

Hyderabad | Delhi | Ahmedabad | Bhopal | Pune | Bhubaneswar | Bengaluru Lucknow | Patna | Chennai | Vijayawada | Vizag | Tirupathi | Kukatpally | Kolkata

ESE – 2019 (PRELIMS)

Questions with Detailed Solutions

ELECTRICAL ENGINEERING

SET - C

ACE Engineering Academy has taken utmost care in preparing the **ESE-2019 PRELIMS** Examination solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (GATE/ESE/PSUs/PSC/GENCO/TRANSCO etc.,).

All Queries related to ESE - 2019 PRELIMS Solutions are to be sent to the following email address hyderabad@aceenggacademy.com | Contact Us:040-23234418,19,20

Electrical Engineering ESE Prelims Examination weightage-2019

S.No.	Name of the Subject	No. of Questions	Marks
01	Engineering Mathematics	12	24
02	Electrical Materials	14	28
03	Electric Circuits & Fields	13	26
04	Electrical & Electronic Measurements	11	22
05	Computer Fundamentals	13	26
06	Basic Electronics Engineering	11	22
07	Analog & Digital Electronics	14	28
08	Systems & Signal Processing	12	24
09	Control Systems	12	24
10	Electrical Machines	16	32
11	Power Systems	12	28
12	Power Electronics & Drives	10	20
	Total	150	300

ELECTRICAL ENGINEERING (SET – C)

ACE 3 $I_{\rm L} = \frac{555.55 \times 10^3}{\sqrt{3} \times 1000 \times 0.8}$ \Rightarrow $= 400.93 \text{ A} \approx 401 \text{ A} = I_a \text{ (ph)}$ Phase current of induction motor, $I_m(ph) = \frac{401}{\sqrt{3}} = 231.5 \text{ A}$ End of Solution 05. Consider the following statements: Mutual inductance describes the voltage induced at the ends of a coil due to the magnetic 1. field generated by a second coil. 2. The dot convention allows a sign to be assigned to the voltage induced due to mutual inductance term. The coupling coefficient is given by $k = \frac{M}{\sqrt{L_1 + L_2}}$ 3. Which of the above statements are correct? (b) 1 and 3 only (c) 1 and 2 only (d) 2 and 3 only (a) 1, 2 and 3 05. Ans: (c) **Sol:** Statements one and two are correct but given statement 3 is wrong. The actual coefficient of coupling is $\Rightarrow k = \frac{M}{\sqrt{L_1 L_2}}$ End of Solution 06. Consider the following statements:

1. The rules for series and parallel combinations of capacitors are opposite to those for resistors.

2. The rules for series and parallel combinations of inductors are same as those for resistors.

3. An inductor is a short circuit to dc currents.

Which of the above statements are correct?

- (a) 1 and 2 only (b) 1 and 3 only (b)
- (c) 2 and 3 only (d) 1, 2 and 3

ACE Engineering Publications

$$V \xrightarrow{} Z_{eq}$$

$$R: \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

L:
$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2}$$

$$\mathbf{C}: \quad \mathbf{C}_{\mathrm{eq}} = \mathbf{C}_1 + \mathbf{C}_2$$

 \Rightarrow For DC currents An inductor act a short circuit .

End of Solution

ACE Engineering Publications

For **B.Tech – CSE Students**

TEST YOUR PREP IN A REAL TEST ENVIRONMENT

Pre GATE - 2019

Date of Exam : **20th January 2019** Last Date to Apply : **09th January 2019**

Highlights:

- * Get real-time experience of GATE-2019 test pattern and environment.
- * Virtual calculator will be enabled.
- * Post exam learning analytics and All India Rank will be provided.
- * Post GATE guidance sessions by experts.
- * Encouraging awards for GATE-2019 toppers.

	6 ESE-2019_PRELIMS_Solutions
07.	The standard resistor is a coil of wire of some alloys having the properties of
	(a) Low electrical resistivity and high temperature coefficient of resistance
	(b) High electrical resistivity and high temperature coefficient of resistance
	(c) Low electrical resistivity and low temperature coefficient of resistance
	(d) High electrical resistivity and low temperature coefficient of resistance
07.	Ans: (D)
Sol:	High electrical resistivity and low temperature coefficient.
	End of Solution
08.	Which one of the following materials is used for the swamping resistance of moving coil
	instruments?
	(a) Carbon (b) Manganin (c) Silver (d) Brass
08.	Ans: (b)
Sol:	Swamping resistance made by manganin and is almost zero temperature coefficient material
	(0.00015 Ω/°C)
09.	In a PMMC instrument, the swamping resistor is used to
	(a) Increase the damping of the instrument
	(b) Reduce the current within safe limits
	(c) Compensate for temperature variations
	(d) Increase the full-scale sensitivity
09.	
Sol:	The temperature error can be reduced by providing a swamping resistor in the basic meter.
	Swamping resistor is a alloy of manganin and copper in the ratio of 20 : 1.
	End of Solution
10.	A moving coil ammeter has a fixed shunt of 0.02 Ω . With a coil resistance of R = 1000 Ω and a
	potential difference of 500 mV across it, full scale deflection is obtained. The current through the
	moving coil to give full scale deflection will be
	(a) 25 A (b) 0.5×10^{-2} A (c) 0.25×10^{-3} A (d) 0.5×10^{-3} A
ACE I	Engineering Publications (Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications

10. Ans: (d)

Sol: Given data: $R_{sh} = 0.02 \Omega$, $R_m = 1000 \Omega$ and V = 500 mV

7

Total resistance, $R_T = \frac{250}{100 \text{mA}} = 2500 \ \Omega$

Now, series resistance $R_{se} = 2500 - 320$

= 2180 Ω

Due to self heating, 320 Ω resistance is increased to 369 Ω .

So, total resistance after self heating is $2180 + 369 = 2549 \Omega$

ACE Engineering Publications

ACE Engineering Publications

14. Ans: (b)

Sol: Given data: $C_1 = 460 \text{ pF}$, $f_1 = 2 \text{ MHz}$

 $C_2 = 100 \text{ pF}, f_2 = 4 \text{ MHz}$

$$\left(\frac{f_2}{f_1}\right)^2 = \frac{C_1 + C_d}{C_2 + C_d}$$
$$\Rightarrow \left(\frac{4}{2}\right)^2 = \frac{460 + C_d}{100 + C_d}$$
$$\Rightarrow 400 + 4C_d = 460 + C_d$$
$$\Rightarrow C_d = 20 \text{ pF}$$

End of Solution

9

- 15. Vertical delay line in CRO
 - (a) Gives proper time for thermionic emission of electrons
 - (b) Delays the signal voltage by 200 ns
 - (c) Allows the horizontal sweep to start prior to vertical deflection
 - (d) Delays the generation of sweep voltage

15. Ans: (b)

Sol: A delay line in vertical section is used to delay sensed signal voltage by an amount of time (equal to time taken in all electronic circuits in horizontal section) such that both vertical signal and horizontal signal reach to their respective inputs simultaneously.

End of Solution

- A 0 150 V voltmeter has a guaranteed accuracy of 1% full scale reading. The voltage measured by this instrument is 83 V. The limiting error will be nearly
 - (a) 1.2% (b) 1.8% (c) 2.4% (d) 3.2%
- 16. Ans: (b)

Sol: Given data: 0-150 V, guarateed accuracy of 1% full scale reading

$$LE = \frac{\pm 1}{100} \times 150 = \pm 1.5 \text{ V}$$

%
$$LE = \frac{\pm 1.5}{83} \times 100 = 1.8\%$$

End of Solution
ACE Engineering Publications
Hyderabad · Delhi · Bhopal · Pune · Bhubaneswar · Lucknow · Patna · Bengaluru · Chennal · Vijayawada · Vizag · Tirupati · Kolkata · Ahmedabad

	ACEE 11 ELECTRICAL ENGINEERING (SET - 0)	C)
19. Sol:	Ans: (a) In a class of computers called microcomputers, the relationship between architecture a organization is very close.	and
20.	The decimal equivalent of binary number 1001.101 is(a) 9.750(b) 9.625(c) 10.750(d) 10.625	
20. Sol:	Ans: (b) 1001.101 $(1 \cdot 2^3) + (0 \cdot 2^2) + (0 \cdot 2^1) + (1 \cdot 2^0) + (1 \cdot 2^{-1}) + (0 \cdot 2^{-2}) + (1 \cdot 2^{-3})$	
	$\Rightarrow (1 \times 2) + (0 \times 2) + (0 \times 2) + (1 \times 2) + (1 \times 2) + (0 \times 2) + (1 \times 2) + (1$	
	$\Rightarrow 9 \cdot \frac{1}{2} + \frac{1}{8}$ $\Rightarrow 9 \cdot \frac{4+1}{8}$	
	$\Rightarrow 9.\frac{5}{8} = (9.625)_{10}$	
21	End of Solution	
21.	(a) 100101.1011 (b) 100101.1101 (c) 101001.1011 (d) 101001.1101	
21.	Ans: (c)	
Sol:	From option (c)	
	$(1 \times 2^{5}) + (0 \times 2^{4}) + (1 \times 2^{3}) + (0 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0}) \cdot (1 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3}) + (1 \times 2^{-4})$	
	$32 + 8 + 1 \cdot \frac{1}{2} + \frac{1}{8} + \frac{1}{6}$	
	41. $\frac{8+2+1}{16}$	
	$41.\frac{11}{6}$	
	$\Rightarrow (41.6875)_{10}$	
	End of Solution	
ACE F	ngincering Publications 🖉 Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmeda	at

24. Ans: (b) **Sol:** Revolution speed = **r** revolutions per sec one revolution time $=\frac{1}{r}\sec$ Average rotational latency $=\frac{\text{one revoltuion time}}{2}$ $=\frac{1}{2r}\sec$ Data Transfer Rate $=\frac{\text{one track size}}{\text{one revolution time}} = \frac{\text{Nbytes}}{\frac{1}{-\sec}}$

= Nr bytes/sec

Data transfer time = $\frac{b \text{ bytes}}{\text{Nr bytes}/\text{sec}} = \frac{b}{\text{Nr}} \text{sec}$

 $T_{total} = Avg.$ seek time + Avg. Rotational + Data Transfer time

$$= \left(T_{\rm s} + \frac{1}{2r} + \frac{b}{\rm Nr}\right) \sec \left(\frac{b}{r}\right)$$

End of Solution

25. If a cache has 64-byte cache lines, how long does it take to fetch a cache line if the main memory takes 20 cycles to respond to each memory request and returns 2 bytes of data in response to each request?

(a) 980 cycles	(b) 640 cycles
(c) 320 cycles	(d) 160 cycles

25. Ans: (b)

Sol: In one request, 2 Bytes of data can be accessed from main memory.

Number of requests needed to access a cache line of size $64B = \frac{64B}{2B} = 32$

1 request time = 20 cycles

32 requests time = 32×20

= 640 cycles

End of Solution

ACE Engineering Publications

GATE+PSUs - 2020

HYDERABAD

29th April | 06th May | 11th May 18th May | 26th May | 02nd June 2019

ADMISSIONS ARE OPEN

EARLY BIRD OFFER :

Register on or Before 31st March 2019 : 3000/- Off

To WIN The RACE.. Join ACE...

No. of selections in ESE (IES)

	15 ELECTRICAL ENGINEERING (SET - C)					
26.	Which of the following statements are correct about SRAM?					
	1. It provides faster access as compared to DRAM.					
	2. It is cheaper than DRAM.					
	3. It is more expensive than DRAM.					
	4. It has higher bit density than DRAM.					
	(a) 1 and 4 only (b) 1 and 3 only (c) 1, 3 and 4 only (d) 2 and 4 only					
26.	Ans: (b)					
Sol:	In DRAM higher bit density than SRAM					
	End of Solution					
27.	Features of solid state drives (SSDs) are					
	1. High-performance in input/output operations per second					
	2. More power consumption than comparable size HDDs					
	3. Lower access times and latency rates					
	4. More susceptible to physical shock and vibration					
	(a) 2 and 3 only (b) 2 and 4 only (c) 1 and 3 only (d) 1 and 4 only					
27. Sol:	 Ans: (c) → SSDs are faster than HDDs, hence take less access time and provides High-performance. → SSDs are more resistant to physical shock and vibrations, so are not susceptible. → SSDs have less power consumption. 					
28.	The decimal value of signed binary number 11101000 expressed in 1's complement is					
	(a) -223 (b) -184 (c) -104 (d) -23					
28.	Ans: (d)					
Sol:	1110 1000					
	MSB = 1 so number is negative					
	1's complement of 1110 1000 is 0001 0111					
	Magnitude = $(1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)$					
	Magnitude = $16 + 4 + 2 + 1 = 23$					
	So decimal equivalent of 1's compliment representation					
	1110 1000 is (-23) ₁₀					
	End of Solution					

	ACE Engineering Publications	(16) ESE-	2019 _ PRELIMS_Solutions
29.	The memory management f	unction of virtual memory includes	
	1. Space allocation		
	2. Program relocation		
	3. Program execution		
	4. Code sharing		
	(a) 1, 2 and 3 only	(b) 1, 2 and 4 only	
	(c) 1, 3 and 4 only	(d) 2, 3 and 4 only	
29.	Ans: (b)		
Sol:	Program execution is part	of process management unit of OS, rest	3 are functions of memory
	management unit.	GINEERINGAC	
		End of Solution	
30.	Which of the following inst	ructions of 8085 are the examples of implie	ed addressing?
	1. CMA		
	2. IN byte		
	3. RET		
	(a) 1, 2 and 3	(b) 1 and 2 only	
	(c) 2 and 3 only	(d) 1 and 3 only	
30.	Ans: (d)	Since 1005	
Sol:	CMA and RET instructions	are the examples of implied addressing mo	de.
		End of Solution	
31.	Consider the discrete-time	sequence $x(n) = \cos\left(\frac{n\pi}{8}\right)$. When sample	d at frequency $f_s = 10$ kHz,
	then f_0 , the frequency of the	e sampled continuous time signal which pr	oduced this sequence will at
	least be		
	(a) 625 Hz	(b) 575 Hz	
	(c) 525 Hz	(d) 475 Hz	
ACE	Engineering Publications Hyderabad • Delt	ıi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • V	ijayawada • Vizaq • Tirupati • Kolkata • Ahmedabad

	ELECTRICAL ENGINEERING (SET - C)
31.	Ans: (a)
Sol:	$\mathbf{x}(\mathbf{n}) = \cos\left[\frac{\mathbf{n}\pi}{8}\right]$
	$f_s = 10 \text{ kHz}$
	Digital frequency $W = \frac{2\pi f_0}{f_s}$
	$\frac{\pi}{8} = \frac{2\pi f_0}{10K}$
	$f_0 = \frac{10000}{16}$
	= 625 Hz
	End of Solution
32.	How many bits are required in an A/D converter with a B+1 quantizer to get a signal-to-
	quantization noise ratio of at least 90 dB for a Gaussian signal with range of $\pm 3\sigma_x$?
	(a) $B + 1 = 12$ bits (b) $B + 1 = 14$ bits (c) $B + 1 = 15$ bits (d) $B + 1 = 16$ bits
32.	Ans: (d)
Sol:	Signal to quantization noise ratio = $\frac{\sigma_x^2}{\left(\frac{\Delta^2}{12^2}\right)} = 12\left(\frac{\sigma_x}{\Delta}\right)^2$
	$\Delta = \frac{3\sigma_{\rm x} - (-3\sigma_{\rm x})}{\rm L}$
	$\Rightarrow \left(\frac{\sigma_{x}}{\Delta}\right) = \frac{L}{6}$
	Signal to quantization noise ratio $= 12 \left(\frac{L}{6}\right)^2$
	$=\frac{1}{3}L^2$
	For B+1 bit quantizer
	Signal to quantization noise ratio $=\frac{1}{3}2^{2(B+1)}$
	$(SQNR)_{dB} = -4.76 + 6(B+1)$
	90 = -4.76 + 6(B+1)
	B+1 = 16 bits
ACE E	Engineering Publications (Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE Engineering Publications		(19)	ELECTRICAL	ENGINEERING (SET -	- C)	
35.	If the complex mul	tiply operation takes 1	μ s, the time	taken to compu	ate 1024-point DFT dire	ectly	
	will be nearly						
	(a) 3.45 s	(b) 2.30 s	(c) 1.05 s	(d) 0.60 s		
35.	Ans: (c)						
Sol:	Time taken for each	$n CM = 1 \mu sec$					
	Time taken to comp	oute 1024 pt. DFT					
	Directly for number	r of complex multiplicat	tions = $(N)^2$ (1)	lμ sec)			
			= (1024)	$)^2 \mu \sec$			
			= 1.05 se	ec			
36.	Consider the follow	ring data to design a low	v-pass filter				
	Cut-off frequency	$\psi \omega_{\rm c} = \frac{\pi}{2},$					
	Stop band ripple $\delta_s = 0.002$,						
	Transition bandwid	th no larger than 0.1 π .	Kaiser windo	w parameters β	and N respectively are		
	(a) 2.99 and 45	(b) 4.99 and 45	(c) 2.99 a	nd 65 (d) 4.99 and 65		
36.	Ans: (d)						
Sol:	Cut-off frequency a	$\omega_{\rm C} = \pi/2$					
	S.B ripple $\delta_s = 0.00$	2					
	Transition bandwid	th no larger than 0.1π					
	order N = $\frac{A-8}{2.285\Delta \omega}$	_ 0					
	$A = -20 \log \frac{2 \times 10^{-3}}{10}$	-=52					
	B = 0.1102 (A - 8.7)						
	= 0.1102(52 - 8.7)						
	= 4.77166						
		——— En	d of Solution				
ACE F	Engineering Publications	yderabad • Delhi • Bhopal • Pune • Bhuban	eswar • Lucknow • Patna	• Bengaluru • Chennai • Vij	ayawada • Vizag • Tirupati • Kolkata • Ahme	edabad	

NEW YEAR Special OFFER from 31st Dec 2018 to 9th Jan 2019 25% Discount

Available Now

No. of Tests : 64

Т

Free 22 Practice Tests of GATE - 2018 Online Test Series

ESE - 2019 PRELIMS

Available Now

No. of Tests : 44

Free 30 Practice Tests of ESE - 2018 Online Test Series

All tests will be available till GATE - 2019 & ESE -2019 (Prelims) examinations respectively.

🕓 040 - 48539866 / 040 - 40136222 📓 testseries@aceenggacademy.com

APPSC-AEE (Prelims) Online Test Series

No. of Tests : 18

Topic Wise Tests : 15 | Mock Tests - 3 Civil | Mechanical | Electrical

Available Now

All Tests will be available till 18th February 2019

🕓 040 - 48539866 / 040 - 40136222 👘 😫 testseries@aceenggacademy.com

- (c) Left hand side s-plane
- (d) Right hand side s-plane

41. Ans: (a) & (b)

Sol: Nyquist contour direction is not mentioned. If Nyquist contour is defined in the clockwise, then option (b) is correct. Else if Nyquist contour in clockwise direction, then option (a) is correct

ACE Engineering Publications

	A	26 ESE-2019_PRELIMS_Solutions			
49.	Co	nsider the following statements regarding parallel connection of 3-phase transformers:			
	1.	The secondaries of all transformers must have the same phase sequence.			
	2.	The phase displacement between primary and secondary line voltages must be the same for all			
		transformers which are to be operated in parallel.			
3. The primaries of all transformers must have the same magnitude of line voltage					
	Wh	tich of the above statements are correct?			
	(a)	1, 2 and 3 (b) 1 and 3 only (c) 1 and 2 only (d) 2 and 3 only			
49.	An	s: (a)			
Sol:	Neo	cessary conditions for possible parallel operation:			
	1.	Voltage ratings mentioned on the name plate of transformers to be connected in parallel must be same.			
	2.	The transformers must be connected in parallel with correct polarity			
	3.	The phase sequence of 3-phase transformers to be connected in parallel must be same.			
	4.	Apart from phase sequence matching, the phase displacement between the secondaries of both			
		transformers must be zero. This condition can be fulfilled if the two transformers belong to same phaser group			
		End of Solution			
50.	A 5	500 kVA transformer has an efficiency of 95% at full load and also at 60% of full load, both at			
	upf	The efficiency η of the transformer at $\frac{3}{4}$ th full load will be nearly			
	(a)	98% (b) 95% (c) 92% (d) 87%			
50.	An	s: (b)			
Sol:	$\eta_{\rm FI}$	$U_{\rm (Upf)} = \frac{500 \times 1}{500 \times 1 + W_{\rm cu} + W_{\rm i}} = 0.95$			
		$W_{cu} + W_i = 26.31 \text{ kW}$			
	η_{60}	$_{\text{\%FL(Upf)}} = \frac{300 \times 1}{300 \times 1 + (0.6)^2 W_{cu} + W_i} = 0.95$			
		$(0.6)^2 W_{cu} + W_i = 15.78 \text{ kW}$			
		$0.36W_{cu} + W_i = 15.78 \text{ kW}$			
ACE F	Ingine	ering Publications (Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad			

			27	ELECTRI	CAL ENGINEERING (SET -	- C)
	$W_{cu} + W_i = 26.31$					
	$0.36W_{cu} + W_i = 15.78$					
	$0.64 W_{cu} = 10.53$					
	$W_{cu} = \frac{10.53}{0.64} =$	16.45 kW				
	$W_i = 26.31 - 1$	6.45 = 9.86 kW				
	$\eta_{3} = \frac{37}{275 - 1 - (0.75)}$	$\frac{75 \times 1}{10^2}$				
	$\frac{-FL(Upt)}{4}$ 375×1+(0.75	$(-)^{2} \times 16.45 + 9.86$				
	$=\frac{375}{394}\times 100=9$	95%				
		E:	nd of Solution			
51.	What is the condition of a	retrogressive win	ding in dc ma	chines?		
	(a) $Y_b > Y_f$	(b) $Y_b < Y_f$	(c) $Y_{b} =$	Y_{f}	(d) $Y_b = 0.5 Y_f$	
51.	Ans: (b)					
Sol:	For progressive winding,	$Y_b > Y_f$				
	For retrogressive winding	$y, Y_b < Y_f$				
		———— Ei	nd of Solution			
52.	What is the useful flux	per pole on no	load of a 2	50 V, 6-pol	e shunt motor having a w	vave
	connected armature wind	ing with 110 turr	ns, armature re	esistance of	0.2 and armature current 13	.3 A
	at no load speed of 908 r	om?				
	(a) 12.4 mWb	b) 22.6 mWb	(c) 24.8 1	mWb	(d) 49.5 mWb	
52.	Ans: (c)					
Sol:	Given data: 250 V, 6-pol	e, T = 110, $R_a = 0$	$1.2, I_a = 13.3$	A and $N = 90$	08 rpm	
	$E_b = V_t - I_a R_a$					
	$= 250 - (13.3) \times 0.2$					
	= 247.5					
	$\therefore E_b \approx V_t$					
ACE I	Engineering Publications Hyderabad	• Delhi • Bhopal • Pune • Bhuba	aneswar • Lucknow • Patn	a • Bengaluru • Chenr	ai • Vijayawada • Vizag • Tirupati • Kolkata • Ahme	edabad

ACE Engineering Publications	29	ELECTRICAL ENGINEERING (SET – C)
As compensated winding carries an	rmature current the	rough it, the no. of turns required will be
turns/pole = $\frac{3000}{1000}$ = 3 turns/pole		
\therefore Conductors/pole = 6.		
	End of Solution	
Cogging in an induction motor is car	ised	
(a) If the number of stator slots are u	nequal to number of	of rotor slots
(b) If the number of stator slots are a	n integral multiple	of rotor slots
(c) If the motor is running at fraction	of its rated speed	
(d) Due to 5 th harmonic		
Ans: (b)		
When S_1 (stator slots) are equal to S_1 is sure to occur.	$_2$ (rotor slots) or w	hen S_1 is an integral multiple of S_2 , cogging
	End of Solution	
A 500 hp, 6-pole, 3-phase, 440V, 50) Hz induction mot	or has a speed of 950 rpm on full-load. The
full load slip and the number of cycle	es the rotor voltage	makes per minute will be respectively
(a) 10% and 150	(b) 10% and 12	5
(c) 5% and 150	(d) 5% and 125	
Ans: (c)		
Rotor $N_r = 950$ rpm		
$N_s = \frac{120 \times 50}{6} = 1000 \text{ rpm}$		
$S = \frac{N_s - N_r}{N_s} = \frac{1000 - 950}{1000} = 0.05 = 0.05$	5%	
f_2 (rotor frequency) = sf		
$= 0.05 \times 50$		
= 2.5 Hz (or cycl	les/sec)	
No. of cycles the rotor voltage makes	s per minute will be	$e 2.5 \times 60 = 150$ cycles/minute
5 6	-	5
	As compensated winding carries at turns/pole = $\frac{3000}{1000}$ = 3 turns/pole \therefore Conductors/pole = 6. Cogging in an induction motor is can (a) If the number of stator slots are a (b) If the number of stator slots are a (c) If the motor is running at fraction (d) Due to 5 th harmonic Ans: (b) When S ₁ (stator slots) are equal to S is sure to occur. A 500 hp, 6-pole, 3-phase, 440V, 50 full load slip and the number of cycle (a) 10% and 150 (c) 5% and 150 Ans: (c) Rotor N _r = 950 rpm N _s = $\frac{120 \times 50}{6} = 1000$ rpm S = $\frac{N_s - N_r}{N_s} = \frac{1000 - 950}{1000} = 0.05 =$ f ₂ (rotor frequency) = sf = 0.05 × 50 = 2.5 Hz (or cycle	As compensated winding carries armature current the turns/pole = $\frac{3000}{1000}$ = 3 turns/pole \therefore Conductors/pole = 6. End of Solution Cogging in an induction motor is caused (a) If the number of stator slots are unequal to number of (b) If the number of stator slots are an integral multiple (c) If the motor is running at fraction of its rated speed (d) Due to 5 th harmonic Ans: (b) When S ₁ (stator slots) are equal to S ₂ (rotor slots) or w is sure to occur. End of Solution A 500 hp, 6-pole, 3-phase, 440V, 50 Hz induction mot full load slip and the number of cycles the rotor voltage (a) 10% and 150 (b) 10% and 12 (c) 5% and 150 Ans: (c) Rotor N _r = 950 rpm N _s = $\frac{120 \times 50}{6} = 1000$ rpm S = $\frac{N_s - N_r}{N_s} = \frac{1000 - 950}{1000} = 0.05 = 5\%$ f ₂ (rotor frequency) = sf $= 0.05 \times 50$ = 2.5 Hz (or cycles/sec)

HEARTY CONGRATULATIONS TO OUR ESE 2018 RANKERS

AIR

JAPJIT SINGH

AIR

AIR

Π

AMIT KUMAR

AIR

AIR

AIR

AIR

AIR

SRIJAN VARMA

NARENDRA KUMAR

KARTIKEYA DUTTA E&T

MAYUR PATIL ME

AIR

KUMUD JINDAL

ANKIT GARG

AIR

RATIPALLI NAGESWAR

EE

and many more ...

SURYASH GAUTAM E&T

	ACE Engineering Pablications	(31)	ELECTRICAL ENGINEERING (SET – C)
57.	Effective armature resistance R _a (eff) of a	synchronous ma	chine is
	(a) $\frac{\text{Short circuit load loss (per phase)}}{(\text{Short circuit armature current)}^2}$	(b)	Short circuit load loss (per phase) (Short circuit load current)
	(c) $\frac{\text{Total short circuit load loss}}{\text{Short circuit armature current}}$	(d)	Total short circuit load loss Short circuit load current
57.	Ans: (a)		
Sol:	Effective armature resistance $R_a = \frac{Coppe}{(S_a)^2}$	r losses per phase hort circuit arma	$\frac{1}{2} under short circuit condition}$
	E	nd of Solution –	
58.	A 3-phase synchronous motor has 12-pol	es and operates	from 440 V, 50 Hz supply. If it takes a
	line current of 100 A at 0.8 power factor le	eading its speed	and torque are nearly
	(a) 500 rpm and 1165 N-m	(b) 1000 rp	m and 2330 N-m
	(c) 500 rpm and 2330 N-m	(d) 1000 rp	m and 1165 N-m
58.	Ans: (a)		
Sol:	A 3-phase synchronous motor no. of poles	, P = 12	
	Line voltage, $V_L = 440 V$		
	Frequency, $f = 50 \text{ Hz}$		
	Line current, $I_L = 100$ A at 0.8 pf lead		
	N = ?		
	T = ?		
	$N = \frac{120f}{P} = \frac{120 \times 50}{12} = 500 \text{ rpm}$		
	$P_{out} = \sqrt{3} V_L I_L \cos \phi$		
	$= \sqrt{3} \times 440 \times 100 \times 0.8$		
	Torque, T = $\frac{P_{out}}{\frac{2\pi N}{60}} = \frac{\sqrt{3} \times 440 \times 100 \times 0.8 \times 100}{2\pi \times 500}$	<u>< 60</u>	
	= 1164.5 N-m		
	≈ 1165 N-m		
	Ans: 500 rpm and 1165 N-m		
	E	nd of Solution –	

59. Which of the following are the advantages of using a stepper motor?

(a) Compatibility with transformers and sensors needed for position sensing

- (b) Compatibility with digital systems and sensors are not required for position and speed sensing
- (c) Resonance effect often exhibited at low speeds and decreasing torque with increasing speed

32

(d) Easy to operate at high speed speeds and compatible with analog systems

59. Ans: (b)

ACE

Sol: Advantages of stepper motors:

Compatibility with digital system

Suitable for open loop position control applications

: Sensors are not required for position and speed sensing

End of Solution

60. The disadvantage of hunting in synchronous machines is

- (a) Fault occurs in the supply system
- (b) Causes sudden change in inertia
- (c) Causes large mechanical stresses and fatigue in the rotor shaft
- (d) Causes harmonics

60. Ans: (c)

Sol: The disadvantages of hunting in synchronous machine are

- 1. Causes large mechanical stresses and fatigue in the rotor shaft.
- 2. Fluctuations in generated voltage of alternator
- 3. Unwanted copper losses, heating effect
- 4. Rotor oscillations may causes fall out of synchronism

End of Solution

- 61. Consider the following statements for a large national interconnected grid:
 - 1. Better load frequency control
 - 2. Same total installed capacity can meet lower demands

3. Better hydro/thermal/nuclear/renewable co-ordination and energy conservation

Which of the above statements are correct?

(a) 1 and 3 only (b) 1 and 2 only (c) 2 and 3 only (d) 1, 2 and 3

ACE Engineering Publications

ACE Engineering Publications

61. Ans: (d)

Sol: S1: A large national interconnected grid will be developed to increase the grid strength by which one can maintain frequency within the limits (or) one can achieve better load frequency control. So statement 1 is correct.

33

- S2: With the interconnected grid as the demand decreases generation can be regulated by only operating base load plants for lower demand and higher demands can be met by operation both base load and peak load plants.
- S3: With the interconnected grid, all different types of power plants are interconnected by which a good coordination can be achieved between these plants and the cost of power generation can be optimized and losses in the system can also be reduced.

So, statement 3 is correct.

End of Solution

- 62. A single-phase transformer is rated 110/440 V, 2.5 kVA. Leakage reactance measured from the low-tension side is 0.06 Ω. The per unit leakage reactance will be
 - (a) 0.0062/unit (b) 0.0124/unit (c) 0.0496/unit (d) 0.1983/unit

62. Ans: (b)

Sol: Given data: 110/440 V, 2.5 kVA transformer.

$$X = 0.06 \Omega$$

$$Z_{\text{base}}(LV) = \frac{V^2}{(VA)} = \frac{110 \times 110}{2500}$$

$$X_{\text{PU}} = \frac{0.06 \times 2500}{110 \times 110} = 0.0123/\text{unit.}$$

End of Solution

- 63. A concentric cable has a conductor diameter of 1 cm and an insulation thickness of 1.5 cm. When the cable is subjected to a test pressure of 33 kV, the maximum field strength will be nearly
 - (a) 41,000 V (b) 43,200 V
 - (c) 45,400 V (d) 47,600 V

ESE-2019 _ PRELIMS_Solutions

63. Ans: (d)

Sol: Radius of core, r = 0.5 cm

Insulation thickness = 1.5 cm

Inner radius of sheath, R = 1.5 + 0.5 = 2 cm

$$g_{max} = \frac{V}{r \ln(R/r)} = \frac{33,000}{0.5 \ln(\frac{2}{0.5})} = 47,608 \text{ V/cm}$$

End of Solution

34

64. Radio influence voltage (RIV) generated on a transmission line conductor surface is **not** affected by

(a) System voltage

(b) Corona discharges on the conductors

(c) Rain

(d) Nearby radio receivers

64. Ans: (d)

Sol: Radio Influence Voltage (RIV): Radio interference/influence is an adverse effect of corona on wireless broad casting. The corona discharge emits radiation which introduces noise in the communication lines, radio and television receivers.

Radio influence voltage is the field measured at any point from transmission line and generally given in terms of μ V/m. Corona is affected by system voltage and atmospheric conditions (e.g. rain, snow, fog, pressure etc). Hence the same factors will affect the value of RIV also. From given options, option (d) is not going to affect the RIV generated on transmission lines.

Where as RIV generated an transmission lines will cause interference on radio receivers.

End of Solution -

65. Consider the following prosperities regarding insulation for cables:

- 1. A low specific resistance
- 2. High temperature withstand
- 3. High dielectric strength

Which of the above prosperities of insulation are correct while using cables?

(a) 1 and 2 only

- (b) 1 and 3 only (b)
- (c) 2 and 3 only (d) 1, 2 and 3

ACE Engineering Publications
	ACE Engineering Publications	(35)	ELECTRICAL ENGINEERING (SET – C)
65.	Ans: (c)		
Sol:	A cable Insulation should have		
	High insulation resistance		
	High temperature strength		
	High Dielectric strength		
		End of Solution	
66.	Which one of the following faults of	ccurs more frequen	ntly in a power system?
	(a) Grounded star-delta	(b) Double lin	e faults
	(c) LLG faults	(d) Single line	e-to-ground (LG) faults
66.	Ans: (d)		
Sol:	Most occurring faults in power syste	em is LG faults.	
		- End of Solution	
67.	The maximum permissible time of c	le-energization of	the faulty circuit is dependent on
	(a) Voltage of the system		
	(b) The number of conductors invol-	ved	
	(c) Load carried by the faulty circuit	t	
	(d) Fault current and its duration		
67.	Ans: (d)		
Sol:	The maximum permissible time of f	fault depends on	
	\rightarrow Location of faults		
	\rightarrow Magnitude of fault current fault c	duration.	
60		End of Solution	
68.	Which one of the following is used	d for communicat	ion with the aim of achieving high figure of
	merit in HVDC circuit breakers?	/ X = -	
	(a) Oil interrupter (b) Air inte	errupter (c) Vao	cuum interrupter (d) SF_6 interrupter
68.	Ans: (c)		
Sol:	In HVDC circuit breaker artificial of	current zero will b	be achieved with the help of LC circuit at the
	time when it is required to open th	ne breaker. During	g this artificial commutation a steep surge of
	restriking voltage appears across the	e circuit breaker co	ontact. Because of the fact that extremely fast
	interruptions are required and bro	eaker need to w	ith strand high restriking voltage, vacuum
	interrupter unit/circuit breaker is an	ideal device for H End of Solution	VDC circuit breaking.

ACE Engineering Publications

	36 ESE-2019_PRELIMS_Solution					
69.	Which of the following buses are used to form bus admittance matrix for load flow analysis?					
	1. Load bus					
	2. Generator bus					
	3. Slack bus					
	(a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3					
69.	Ans: (a)					
Sol:	The question is about formation of bus admittance matrix for load flow analysis.					
	In the bus admittance matrix formation					
	(i) Generator will be represented as a current source in parallel with its internal impedance					
	admittance.					
	(ii) Load represented as current injection (may be a negative current)					
	While framing the primitive impedance or admittance network, current sources in the network was					
	be removed. So it is not required to consider the load but at all in bus admittance matrix formation					
	As slack bus is also one of the generator bus, it is required to consider slack bus and remaining					
	generator buses to form bus admittance matrix of the network.					
	End of Solution					
70.	In a 3-phase, 60 Hz, 500 MVA, 15 kV, 32-pole hydroelectric generating unit, the values of ω_{syn} are					
	ω_{msyn} will be nearly					
	(a) 754 rad/s and 47.6 rad/s					
	(b) 377 rad/s and 46.7 rad/s Since 1995					
	(c) 377 rad/s and 23.6 rad/s					
	(d) 754 rad/s and 23.6 rad/s					
70.	Ans: (c)					
Sol:	$\omega_{syn} = 2\pi f = 2\pi \times 60 = 377 \text{ rad/sec}$					
	$\omega_{\rm m syn} = \frac{2}{\rm P} \times \omega_{\rm syn}$					
	$=\frac{2}{32}\times377$					
	= 23.56 rad/sec					
	End of Solution					

	ACE Engineering Publications	(38)	ESE-2019 _ PRELIMS_Solutions	
73.	Which one of the following is no	ot required for Power diod	e ?	
	(a) High speed operation	(b) Fast communic	ation	
	(c) Small recovery time	(d) Low on-state ve	oltage drop	
73.	Ans : (b)			
Sol:	For power diode, High speed of a	operation or less recovery	time are required properties.	
	Low on state voltage drop will er	nsure less conduction loss		
	Hence, option B can be selected.			
74.	The reverse recovery time of a d	iode is $t_{rr} = 3 \ \mu s$ and the r	ate of fall of the diode current is $\frac{di}{dt} = 30$	
	A/ μ s. The storage charge Q _{RR} and	d the peak inverse current	I _{RR} will be respectively	
	(a) 135 µC and 90 A	(b) 270 µC and 90	AO	
	(c) 270 μ C and 60 A	(d) 135 µC and 60	A Z	
74.	Ans: (a)			
Sol:	Give data: $t_{rr} = 3 \mu s$ and $\frac{di}{dt} = 30$	A/μs.		
	Stored charge, $Q_{rr} = \frac{1}{2} \frac{di}{dt} t_{rr}^2 = \frac{1}{2} \frac{di}{dt} t_{rr}^2$	$\times 30 \times 3 = 135 \mu\text{C}$		
	Peak inverse current, $I_{rr} = \frac{di}{dt} \frac{t_r}{1+t_r}$	$\frac{r}{S} = 30 \times 3 = 90 \text{ A, neglec}$	t Softness factor	
75.	The ig-vg characteristics of a thy	ristor is a straight line p	assing through origin with a gradient of	
	2.5×10^3 . If P _g = 0.015 watt, the value of gate voltage will be nearly			
	(a) 5.0 V (b) 6.1 V	V (c) 7.5 V	(d) 8.5 V	
75.	Ans : (b)			
Sol:	Given data: $\frac{V_g}{I_g} = 2.5 \times 10^3$ or $V_g =$	$= 2500 \times I_g (1)$		
	And $P_g = V_g I_g = 0.015$ W, by usi	ng equation 1, $(2500I_g)$ >	$I_g = 0.015 \text{ or } I_g = \sqrt{\frac{0.015}{2500}} = 2.45 \text{ mA}$	
	$\therefore V_g = 2.5 \times 10^3 \times 2.45 \times 10^{-3} = 6.1$	125 V		
		— End of Solution —		

ACE ELECTRICAL ENGINEERING (SET – C) 39 76. A single-phase 220 V, 1 kW heater is connected to half wave controlled rectifier and is fed from a 220 V, 50 Hz ac supply. When the firing angle $\alpha = 90^{\circ}$, the power absorbed by the heater will be nearly (a) 1000 W (b) 750 W (c) 500 W (d) 250 W 76. Ans : (d) Sol: Given data: Heater ratings are 220 V, 1 kW and hence, $R = \frac{220 \times 220}{1000} \Omega$ Source voltage: $V_m = 220\sqrt{2}$ V, 50 Hz and $\alpha = 90^{\circ}$ Power delivered to the load, $P_o = \frac{V_{or}^2}{R} = \frac{V_m^2}{4\pi R} \left[(\pi - \alpha) + \frac{1}{2} \sin 2\alpha \right]$ And hence, $P_o = \frac{220 \times 220 \times 2}{4 \times \pi \times \frac{220 \times 220}{1000}} \left[\left(\pi - \frac{\pi}{2} \right) + 0 \right] = \frac{1000}{4} = 250 \text{ W}$ End of Solution 77. When we compare the half bridge converter and full bridge converter 1. The maximum collector current of a full bridge is only double that of the half bridge. 2. Full bridge uses 4-power switches instead of 2, as in the double bridge

3. Output power of a full bridge is twice that of a half bridge with the same input voltage and current

Which of the above statements are correct?

- (a) 1, 2 and 3 (b) 1 and 2 only
- (c) 1 and 3 only (d) 2 and 3 only

77. Ans : (b)

Sol: Statements are not clear because in question, half bridge is given. But in the options double bridge is given. I will suggest to challenge this question.

But from the given options, I can select option B by considering the given circuits are full bridge and half bridge inverter circuits.

End of Solution

ACE Engineering Publications

	ACE Engineering Publications	(41)	ELECTRICAL ENGINEERING (SET – C)		
80.	A 3-phase induction motor drives a squared. If the motor operates at 143 nearly	a blower where loa 50 rpm, the maximu	nd torque is directly proportional num current in terms of rated curre	to speed ent will be		
	(a) 2.2 (b) 3.4	(c) 4.6	(d) 6.8			
80.	Ans: (a)					
Sol:	$T_{em} = KI_2^2 \frac{R_2}{s}$					
	$T_L \propto N_r^2 \propto \left[N_s(1-s)\right]^2 \propto \left(1-s\right)^2$					
	$\frac{I_2^2 R_2}{s} \propto (1-s)^2$					
	$I_2 = K\sqrt{s}(1-s)$					
	Neglecting stator impedance and no-	load current				
	$I_1 \propto I_2$					
	$I_1 \propto \sqrt{s} (1-s)$					
	For slip at maximum current, $\frac{dI_1}{ds} = 0$)				
	$\Rightarrow \frac{\mathrm{d}}{\mathrm{ds}} \Big[\sqrt{\mathrm{s}} \big(1 - \mathrm{s} \big) \Big] = 0$					
	$s = \frac{1}{3}$ (slip at maximum current)					
	Given rotor speed, $N_r = 1450$ rpm					
	Assuming $f = 50$ Hz, synchronous speed closer to 1450 rpm					
	$s = \frac{1500 - 1450}{1500} = 0.0333$					
	$\therefore \frac{I_{max}}{I_{1fl}} = \frac{\sqrt{\frac{1}{3}} \left(1 - \frac{1}{3}\right)}{\sqrt{0.0333} (1 - 0.0333)}$					
	$= 2.1814 \approx 2.2$					
		End of Solution				
ACE	Engineering Publications Hyderabad - Delbi - Bhonal - Dur	e • Rhubaneswar • Lucknow • Poter	• Rengaluru • Chennai • Viiavawada • Vizao • Tirupati • Kolk	ata • Ahmedahad		

ESE / GATE / PSUs - 2020 ADMISSIONS OPEN

CENTER	COURSE	ВАТСН ТҮРЕ	DATE
HYDERABAD - DSNR	GATE + PSUS - 2020	Regular Batches	26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - DSNR	ESE + GATE + PSUs - 2020	Regular Batches	21st March, 26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - DSNR	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - DSNR	GATE + PSUs - 2020	Morning/Evening Batch	21st Jan 2019
HYDERABAD - DSNR	ESE – 2019 STAGE-II (MAINS)	Regular Batch	17th Feb 2019
HYDERABAD - Abids	GATE + PSUS - 2020	Regular Batches	26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - Abids	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - Abids	ESE + GATE + PSUs - 2020	Morning Batch	21st Jan 2019
HYDERABAD - Abids	ESE – 2019 STAGE-II (MAINS)	Regular Batch	17th Feb 2019
HYDERABAD - Abids	GATE + PSUs - 2020	Weekend Batch	19th Jan 2019
HYDERABAD - Abids	ESE+GATE + PSUs - 2020	Spark Batches	11th May, 09th June 2019
HYDERABAD - Kukatpally	GATE + PSUs - 2020	Morning/Evening Batch	21st Jan 2019
HYDERABAD - Kukatpally	GATE + PSUS - 2020	Regular Batches	17th May, 1st, 16th June, 1st July 2019
HYDERABAD - Kukatpally	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - Kothapet	ESE + GATE + PSUS - 2020	Regular Batches	21st March, 26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - Kothapet	ESE+GATE + PSUs - 2020	Spark Batches	11th May, 09th June 2019
DELHI	ESE+GATE+PSUs - 2020	Weekend Batches	13 th Jan, 2 nd Feb 2019
DELHI	ESE+GATE+PSUs - 2020	Regular Evening Batch	18 th Feb 2019
DELHI	ESE+GATE+PSUs - 2020	Regular Day Batch	11 th May 2019
DELHI	ESE+GATE+PSUs - 2020	Spark Batch	11 th May 2019
DELHI	ESE+GATE+PSUs - 2021	Weekend Batch	13 th Jan 2019
DELHI	GATE+PSUs - 2020	Short Term Batches	11 th , 23 rd May 2019
BHOPAL	ESE + GATE+PSUs - 2020 & 21	Evening Batch	09 th Jan 2019
BHOPAL	ESE+GATE+PSUs - 2020	Regular Day Batch	01st Week of June 2019
PUNE	GATE+PSUs - 2020	Weekend Batch	19 th Jan 2019
PUNE	ESE+GATE+PSUs - 2021	Weekend Batch	26 th Jan 2019
BHUBANESWAR	GATE+PSUs - 2020 & 21	Weekend Batch	12 th Jan 2019
BHUBANESWAR	GATE+PSUs - 2020	Regular Batch	02nd Week of May 2019

FOR BATCH DETAILS VISIT : www.aceenggacademy.com

	43 ELECTRICAL ENGINEERING (SET - C)					
81.	Consider the following statements:					
1. SMPS generates both the electromagnetic and radio frequency interference due						
	switching frequency.					
	2. SMPS has high ripple in output voltage and its regulation is poor.					
	3. The output voltage of SMPS is less sensitive with respect to input voltage variation					
	Which of the above statements are correct?					
	(a) 1 and 3 only (b) 2 and 3 only (c) 1 and 2 only (d) 1, 2 and 3					
81.	Ans: (a)					
Sol:	Statement 1 is basic drawback and statement 3 is the basic advantage of SMPS circuits.					
	Another feature of SMPS is to have less ripple in output voltage with better regulation. And hence					
	statement 2 is not correct.					
	End of Solution					
82.	Consider the following features with respect to the flyback converters:					
	1. It is used mostly in application below 100 W.					
	2. It is widely used for high-output voltage.					
	3. It has low cost and is simple.					
	Which of the above statements are correct?					
	(a) 1, 2 and 3 (b) 1 and 2 only (c) 1 and 3 only (d) 2 and 3 only					
82.	Ans: (c)					
Sol:	Fly-back converters are preferable for power ratings around 100 - 200 W or below it. Fly-back					
	converter topology is simple and less in cost.					
	It is preferable in low power range. And hence, statement 2 is not correct.					
	End of Solution					
83.	Consider the following statements regarding the function of dc-dc converter in a dc motor:					
	1. It acts as regenerative brake.					
	2. It controls the speed of motor					
	3. It controls the armature voltage of a dc motor					
	Which of the above statements are correct?					
	(a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3					
83.	Ans: (d)					
Sol:	All the given statements are correct in associated with chopper based dc drives.					
ACEL						

	ESE-2019_PRELIMS_Solutions					
84.	The power supplies which are used extensively in industrial applications are required to meet					
	1. Isolation between the source and the load					
2. High conversion efficiency						
	3. Low power density for reduction of size and weight					
	4. Controlled direction of power flow					
	Which of the above specifications are correct?					
	(a) 1, 2 and 3 only (b) 1, 3 and 4 only					
	(c) 1, 2 and 4 only (d) 2, 3 and 4 only					
84.	Ans: (c)					
Sol:	Statement 1, 2 and 4 are basic advantages of power electronic circuits.					
	For reduction of size and weight of power supply, the power density (which means power ratin					
	divided by volume of the package) should be high.					
	End of Solution					
	Directions: Each of the next six (06) items consists of two statements, one labelled as 'Statement					
	(I)' and the other as 'Statement (II)'. You are to examine these two statements carefully and select					
	the answers to these items using the codes given below:					
	Codes:					
	(a) Both Statement (I) and Statement (II) are individually true and Statement (II) is the correct					
	explanation of Statement (I).					
	(b) Both Statement (I) and Statement (II) are individually true but Statement (II) is not the correct					
	explanation of Statement (I).					
	(c) Statement (I) is true, but Statement (II) is false.					
	(d) Statement (I) is false, but Statement (II) is true.					
85.	Statement (I): Soft iron does not retain magnetism permanently.					
	Statement (II): Soft iron does not retentivity.					
85.	Ans: (c)					
Sol:	Soft iron is a soft magnetic material with small hysteresis loop. These materials are easily					
	magnetised and easily demagnetized with high permeability and susceptibility and these material					
	also process retentivity.					

46

End of Solution

	ACE Engineering Publications	47 ELECTRICAL ENGINEERING (SET – C)			
91.	The important fact about the	collector current is			
	(a) It is greater than emitter of	current			
	(b) It equals the base current	divided by the current gain			
	(c) It is small				
	(d) It approximately equals the	he emitter current			
91.	Ans: (d)				
Sol:	the general relation among $I_{\rm I}$, I_C and I_B in a BJT is $I_E = I_C + I_B$			
	Where, I_B is the base recon	abination current,			
	I_E is the current injection	ected through emitter junction			
	And I_C is the current real	ching the collector junction.			
	NOTE: Since the base record	mbination current is generally very small, the collector current, I_C will			
	be less than or equal to $I_{\rm E}$				
	i.e., $I_C \leq I_E$				
		End of Solution			
92.	What is Shockley's equation	of a semiconductor diode in the forward bias regions?			
	(a) $I_{\rm D} = I_{\rm S} \left(e^{V_{\rm D}^2/nV_{\rm T}} - 1 \right)$	(b) $I_D = I_S \left(e^{V_D / nV_T} - 1 \right)$			
	(c) $I_D = I_S (e^{nV_D/V_T} - 1)$	(d) $I_D = I_S (e^{V_T / nV_D} - 1)$			
	Where				
	I _s is reverse saturation curren	ht			
	V_D is applied forward-bias voltage across the diode				
	V _T is thermal voltage				
	n is an ideality factor				
92.	Ans: (b)	Ans: (b)			
Sol:	The Schockley's equation of	a semiconductor diode in forward bias			
	$I_{D} = I_{0} \left[exp \left[\frac{V_{0}}{\eta V_{T}} \right] - 1 \right],$				
	Where $I_0 \rightarrow \text{scale current} = I$	s			
		End of Solution			

	49 ELECTRICAL ENGINEERING (SET - C)
96.	For most FET configurations and for common-gate configurations, the input impedances are
	respectively
	(a) High and high (b) High and low (c) Low and low (d) Low and high
96.	Ans: (b)
Sol:	In common source and common-drain configuration of FET,
	$R_i = r_g = \infty$ (1) very high
	In common-Gate configuration of FET, $R_i = \frac{1}{g_m}$ (2) Low
	End of Solution
97.	The dB gain of cascaded systems is simply
	(a) The square of the dB gains of each stage
	(b) The sum of the dB gains of each stage
	(c) The multiplication of the dB gains of each stage
	(d) The division of the dB gains of each stage
97.	Ans: (b)
Sol:	If n-stages of amplifiers are cascaded, the overall gain becomes, $A = A_1 \times A_2 \times \dots A_n$
	$\Rightarrow (20\log A)_{dB} = \{20\log(A_1 \times A_2 \dots A_n)\}_{dB}$
	\therefore dB gain = dB gain of A ₁ + dBgain of A ₂ + + dB gain of A _n .
	End of Solution
98.	The Miller effect input capacitance C_{M_i} is
	(a) $(1 - A_V^2)C_f$ (b) $(1 - A_V)C_f$ (c) $(1 - C_f)A_V$ (d) $(1 - C_f^2)A_V$
	Where, $C_f = feedback capacitance; A_V = \frac{V_0}{V_c}$
98.	Ans: (b)
Sol:	$\frac{C_{f}}{V_{i} \land V_{0}} \qquad \qquad V_{i} \land V_{0} \qquad \qquad V_{i} \land V_{i} \land V_{i} \qquad \qquad V_{i} \qquad V_{i} \qquad \qquad V_{i} $

	50 ESE-2019_PRELIMS_Solutions				
	C_{Mi} = Miller effect input capacitance = $C_f(1 - A_V)$				
	$C_{Mo} = Miller \text{ effect output capacitance} = C_f \left(\frac{A_V - 1}{A_V} \right)$ End of Solution				
99.	For an op-amp having a slew rate of 2 V/ μ s, if the input signal varies by 0.5 V in 10 μ s, the maximum closed loop voltage gain will be				
	$(a) 50 \qquad (b) 40 \qquad (a) 22 \qquad (d) 20$				
00	(a) 50 (b) 40 (c) 22 (d) 20				
99. G.I.	Alls: (b)				
501:	Given Op amp siew rate, $SR = 2V/\mu sec$				
	$V_{I} = 0.5 \text{ V} \rightarrow \text{varied in 10 } \mu\text{sec}$				
	As, $SR = \frac{dV_0}{dt} / max \Rightarrow dV_0 = SR \times dt = 20 V$				
	$\therefore \text{ Gain} = \frac{\mathrm{dV}_0}{\mathrm{dV}_i} = \frac{20}{0.5} = 40$				
	End of Solution				
100.	A negative feedback amplifier where an input current controls an output voltage is called				
	(a) Current amplifier (b) Transconductance amplifier				
	(c) Transresistance amplifier (d) Voltage amplifier				
100.	Ans: (c)				
Sol:	An amplifier in which input current control an output voltage i.e., input I_i and output = V_o				
	$\therefore \text{ Gain A} = \frac{\text{output}}{\text{input}} = \frac{V_o}{I_i} = R_m = \text{Trans Resistance gain}$				
	Such an amplifier is called as trans resistance amplifier.				
	End of Solution				
101.	In emergency lighting system, the component used for maintaining the charge on the battery is				
	(a) LED (b) Shockley diode (c) Thermistor (d) SCR				
101.	Ans: (a)				
Sol:	In most of the commercial emergency lighting systems, 12 volt LED strip battery packs are used				
	The use of LED's provide adequate lighting for a longer period before draining the battery.				
	End of Solution				
ACE F	Engineering Publications (Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabac				

ESE / GATE / PSUs - 2020 ADMISSIONS OPEN

CENTER	COURSE	ВАТСН ТҮРЕ	DATE
CHENNAI	GATE+PSUs - 2020 & 21	Weekend Batch	19 th Jan 2019
CHENNAI	GATE+PSUs - 2020	Regular Batch	02nd Week of May 2019
BANGALORE	GATE+PSUs - 2020 & 21	Weekend Batch	19 th Jan 2019
BANGALORE	GATE+PSUs - 2020	Regular Batch	17 th June 2019
BANGALORE	KPSC-AE (CE) – PAPER 1 & PAPER 2	Regular Batch	19 th Jan 2019
LUCKNOW	ESE+GATE+PSUs - 2020 & 21	Evening Batch	06 th Feb 2019
LUCKNOW	GATE+PSUs - 2020	Regular Batch	Mid - May 2019
PATNA	GATE+PSUs - 2020	Weekend Batch	19 th Jan 2019
TIRUPATHI	GATE+PSUs - 2020 & 21	Weekend Batch	19 th Jan 2019
KOLKATA	GATE+PSUs - 2020	Weekend Batch	19 th Jan 2019
KOLKATA	ESE+GATE+PSUs - 2021	Regular Batch	19 th Jan 2019
AHMEDABAD	ESE+GATE+PSUs - 2020&21	Weekend Batch	19 th Jan 2019
AHMEDABAD	GATE+PSUs - 2020	Regular Batch	02nd Week of June 2019

	ACE		53	ELECTRICAL ENGINEER	RING (SET – C)
104.	The time delay Δt in	troduced by a SISO	shift register in	digital signals is given by	
	(a) $N^2 \times \frac{1}{f_e}$	(b) $N^2 \times f_c$	(c) $\frac{f_c}{N}$	(d) N× $\frac{1}{f_c}$	
	Where				
	N is the number of s	tages			
	F_c is the clock freque	ency			
104.	Ans: (d)				
Sol:	The data is delayed	by 'N' clock cycle's	s the data is app	lied at SI port will arrive S	SO port after 'N
	clock cycle's				
	The delay introduce	d is $\Delta t = N \times T_C$			
		$= N \times \frac{1}{2}$			
		f_{c}			
			End of Solution		
105.	An analog output v assuming the propor	voltage for the inputionality factor K = 1	tt 1001 to a 4 1 will be	bit D/A converter for all	possible inputs
	(a) 9	(b) 6	(c) 3	(d) 1	
105.	Ans: (a)				
Sol:	(1001) ₂				
	$V_0 = K(decimal equ$	ivalent of binary)			
	$= 1(1 \times 2^{3} + 0 \times 2^{2} + 0)$	$) \times 2^{1} + 1 \times 2^{0})$			
	= 9				
			End of Solution		
106.	In microprocessor ir is called	nterface, the concept	of detecting sor	ne error condition such as	no match found
	(a) Syntax error	(b) Semantic err	ror (c) Logic	al error (d) Error trap	ping
106.	Ans: (d)				
		·	End of Solution		
107.	The maximum numb	ber of input or output	t devices that ca	n be connected to 8085 mi	croprocessor are
	(a) 8	(b) 16	(c) 40	(d) 256	

	Engineering Publications	(55)	ELECTRICAL ENGINEERI	NG (SET – C)	
110.	Ans: (b)				
Sol:	$\mu = 0.5$				
	$\eta = \frac{\mu^2}{2 + \mu^2} \times 100$				
	$\eta = \frac{(0.5)^2}{2 + (0.5)^2} \times 100$				
	$\eta = 11.11\%$				
		End of Solution			
111.	For practical purposes, the sign	nal to noise ratio fo	r acceptable quality transmiss	sion of analog	
	signals and digital signals respect	tively are			
	(a) 10 – 30 dB and 05 – 08 dB	(b) 40 – 60 dE	and 10 –12 dB		
	(c) 60 – 80 dB and 20 – 24 dB	(d) 70 – 90 dE	and 30 – 36 dB		
111.	Ans: (b)				
Sol:	In analog communication, the sig	gnal to noise power	ratio required for qualitative re	eception of the	
	signal is 40-50 dB whereas in di	gital communication	, the signal to noise power rat	tio required fo	
	qualitative reception is 10-15 dB.				
	In analog communication, the si	ignal power required	to be transmitted is very hig	h compared to	
	digital communication because	the SNR required	at the receiver is very high	gh for analog	
	communication (40-50 dB) comp	ared to digital comm	unication (10-15 dB)		
112. The discrete samples of an analog signal are to be uniformly quantized for PCM system maximum value of the analog sample is to be represented within 0.1% accuracy, then maximum value of the analog sample is to be represented within 0.1% accuracy.			iniformly quantized for PCM	system. If the	
			then minimun		
	number of binary digits required will be nearly				
	(a) 7 (b) 9	(c) 11	(d) 13		
112.	Ans: (c)				
Sol:	$(Q_e)_{max} \le 0.1\%$ of A_m				
	A 0.1				
	$\frac{1-m}{2^n} \le \frac{1}{100} \times A_m$				
	$\frac{1}{2^{n}} \leq \frac{1}{100} \times A_{m}$ $2^{n} \geq 1000$				

	ACEE Engineering Publications	57	ELECTRICAL ENGINEERING (SET – C)			
115.	Ans: (a)					
Sol:	$S(n) \rightarrow nu(n)$					
	$S(n-k) \rightarrow (n-k) u(n-k)$					
116.	Consider the analog signal $x_a(t) =$	$= 3 \cos 100 \pi t.$				
	The minimum sampling rate F _s re	quired to avoid aliasing	g will be			
	(a) 100 Hz (b) 200 H	Hz (c) 300 H	Iz (d) 400 Hz			
116.	.6. Ans: (a)					
Sol:	$\mathbf{x}(t) = 3\cos 100\pi t$					
Highest analog frequency $f_m = 50 \text{ Hz}$						
	Min.f _s required to avoid aliasing will be 2 $f_m = 100 \text{ Hz}$					
117.	The response of the system $y(n) = x(n)$ to the following input signal					
	$X(n) = \begin{cases} n , & -3 \le n \le 3\\ 0, & \text{otherwise} \end{cases}$					
	(a) Is delayed from input	(b) Is exactly sar	me as the input			
	(c) Leads the input	(d) Varies with s	signal			
117.	Ans: (b)					
Sol:	The system must be identity syste	em to make input as ou	tput			
		- End of Solution				
118.	The complex exponential Fourier	representation for the	signal $x(t) = \cos \omega_0 t$ is			
	(a) $\sum_{k=-\infty}^{\infty} c_k e^{-jk\omega_0 t}$	(b) $\sum_{k=-\infty}^{\infty} c_k e^{-j\alpha}$	D ₀ t			
	(c) $\sum_{k=-\infty}^{\infty} c_k e^{2jk\omega_0 t}$	(d) $\sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$				
118.	Ans: (d)					
Sol:	$\mathbf{x}(\mathbf{t}) = \cos \omega_0 \mathbf{t}$					
	EFS form $\sum_{k=-\infty}^{+\infty} C_K e^{jk\omega_0 t}$					
ACE E	ngineering Publications Hyderabad • Delhi • Bhopa	I • Pune • Bhubaneswar • Lucknow • Patn	a • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad			

HEAD OFFICE : HYDERABAD

Sree Sindhi Guru Sangat Sabha Association, # 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001. Address - II : # 204, Rahman Plaza, Abids, Hyderabad - 500001. Contact No: 040-23234418/19/20, 040-24750437 E-Mail : hyderabad@aceenggacademy.com

DELHI

Address I : Plot No. 3, Kh.No. 264, Near Saket Metro Station, Saidulajab, New Delhi-110030. Address II : # 63, FNS House, Beside Oriental Bank of Commerce, Near Hauz Khas Metro Station,Kalu Sarai,New Delhi-110016. Contact No : 9205282121, 9205282123, 7838971777, 9205282120.

BHOPAL

G – 1, Plot no : 207, Zone II, M.P Nagar, M. P – 462013. Contact No: 0755-2554512, 0755-2554612, 0755-4280242

PUNE

302, Vekatesh Villa, Upstairs JANATHA Sahakari Bank, Shivaji Nagar, Pune, Maharashtra - 411005. Contact No : 020- 25535950, 09343499966

BHUBANESWAR

Plot No: 625/A, 3rd Floor, Janpath, Saheed Nagar, Bhubaneswar. Contact No: 0674-2540340, 9861566244, 09379099966

LUCKNOW

A-7, Sector-J, Aliganj, Lucknow, Uttar Pradesh - 226024 Contact No. : 93421 99966, 8081 99 99 66, 0522 4046966

PATNA

1st Floor, N. P. Tower, Kankarbagh, PATNA - 800020. Contact No.: 08252194512, 9308699966, 9212188818

DILSUKH NAGAR

Gaddiannaram,Dilsukhnagar, Hyderabad. Contact No : 040 – 40209345, 040 – 40044451 KUKATPALLY

2nd floor, BSR Bellezza, Opp : JNTUH Campus, KPHB, Kukatpally, Hyderabad- 500072. Contact No: 040-6597 4465, 040-40199966, 93476 99966

BENGALURU

223, G R Arcade, 2nd floor, Malleswaram, Bangalore - 560003. Contact No: 080-23466699,41526699, 09341299966.

CHENNAI

39, North Usman Road, T Nagar, Chennai - 600017. Contact No : 044 - 42123289 , 9343799966

VISHAKAPATNAM

Door No. 48-14-91/6, 3rd Floor, Sri Nagar, Visakhapatnam – 530001. Contact No : 0891-6616001, 08374808999

VIJAYAWADA

Opp Stella College, Near Benz Circle, Vijayawada - 520 008 Contact No. : 0866-2490001, 96760 76001

TIRUPATI

Plot No:10, AIR Bypass Road, Tirupathi – 517502. Contact No: 0877-2244388, 9618155166, 09341499966

KOLKATA

3rd Floor, 369/4, EM Bypass, Avishar Shopping Mall, Kolkata - 700078. Contact No : 8297899966, 8886899966

AHMEDABAD

Shop.No 231, 2nd Floor, Sunrise Mall, Near Mansi Circle, Vasthrapur-Gujarat-380015. Contact No : 079 4890 2228, 9160499966

For Batch Details Visit : www.aceenggacademy.com

ACE ELECTRICAL ENGINEERING (SET – C) 59 119. The continuous LTI system is described by $\frac{\mathrm{d}\mathbf{y}(t)}{\mathrm{d}t} + 2\mathbf{y}(t) = \mathbf{x}(t)$ Using the Fourier transform, for $x(t) = e^{-t} u(t)$, the output y(t) will be (a) $(e^{-t}-e^{2t}) u(t)$ (b) $(e^{t}+e^{-2t}) u(t)$ (c) $(e^{-t}-e^{-2t}) u(t)$ (d) $(e^{t}+e^{2t}) u(t)$ 119. Ans: (c) **Sol:** $\frac{dy(t)}{dt} + 2y(t) = x(t)$ Apply F.T $(j\omega+2) Y(\omega) = X(\omega)$ $H(\omega) = \frac{Y(\omega)}{X(\omega)} = \frac{1}{j\omega + 2}$ If output $x(t) = e^{-t} u(t) \Rightarrow Y(\omega) = X(\omega)H(\omega)$ $=\frac{1}{(j\omega+2)(j\omega+1)}$ $=\frac{1}{(j\omega+2)}+\frac{1}{(j\omega+1)}$ I.F.T $y(t) = -e^{-2t} u(t) + e^{-t} u(t)$

End of Solution

120. The discrete Fourier series representation for the following sequence

$$x(n) = \cos \frac{\pi}{4} n \text{ is}$$
(a) $\frac{1}{2} e^{j\Omega_0 n} + \frac{1}{2} e^{-j\Omega_0 n} \text{ and } \Omega_0 = \frac{\pi}{8}$
(b) $\frac{1}{2} e^{-j\Omega_0 n} + \frac{1}{2} e^{-2j\Omega_0 n} \text{ and } \Omega_0 = \frac{\pi}{4}$
(c) $\frac{1}{2} e^{-j\Omega_0 n} + \frac{1}{2} e^{-j\Omega_0 n} \text{ and } \Omega_0 = \frac{\pi}{6}$
(d) $\frac{1}{2} e^{j\Omega_0 n} + \frac{1}{2} e^{j\Omega_0 n} \text{ and } \Omega_0 = \frac{\pi}{4}$
120. Ans: (d)

ACE Engineering Publications

	ACE Engineering Publications	60 ESE-201	9_PRELIMS_Solutions	
Sol:	$\mathbf{x}(n) = \sum_{k=0}^{N-1} C_k e^{jk\Omega_0 n}$			
	$\mathbf{x}(\mathbf{n}) = \cos\left(\frac{\pi \mathbf{n}}{4}\right)$			
	$N = \frac{2\pi}{\Omega_0} = \frac{2\pi}{\pi/4} = 8$			
	$= \frac{1}{2} e^{j\Omega_0 n} + \frac{1}{2} e^{j(-\Omega)}$	$\Omega^{(0)n}$ with $\Omega_0 = \pi/4$		
	$= \frac{1}{2} e^{j\Omega_0 n} + \frac{1}{2} e^{j(7\Omega)}$))n		
	As $C_k = C_{k+N}$	GINEERING		
	$C_{-1} = C_{-1+8} = C_7$	End of Solution		
121.	21. What are the values of k for which the solution of equations			
	(3k - 8) x + 3y + 3z =	0		
	3x+(3k-8)y+3z=0			
	3x+3y+(3k-8)z =			
	has a non – trivial so	lution?,	1	
	(a) $k = \frac{2}{3}, \frac{11}{3}, \frac{10}{3}$	(b) $k = \frac{2}{3}, \frac{10}{3}, \frac{11}{3}$ (c) $k = \frac{11}{3}, \frac{11}{3}, \frac{11}{3}$ (d) k	$=\frac{2}{3},\frac{11}{3},\frac{11}{3}$	
121.	. Ans: (d)	Since 1995		
Sol:	Let A = $\begin{bmatrix} 3k - 8 \\ 3 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 3 & 3 \\ -8 & 3 \\ 3 & 3k-8 \end{bmatrix}$		
	For non-trivial soluti	on, we have $ A = 0$		
	$\begin{vmatrix} 3k-8 & 3 & 3 \\ 3 & 3k-8 & 3 \\ 3 & 3 & 3k-4 \end{vmatrix}$	$\left = 0 \right $		
	$C_1 \rightarrow C_1 + C_2 + C_3$			
ACE E	Engineering Publications Hyd	erabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawaa	da • Vizag • Tirupati • Kolkata • Ahmedabad	

	ACE Engineering Publications	61 ELECTRICAL ENGINEERING (SET – C)
	$\begin{vmatrix} 3k-2 & 3 & 3 \\ 3k-2 & 3k-8 & 3 \\ 3k-2 & 3 & 3k-8 \end{vmatrix} = 0$	
	$R_2 - R_1$ and $R_3 - R_1$	
	$\begin{vmatrix} 3k-2 & 3 & 3 \\ 0 & 3k-11 & 0 \\ 0 & 0 & 3k-11 \end{vmatrix} = 0$	
	$\Rightarrow (3k-2)(3k-11)^2 = 0$	
	$\Rightarrow k = \frac{2}{3}, \frac{11}{3}, \frac{11}{3}$	
		End of Solution
122.	If $A = \begin{bmatrix} 2+i & 3 & -1+3i \\ -5 & i & 4-2i \end{bmatrix}$ then AA	A* will be (where, A* is the conjugate transpose of A)
	(a) Unitary matrix	(b) Orthogonal matrix
	(c) Hermitian matrix	(d) Skew Hermitian matrix
122.	Ans: (c)	
Sol:	$\mathbf{A} = \begin{bmatrix} 2+\mathbf{i} & 3 & -1+3\mathbf{i} \\ -5 & \mathbf{i} & 4-2\mathbf{i} \end{bmatrix}$	
	$\overline{\mathbf{A}} = \begin{bmatrix} 2-\mathbf{i} & 3 & -1-3\mathbf{i} \\ -5 & -\mathbf{i} & 4+2\mathbf{i} \end{bmatrix}$	
	$\mathbf{A}^* = \left(\overline{\mathbf{A}}\right)^{\mathrm{T}} = \begin{bmatrix} 2-\mathrm{i} & -5\\ 3 & -\mathrm{i}\\ -1-3\mathrm{i} & 4+2\mathrm{i} \end{bmatrix}$	
	$AA^{*} = \begin{bmatrix} 2+i & 3 & -1+3i \\ -5 & i & 4-2i \end{bmatrix} \begin{bmatrix} 2-i \\ 3 \\ -1-3i \end{bmatrix}$	$ \begin{bmatrix} -5 \\ -i \\ 4+2i \end{bmatrix} $
	$= \begin{bmatrix} 24 & -20+2i\\ -20-2i & 46 \end{bmatrix}$	
	It is Hermitian matrix	
		End of Solution
ACE F	Cngincering Publications Hyderabad • Delhi • Bhopal • Po	une • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

a BHUBANESWAR

ESE|GATE|PSUs - 2020 & 21 @ Delhi

Weekend Batch Start on

13th January 2019

Early Bird Discount Rs. 5000/- Off

on Registration Before 31st Dec, 2018 Call: 7838971777, 9205282120, 23

	ACE Engineering Publications	63	ELECTRICAL ENGINEERING (SET – C)	
123.	If $y = 2x^3 - 3x^2 + 3x - 10$, the value of $\Delta^3 y$	will be		
	(where, Δ is forward difference operator)			
	(a) 10 (b) 11	(c) 12	(d) 13	
123.	Ans: (c)			
Sol:	$y = 2x^3 - 3x^2 + 3x - 10$			
	By synthetic division			
	2 -3 3 -10			
	$\frac{0 0 0}{10}$			
	2 -3 3 -10			
	$\frac{2}{2}$ -1 2			
	4			
	$\overline{2 \mid 3}$			
	$f(x) = y = 2x^3 - 3x^2 + 3x - 10$			
	$= 2x^{(3)} + 3x^{(2)} + 2x^{(1)} - 10$ (By Factorial notation)			
	where $x^{(3)} = x(x-1)(x-2)$, $x^{(2)} = x(x-1)$) and $x^{(1)} = x$		
	$\Delta y = 6x^{(2)} + 6x^{(1)} + 2$			
	$\Delta^2 y = 12x^{(1)} + 2$			
	$\Delta^3 y = 12$			
	\therefore Option (c) is correct.			
	Enc	d of Solution		
124.	The solution of the differential equation			
	$x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = \log x$ is			
	(a) $y = (c_1 + c_2 x) \log x + 2 \log x + 3$	(b) $y = (a + b)$	$c_1 + c_2 x^2$) log x + log x +2	
	(c) $y = (c_1 + c_2 x) \log x + \log x + 2$	(d) $y = (a_{1})^{2}$	$c_1 + c_2 \log x) x + \log x + 2$	
124.	Ans: (d)			
Sol:	$x^{2} \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} + y = \log x$ (1)			
	It is in Euler-Cauchy's form			
ACE I	Engineering Publications (Hyderabad • Delhi • Bhopal • Pune • Bhubane	eswar • Lucknow • Patn	a • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad	

ELECTRICAL ENGINEERING (SET – C)

ACE 65 x varies from 0 to 4a and y varies from $\frac{x^2}{4a}$ to $2\sqrt{ax}$:. The required area = $\int_{0}^{4a} \int_{\frac{x^2}{x^2}}^{2\sqrt{ax}} dy dx$ $= \int_{0}^{4a} (y)_{\frac{x^2}{4}}^{2\sqrt{ax}} dx$ $=\int_{0}^{4a} \left(2\sqrt{ax} - \frac{x^2}{4a}\right) dx$ $= \left[2\sqrt{a} \left(\frac{2}{3} x^{3/2} \right) - \frac{1}{4a} \left(\frac{x^3}{3} \right) \right]_{a}^{4a}$ $=\frac{4}{3}\sqrt{a}(4a)^{3/2}-\frac{1}{12a}(64a^3)$ $=\frac{32}{3}a^2-\frac{16a^2}{3}$ $=\frac{16a^2}{3}$ End of Solution 126. The volume of the solid surrounded by the surface $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} + \left(\frac{z}{c}\right)^{2/3} = 1$ is (a) $\frac{4\pi abc}{25}$ (c) $\frac{2\pi abc}{35}$ (d) $\frac{\pi abc}{35}$ (b) $\frac{abc}{35}$ 126. Ans: (a) Sol: Changing the variables x, y, z in to X, Y, Z where $\left(\frac{x}{a}\right)^{1/3} = X, \quad \left(\frac{y}{b}\right)^{1/3} = Y, \quad \left(\frac{z}{c}\right)^{1/3} = Z$ Required volume = $\iiint dx dy dz = 27$ abc $\iiint X^2 Y^2 Z^2 dX dY dZ$ ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

EXECCE (66) ESE-2019_PRELIMS_Solutions
taken through the sphere
$$X^2 + Y^2 + Z^2 - 1$$

Now, changing X, Y, Z in to spherical planer coordinate r, 0, ϕ so that
X = rsin θ cos ϕ ,
Y = rsin θ sin ϕ ,
Z = r cos θ and
 $\frac{\partial(X, Y, Z)}{\partial(r, 0, \phi)} = r^2 \sin \theta$ to describe the positive
Octant of the sphere r varies from 0 to 1
 θ from 0 to $\frac{\pi}{2}$ and ϕ from 0 to $\frac{\pi}{2}$
V = 27 abc × 8 $\frac{1}{0} \int_{0}^{1/2} \int_{0}^{1/2} r^2 \sin^2 \theta \cos^2 \phi d\phi$
 $= 216 abc \int_{0}^{1} r^2 \int_{0}^{1/2} r^2 \sin^2 \theta \cos^2 \theta d\theta \int_{0}^{\pi/2} \sin^2 \phi \cos^2 \phi d\phi$
 $= \frac{4\pi abc}{35}$
End of Solution
127. The solution of the partial differential equation
 $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial x}{\partial y} = (x + y)z$ is
(a) $f\left(\frac{1}{x} - \frac{1}{y}, xyz\right) = 0$ (b) $f\left(\frac{1}{x}, \frac{xy}{x}, \frac{y}{z}\right) = 0$
(c) $f\left(\frac{1}{x} - \frac{1}{y}, xyz\right) = 0$ (d) $f\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{x}, \frac{xy}{x}\right) = 0$
127. Ans: (a)
Sol: $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial x}{\partial y} = (x + y)z$
The equation in Lagrange's linear form. The subsidiary equations are
 $\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{(xz + yz)}$ (1)

ACE

ELECTRICAL ENGINEERING (SET – C)

Consider, $\frac{dx}{x^2} = \frac{dy}{y^2}$ Integrating, $\frac{1}{x} - \frac{1}{y} = c_1$ (2) Again from (1) $\frac{\frac{1}{x}dx}{x} = \frac{\frac{1}{y}dy}{y} = \frac{\frac{dz}{z}}{(x+y)}$ $\Rightarrow \frac{\frac{1}{x}dx + \frac{1}{y}dy - \frac{1}{z}dz}{x + y - x - y}$ $\therefore \frac{1}{x}dx + \frac{1}{y}dy - \frac{1}{z}dz = 0$ $\log x + \log y - \log z = \log b$ $\therefore \frac{xy}{z} = b$ (3) From (2) and (3) $f\left(\frac{1}{x}-\frac{1}{y},\frac{xy}{z}\right)=0$ \therefore Option (a) is correct. End of Solution 128. The complex number $\left(\frac{2+i}{3-i}\right)^2$ is (b) $\frac{1}{2}\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$ (a) $\frac{1}{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$ (c) $\frac{1}{2}(\cos\pi + i\sin\pi)$ (d) $\frac{1}{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$ 128. Ans: (b) **Sol:** $\left(\frac{2+i}{3-i}\right) = \frac{(2+i)(3+i)}{9+1} = \frac{1}{10}(5+5i) = \frac{(1+i)}{2}$ ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

67

69ELECTRICAL ENGINEERING (SET - C) $\cos z = \sin z$ $\Rightarrow z = n\pi + \frac{\pi}{4}, n \in I$ For $n = 0, z = \frac{\pi}{4}$ is a singular point. $\therefore Z = \frac{\pi}{4}$ is a simple pole. End of Solution

131. If X is a discrete random variable that follows Binomial distribution, then which one of the following response relations is correct?

(a)
$$P(r+1) = \frac{n-r}{r+1}P(r)$$

(b) $P(r+1) = \frac{p}{q}P(r)$
(c) $P(r+1) = \frac{n+r}{r+1}\frac{p}{q}P(r)$
(d) $P(r+1) = \frac{n-r}{r+1}\frac{p}{q}P(r)$

131. Ans: (d)

Sol:
$$P(r) = n_{c_r} p^r q^{n-r}$$

 $P(r+1) = n_{C_{r+1}} p^{r+1} q^{n-(r+1)}$
 $\frac{P(r+1)}{P(r)} = \frac{n_{C_{r+1}} p^{r+1} q^{n-(r+1)}}{n_{c_r} p^r q^{n-r}}$
 $= \frac{n_{c_{r+1}}}{n_{c_r}} \left(\frac{p}{q}\right)$
 $= \frac{n!}{\angle (n-(r+1)). \angle r+1} \times \frac{(n-r)!r!}{n!} \left(\frac{p}{q}\right)$
 $= \left(\frac{n-r}{r+1}\right) \left(\frac{p}{q}\right)$
 $P(r+1) = \left(\frac{n-r}{r+1}\right) \left(\frac{p}{q}\right) P(r)$

End of Solution

ACE Engineering Publications

	ELECTRICAL ENGINEERING (SE	T – C)				
134.	I. Which material possesses the following properties ?					
	• Shining white colour with luster					
	• Soft, malleable and can be drawn into wires					
	• Poor in conductivity and tensile strength					
	• Used in making alloys with lead and copper					
	• Used for fuses and cable sheathing					
	(a) Silver (b) Tin (c) Nickel (d) Aluminium					
134.	ł. Ans: (b)					
Sol:	: The properties of tin material					
	1. White shining colour with lustre					
	2. Soft, malleable and can be drawn into wires					
	3. Poor electrical conductivity					
	4. Good tensile strength					
	Applications: soldering wires, sheathing, fuses					
	End of Solution					
135.	5. The saturation magnetization for Fe ₃ O_{4} , given that each cubic unit cell contains 8 Fe ²⁺ and	16Fe ³⁺				
	ions, where Bohr magneton is 9.274×10^{-24} A.m ² and that the unit cell edge length is 0.839					
	nm, will be					
	(a) 1.25×10^5 A/m (b) 5×10^5 A/m (c) 10×10^5 A/m (d) 20×10^5 A/m					
135.	5. Ans: (b)					
Sol:	: Given data:					
	Edge length of unit cell = 0.839×10^{-9} m					
	Volume of unit cell = $(0.839 \times 10^{-9})^3 \text{ m}^3$					
	Magnetic moment per Fe^{2+} ion = 4 Bohr magnetons					
	Number of Fe^{2+} ions per unit cell = 8					
	$M_{S} = N_{Fe^{2+}} \times 4 \times \mu_{B} = \left[\frac{8}{\left(0.839 \times 10^{-9}\right)^{3}}\right] \times 4 \times \left(9.27 \times 10^{-24}\right)$					
	$= 5.0 \times 10^5 \text{ A/m}$					
	End of Solution					

	ACCE 72 ESE-2019_PRELIMS_Solutions				
136.	6. Consider the following applications of the materials:				
	• Bismuth strontium calcium copper oxide used as a high temperature superconductor				
	• Boron carbide used in helicopter and tank armour				
	• Uranium oxide used as fuel in nuclear reactors				
	• Bricks used for construction				
	The materials used in these applications can be classified as				
	(a) Ceramic (b) Constantan (c) Manganin (d) Tantalum				
136.	Ans: (a)				
Sol:	Ceramics: Ceramics are compounds of metal and non-metals formed by predominantly with				
	ionic bonds.				
	Examples & uses of ceramics:				
	(1) Bismuth Strontium calcium copper oxide \rightarrow high temperature super conductor				
	(2) Boron carbide \rightarrow helicopter and tank armour				
	(3) Uranium oxide \rightarrow fuel in nuclear reactors				
	(4) Bricks \rightarrow construction				
107	End of Solution $1 - 50.71 - 1$				
137.	7. The saturation flux density for Nickel having density of 8.90 g/cm ³ , atomic number 58.71 and ne				
	magnetic moment per atom of 0.6 Bonr magnetons is nearly $(a) 0.82$ tools $(b) 0.76$ tools $(c) 0.64$ tools $(d) 0.52$ tools				
137	(a) 0.82 testa (b) 0.76 testa (c) 0.64 testa (d) 0.52 testa				
137. Sol·	Given data: $Ni = 0.60$ Bohr magnetron				
501.	: Given data: $NI = 0.00$ Bonr magnetron $u = 0.27 \times 10^{-24} \text{ A m}^2 \text{ u} = 4\pi \times 10^{-7} \text{ U/m}$				
	$\mu_{\rm B} = 9.27 \times 10^{-10}$ A-m, $\mu_0 = 4\pi \times 10^{-10}$ H/m Density is 8.90 g/cm ³ = 8.90 × 10 ⁶ g/m ³				
	$\sum_{n=1}^{\infty} N = \frac{800 \times 10^6}{(6023 \times 10^{23})}$				
	$N_{Ni} = \frac{p_{Ni} N_A}{A_{Ni}} = \frac{(6.50 \times 10^{-1}) \times (0.523 \times 10^{-1})}{58.71}$				
	$=9.12 \times 10^{28}$				
	$M_{S} = 0.60.\mu_{B}.N_{Ni} = 0.60 \times (9.27 \times 10^{-24}) \times (9.12 \times 10^{28})$				
	$= 5.1 \times 10^5 \text{ A/m}$				
	$B_{\rm s} = \mu_B M_{\rm s} = (4\pi \times 10^{-7})(5.1 \times 10^5) = 0.64$ Tesla				
	End of Solution				
ACE I	Engingering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad				

	ACE	73	ELECTRICAL ENGINEERING (SET – C)			
138. The temperature at which iron ceases to be ferromagnetic and becomes paramagnetic is						
	(a) Curie – Weiss point	(b) Thermo-m	nagnetic point			
	(c) Ferro-paramagnetic point	(d) Curie poin	t			
138.	Ans: (d)					
Sol: The iron is a ferromagnetic material, follows Curie-Weiss law $\chi = \frac{C}{T - T_{cw}}$						
	At Curie-point temperature, the ferror	magnetic materia	al convert into paramagnetic material.			
	Eg: Curie-point temperature of ferromagnetic Iron is 768°C.					
		End of Solution				
139.	Fick's laws refer to					
	(a) Finding whether a semiconductor	is <i>n</i> or <i>p</i> type	(b) Diffusion			
	(c) Crystal imperfections		(d) Electric breakdown			
139.	Ans: (b)					
Sol: Fick's law of diffusion:						
	Diffusion occurs in response to a concentration gradient expressed as the change in concentration					
	due to change in position.					
	(1) The molecular flux due to diffusion is proportional to the centration gradient.					
	(2) The rate of change of concentration at a point in space is proportional to the second derivative of concentration with space.					
End of Solution						
140.	A magnetic field applied perpendicu	alar to the direct	tion of motion of a charged particle exerts a			
	force on the particle perpendicular to	o both the magr	netic field and the direction of motion of the			
particle. This phenomenon results in						
	(a) Flux effect	(b) Hall Effect	t			
	(c) Magnetic field effect	(d) Field effec	et			
140.	Ans: (b)					
Sol:	Hall effect: A magnetic field applied	d perpendicular	to the direction of motion of charged particle			
	exerts hall voltage perpendicular to be	oth the magnetic	field and the direction of motion of particle.			
	Hall effect method is used to find					

ACE Engineering Publications

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE	(75 ELEC	TRICAL ENGINEERING (SET – C)		
143.	Consider the following applications:					
High temperature heat engines						
	Nuclear fusion reactors					
	• Chemical processing indu	stry				
	• Aeronautical and space in	dustry				
	Which one of the following	materials will be	used for these app	olications?		
	(a) Zirconia (b)	Alumina	(c) Ceramic	(d) Silicon carbide		
143.	Ans: (d)					
Sol:	Applications at silicon carb	oide :				
	1. High temperature heat eng	gines				
	2. Nuclear fussion reactors					
	3. Chemical processing indu	stry				
	4. Aeronautical and space in	dustry				
	5. Metal cutting tools					
		— End o	of Solution			
144.	The machine used for the pre-	eparation of nanc	particles of alum	ina is		
(a) Attrition mill (b) Grinding machine						
	(c) Vending machine	(d) W	elding machine			
144.	Ans: (a)					
Sol:	Attrition Milling Method (or) Ball Milling m	ethod is a top-dow	vn approach method used to produce		
	nanoparticles from bulk form	n with a principle	e of cutting / slicin	g.		
		End c	of Solution			
145.	If the voltage across an elem	nent in a circuit i	s linearly proporti	onal to the current through it, then i		
	is a					
	(a) Capacitor (b)	Transformer	(c) Resistor	(d) Inductor		
145.	Ans: (c)					
Sol:	V= IR					
	$V \propto R$					
	In resistor voltage is proportional to current.					
	End of Solution					
ACE	B Broincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijavawada • Vizag • Tirunati • Kolkata • Ahmedaha					

	T6 ESE-2019_PRELIMS_Solutions				
146.	6. Thevenin's equivalent circuit consists of				
	(a) Current source and series impedance (b) Voltage source and series impedance				
	(c) Voltage source and shunt impedance (d) Current source and shunt impedance				
146.	Ans: (b)				
Sol:	: Thevenin's theorem states that a linear two-terminal circuit can be replaced by an equivalent circu				
	consisting of a voltage source V_{th} in series with a resistor R_{th} ,				
147	End of Solution				
14/.	when the voltage sources are replaced with short circuits and current sources are replaced with				
	open circuits, leaving dependent sources in the circuit, the theorem applied is				
	(a) Superposition (b) Thevenin (c) Norton (d) Millman				
147.	Ans: (a)				
Sol:	In superposition theorem				
	1. All the ideal voltage sources are eliminated from the network by shorting the sources,				
	2. All the ideal current sources are eliminated from the network by opening the sources and do not				
	disturb the dependent sources present in the network.				
	End of Solution				
148.	The maximum power is delivered from a source to a load when the source resistance is				
	(a) Greater than the load resistance (b) Equal to zero				
	(c) Less than the load resistance (d) Equal to the load resistance				
148.	Ans: (b)				
Sol:	ol: Maximum power is delivered from a source to a load when the source resistance is minimum				
	the given question source resistance is zero.				
	End of Solution				
149.	A network delivers maximum power to the load resistance when it is				
	(a) Greater than Norton's equivalent resistance of the network(b) Equal to Thevenin's equivalent resistance of the network				
	(c) Less than source resistance				
	(d) Less than Norton's equivalent resistance of the network				
149.	Ans (b)				
Sol:	I: A network delivers maximum power to the load resistance when it is Equal to Thevenin				
	equivalent resistance of the network.				
	End of Solution				
ACE I	Engincering Publications (Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad				

	ACE Engineering Publications	(77)	ELECTRICAL ENGINEERING (SET – C)
150.	The impedance of a parallel circuit is (10 – j30)Ω at 1 M	Hz. The values of circuit elements will be
	(a) 10Ω and 6.4 mH	(b) 100Ω and 4.7	/ nF
	(c) 10Ω and 4.7 mH	(d) 100Ω and 6.4	h nF
150.	Ans (b)		
Sol:	Given $z = (10 - j30) \Omega$		
	Since parallel circuit		
	$y = \frac{1}{z} = \frac{1}{(10 - j30)} \frac{(10 + j30)}{(10 + j30)} = \frac{10 + j30}{1000}$	-	
	$y = \frac{1}{100} + j\frac{3}{100}$		
	So, $G = \frac{1}{100} \rightarrow R = 100\Omega$		
	$B_{c} = \omega C = \frac{3}{100} \rightarrow C = \frac{3}{100 \times 2\pi \times 1M}$		
	C = 4.7 nF		
		End of Solution	
ACE	Rugineering Publications	Bhubaneswar • Lucknow • Patna	• Bengaluru • Chennai • Vijavawada • Vizag • Tirunati • Kolkata • Abmadabad
			··· · ·

NEW DELHI WORLD BOOK FAIR 05th - 13th January, 2019

Stall No.: 72 in Hall No. H-12, Pragati Maidan, New Delhi

9266700077, 7838971777

NOW @ AHMEDABAD

9160499966

 Shop.no 231, 2nd Floor, Sunrise mall, Near Mansi Circle, Vasthrapur Gujarat-380015.

www.aceenggacademy.com