eccentricity                                                                               | the equatorial plane with a period from perigee to perigee $= 0.002$ , $i = 0^{\circ}$ , $K_1 = 66063.17$ km <sup>2</sup> , $\mu = 3.99 \times 10^{14}$ m <sup>3</sup> /s <sup>2</sup> and<br>dius = 6378.14 km, the semi-major axis will be<br>(b) 30424 km<br>(d) 22804 km |
| Ans.    | (c)                                                                                                     |                                                                                                                                                                                                                                                                              |
|         | For an elliptical orbit ac                                                                              | cording to Kepler's law                                                                                                                                                                                                                                                      |
|         | T <sup>2</sup>                                                                                          | $a^2 = \frac{4\pi^2}{GM}a^3$                                                                                                                                                                                                                                                 |
|         | Here, a                                                                                                 | $a = \text{Perigee distance hence} = a_p$<br>T = 12h = 43200  sec                                                                                                                                                                                                            |
|         | $\therefore$ $a_p^3$                                                                                    | $= \frac{T^2 GM}{4\pi^2} = \frac{43200 \times 43200 \times 4 \times 10^{14}}{4 \times (3.14)^2}$                                                                                                                                                                             |
|         | Also, $a_{\mu}$                                                                                         | $f_{2} = 26525 \times 10^{3} \text{m} = 26525 \text{ km}$<br>$f_{2} = a(1 - e)$                                                                                                                                                                                              |
|         | Hence, a                                                                                                | $a = \text{Semi-major axis} = \frac{a_p}{(1-e)} = \frac{26525}{0.998}$ (: $e = 0.002$ )                                                                                                                                                                                      |
|         | a<br>Nearest possible answe                                                                             | a = 26578 km<br>er is option (c).<br><i>End of Solutio</i>                                                                                                                                                                                                                   |
|         |                                                                                                         |                                                                                                                                                                                                                                                                              |
| 141.    | birefringence $B_f$ will be                                                                             | fiber has a beat length of 8 cm at 1300 nm. The value on<br>nearly                                                                                                                                                                                                           |
|         | (a) $1.6 \times 10^{-5}$                                                                                | (b) $2.7 \times 10^{-5}$                                                                                                                                                                                                                                                     |
|         | (c) $3.2 \times 10^{-5}$                                                                                | (d) $4.9 \times 10^{-5}$                                                                                                                                                                                                                                                     |
| Ans.    | (a)                                                                                                     |                                                                                                                                                                                                                                                                              |
|         | Beat length, L                                                                                          | $= \frac{2\pi}{\beta_x - \beta_y} \rightarrow \text{Propagation constant}$                                                                                                                                                                                                   |
|         | L                                                                                                       | $L = \frac{2\pi}{\delta B_f} = \frac{\lambda_c}{B_f}$                                                                                                                                                                                                                        |
|         | В                                                                                                       | $P_f = \frac{2\pi}{L} = \frac{\lambda}{L} = \frac{1300}{8} \times 10^{-9} = 1.6 \times 10^{-5}$<br>End of Solution                                                                                                                                                           |
|         |                                                                                                         |                                                                                                                                                                                                                                                                              |
| rearata | Office: 44-A/1, Kalu Sarai, New D                                                                       | velhi-110016 🖂 info@madeeasy.in 📀 www.madeeasy.in 🛛 Page .                                                                                                                                                                                                                   |

| ADE EASY | India's Best Institute for IES, GATE & PSUs Electronics & Telecom Engg.   Set-                                                                                                                                                                                                                                                                                   |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 142.     | Which one of the following instruments is useful while measuring the optical power a a function of wavelength?                                                                                                                                                                                                                                                   |
|          | <ul><li>(a) Optical power attenuator</li><li>(b) Optical power meter</li><li>(c) Optical spectrum analyzer</li><li>(d) Optical return loss tester</li></ul>                                                                                                                                                                                                      |
| Ans.     | (c)<br>Optical spectrum analyzer measures optical power as a function of wavelength.<br>End of Solution                                                                                                                                                                                                                                                          |
| 143.     | The optical performance monitoring involves<br>(a) transport layer monitoring, optical signal monitoring and protocol performance monitorin<br>(b) physical layer, network layer and application layer monitoring<br>(c) data-link layer, presentation layer and session layer monitoring<br>(d) transport layer, session layer and application layer monitoring |
| Ans.     | (a) End of Solution                                                                                                                                                                                                                                                                                                                                              |
| 144.     | An earth station at sea level communicates at an elevation angle of $35^{\circ}$ with GEO satellite.<br>The vertical height of the stratiform rain is 3 km. The physical path length <i>L</i> throug the rain will be nearly<br>(a) 6.3 km (b) 5.2 km                                                                                                            |
|          | (c) 4.1 km (d) 3.0 km                                                                                                                                                                                                                                                                                                                                            |
| Ans.     | (b)<br>Angle of elevation = 35°<br>Stratiform rain height = 3 km                                                                                                                                                                                                                                                                                                 |
|          | Physical path length = $\frac{R_{SRH}}{\sin \theta_e} = \frac{3 \text{ km}}{\sin 35^\circ} = 5.19 \text{ km} \simeq 5.2 \text{ km}$                                                                                                                                                                                                                              |
| other a  | ollowing six (6) items consist of two statements, one labelled as 'Statement (I)' and th<br>as 'Statement (II)'. You are to examine these two statements carefully and select the answer<br>se items using the code given below:                                                                                                                                 |
|          | <ul> <li>Code:</li> <li>(a) Both Statement (I) and Statement (II) are individually true and Statement (II) is th correct explanation of Statement (I)</li> <li>(b) Both Statement (I) and Statement (II) are individually true but Statement (II) is .nd</li> </ul>                                                                                              |
|          | <ul> <li>(c) Statement (I) is true but Statement (II) is false</li> <li>(d) Statement (I) is false but Statement (II) is true</li> </ul>                                                                                                                                                                                                                         |
| 145.     | Statement (I): Sign-magnitude representation is rarely used in implementing the integer of the ALU.<br>Statement (II): There are two representations of zero in sign-magnitude representation                                                                                                                                                                    |
| Ans.     | (a)                                                                                                                                                                                                                                                                                                                                                              |
|          | End of Solution                                                                                                                                                                                                                                                                                                                                                  |
|          |                                                                                                                                                                                                                                                                                                                                                                  |
| orporate | e Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 info@madeeasy.in 💽 www.madeeasy.in 🔪 Page S                                                                                                                                                                                                                                                                     |



|          | India's Best Institute for IES, GATE & PSUs Electronics & Telecom Engg.   Set-A                                                                                                                                                                                                 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Liectionics o relecont Engg.   Set-A                                                                                                                                                                                                                                            |
| 146.     | Statement (I): Dynamic loading gives better memory-space utilization.<br>Statement (II): In dynamic loading, an unused routine is never loaded                                                                                                                                  |
| Ans.     | (a)                                                                                                                                                                                                                                                                             |
|          | Dynamic loading is a mechanism by which a computer program can at run time, load a library into a memory, retrieve the addresses of functions and variables contained in the library execute those function (or) access those variables and unload the library from the memory. |
| 147.     | <b>Statement (I):</b> SRAM is used for cache memory and DRAM is used for main memory. <b>Statement (II):</b> SRAM is somewhat faster than DRAM.                                                                                                                                 |
| Ans.     | (a)                                                                                                                                                                                                                                                                             |
|          | SRAM is faster than DRAM.                                                                                                                                                                                                                                                       |
|          | End of Solution                                                                                                                                                                                                                                                                 |
| 148.     | Statement (I): In a multiuser system, each user is assigned a section of usable memory                                                                                                                                                                                          |
|          | area and is not allowed to go out of the assigned memory area.<br>Statement (II): In multiuser system, there is a software mechanism to prevent unauthorized                                                                                                                    |
|          | access of memory by different users.                                                                                                                                                                                                                                            |
| Ans.     | (a)                                                                                                                                                                                                                                                                             |
|          | End of Solution                                                                                                                                                                                                                                                                 |
| 149.     | <b>Statement (I):</b> The external surface of a crystal is an imperfection in itself as the atomic bonds do not extend beyond the surface.                                                                                                                                      |
|          | Statement (II): The external surfaces have surface energies that are related to the number of bonds broken at the surface.                                                                                                                                                      |
| Ans.     | (b)                                                                                                                                                                                                                                                                             |
|          | End of Solution                                                                                                                                                                                                                                                                 |
| 150.     | <b>Statement (I):</b> By organizing' various ' optical functions into an 'array structure' via nano-<br>pattern replication, 'spatial integration' is established.                                                                                                              |
|          | <b>Statement (II):</b> By adding a nano-optic layer or layers to functional optical materials, the 'hybrid integration' is possible to be achieved.                                                                                                                             |
| Ans.     | (b)                                                                                                                                                                                                                                                                             |
|          | End of Solution                                                                                                                                                                                                                                                                 |
|          |                                                                                                                                                                                                                                                                                 |
|          |                                                                                                                                                                                                                                                                                 |
|          |                                                                                                                                                                                                                                                                                 |
|          |                                                                                                                                                                                                                                                                                 |
|          |                                                                                                                                                                                                                                                                                 |
| Corporat | e Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 🕢 www.madeeasy.in Page 53                                                                                                                                                                                     |