

Hyderabad | Delhi | Ahmedabad | Bhopal | Pune | Bhubaneswar | Bengaluru Lucknow | Patna | Chennai | Vijayawada | Vizag | Tirupathi | Kukatpally | Kolkata

ESE – 2019 (PRELIMS)

Questions with Detailed Solutions

CIVIL ENGINEERING

SET – A

ACE Engineering Academy has taken utmost care in preparing the **ESE-2019 PRELIMS** Examination solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (GATE/ESE/PSUs/PSC/GENCO/TRANSCO etc.,).

All Queries related to ESE - 2019 PRELIMS Solutions are to be sent to the following email address hyderabad@aceenggacademy.com | Contact Us:040-23234418,19,20

ESE – 2019 Prelims Examination

CIVIL Engineering

Subject wise Weightage

SUBJECT	No. of Questions	Marks
Building Materials	14	28
Solid Mechanics	19	38
Structural Analysis	12	24
Design of Steel structures	08	16
Design of Concrete & Masonry Structures	10	20
Construction Practice, Planning and Management	12	24
Fluid Mechanics & Hydraulic Machines	12	24
Hydrology	04	08
Irrigation Engineering	10	20
Environmental Engineering	12	24
Geotechnical Engineering	13	26
Surveying	10	20
Geology	01	02
Transportation Engineering (Highways, Railways, Airports, Docks & Harbours, Tunnels)	13	26
Total	150	300

ACE Engineering Publications

01. Which of the following statements are wholly correct regarding broken-brick aggregate useable in concretes?

2

- Broken-brick aggregate is obtained by crushing waste bricks; and it has a density varying between 1000 kg/m³ – 1200 kg/m³
- 2. Such aggregate is usable in concrete for foundation in light buildings, floorings and walkways.
- 3. Such aggregate may also be used in light-weight reinforced concrete floors.
- (a) 1 and 2 only (b) 2 and 3 only
- (c) 1 and 3 only (d) 1, 2 and 3

01. Ans: (d)

Sol: Broken bricks can be used as coarse aggregate in less important concrete works like foundations in light buildings, floorings and walkways. Since, these broken bricks have less density compared to conventional coarse aggregates, they can also be used in light-weight reinforced concrete floors. Hence, correct option is (d).

End of Solution

- 02. In handling air-entraining admixtures the beneficial amount of entrained air depends upon certain factors like
 - 1. Type and quantity of air-entraining agent
 - 2. Water-cement ratio of the mixSince 1995
 - 3. Strength of aggregates
 - 4. Extent of compaction of concrete
 - (a) 1, 2 and 3 only (b) 1, 2 and 4 only
 - (c) 1, 3 and 4 only (d) 1, 2, 3 and 4

02. Ans: (b)

Sol: The beneficial amount of entrained air depends on the workability requirement of the concrete mix. Strength of aggregates does not have any bearing on the workability of concrete. Hence, option (b) is the correct option.

- ACE 3 03. Which one of the following statements is **not** correct with respect to fly ash? As part replacement of cement in the range of 15%-30%, fly ash reduces the strength in the (a)
 - (b) Fly ash as a part replacement of sand has a beneficial effect on strength even at early age.

initial period, but once the Pozzolanic process sets in, higher strength can be obtained.

- Fly ash as a part replacement of sand is economical (c)
- A simultaneous replacement of cement and fine aggregates enables the strength at a (d) specified age to be equaled depending upon the water content.

03. Ans: (b)

Sol: Addition of flyash to concrete decreases the initial rate of strength gain of concrete. Hence, correct option is (b).

End of Solution

Which one of the following statements is **not** correct with respect to the properties of cement? 04.

- Highly reactive Pozzolanas enhance the early age strength of the composite cement (a)
- Pozzolanic activity refines pore structure which decreases electrolytic resistance of (b) concrete
- The expansion due to alkali-silica reaction can be controlled by replacement of as high as (c) 60% of OPC with high-calcium Pozzolana
- Such high amounts of replacement cements result in higher accelerated carbonation depths (d) compared to pure use of OPC only

04. Ans: (a)

Sol: Even in highly reactive pozzolanas, strength gain due to pozzolanic action does not start immediately as Ca(OH)2 is needed, which comes from the hydration of C3S and C2S. Hence, correct option is (a).

For **B.Tech – CSE Students**

CATE DICATE DICATE DICATE DICATE DICATE

TEST YOUR PREP IN A REAL TEST ENVIRONMENT Pre GATE - 2019

Date of Exam : **20th January 2019** Last Date to Apply : **09th January 2019**

Highlights:

- * Get real-time experience of GATE-2019 test pattern and environment.
- * Virtual calculator will be enabled.
- * Post exam learning analytics and All India Rank will be provided.
- * Post GATE guidance sessions by experts.
- * Encouraging awards for GATE-2019 toppers.

	ACCE Engineering Publications	5	ESE-2019 _ PRELIMS_Solutions		
05.	Hydration of which compound is respo	onsible for increase	e in strength of cement in later age?		
	(a) Tri-calcium Aluminate (C ₃ A)	(b) Tetra-	calcium Aluminoferrite (C ₄ AF)		
	(c) Tri-calcium Silicate (C ₃ S)	(d) Di-ca	cium Silicate (C ₂ S)		
05.	Ans: (d)				
Sol:	Both C ₃ S and C ₂ S contribute towards s	strength of cement	. Since C_3S is more reactive than C_2S , it		
	contributes towards initial strength and	contributes towards initial strength and C ₂ S contributes towards strength of cement at a later age			
	Hence, correct option is (d).				
		End of Solution			
		EERING			
06.	The creep strain of cement attains its te	erminal value by			
	(a) 1 year	(b) 2 years	On .		
	(c) 5 years	(d) 6 months	32		
06.	Ans: (c)				
Sol:	The rate of creep decreases with time.	The time taken by	v cement to attain maximum creep strain		
	is 5 years. Hence, correct option is (c).				
		End of Solution —			
07.	Which of the following methods will help in reducing segregation in concrete?				
	1. Not using vibrator to spread the concrete 1995				
	2. Reducing the continued vibration				
	3. Improving the cohesion of a lean dry mix through addition of a further small quantity of water				
	(a) 1, 2 and 3	b) 1 and 2 only			
	(c) 1 and 3 only (c)	d) 2 and 3 only			
07.	Ans: (a)				
Sol:	Continuous vibration increases the chances of segregation and in lean dry mix; small quantity of				
	water can improve the cohesion among the ingredients because of which segregation chances				
	reduces. Hence, correct option is (a).				

ACE Engineering Publications

ACE Engineering Publications	6 CIVIL ENGINEERING _ (SET – A)
On an average, in a 125 mm	slump, the concrete may lose about (in first one hour)
(a) 15 mm of slump	(b) 25 mm of slump
(c) 40 mm of slump	(d) 50 mm of slump
Ans: (d)	
	End of Solution
Permeability in concrete in following features?	studied towards providing for, or guarding against, which of
1. The penetration by m	aterials in solution may adversely affect the durability of concre
moreover, aggressive l	quids 'attack' the concrete.
2. In case of reinforced of	oncrete, ingress of moisture and air will result in corrosion of st
leading to an increase cover.	n volume of steel, resulting in cracking and spalling of the concr
3. The moisture penetrati	on depends on permeability and if the concrete can become satural
(a) $1 - 2$ and 2	(b) 1 and 2 anly
(a) 1, 2 and 3 (a)	(b) 1 and 2 only (d) 2 and 3 only
(c) I and 5 only	(d) 2 and 5 only
Ans: (b)	
If the concrete is complete	y saturated with water, frost action will lead to expansion and th
damage the concrete. Thus,	statement 3 is incorrect. Hence, correct option is (b).
	 On an average, in a 125 mm (a) 15 mm of slump (c) 40 mm of slump Ans: (d) Permeability in concrete is following features? 1. The penetration by ma moreover, aggressive lide 2. In case of reinforced contract is cover. 3. The moisture penetration with water it is less vulte (a) 1, 2 and 3 (c) 1 and 3 only Ans: (b) If the concrete is completed damage the concrete. Thus,

GATE+PSUs - 2020

HYDERABAD

29th April | 06th May | 11th May 18th May | 26th May | 02nd June 2019

ADMISSIONS ARE OPEN

EARLY BIRD OFFER :

Register on or Before 31st March 2019 : 3000/- Off

ACE CIVIL ENGINEERING _ (SET - A) 10 A bar of uniform rectangular section of area A is subjected to an axial tensile load P; its Young's 15. modulus is E and its Poisson's ratio is $\frac{1}{m}$. Its volumetric strain e_v is (b) $\frac{P}{AE}\left(1+\frac{2}{m}\right)$ (a) $\frac{P}{AE}\left(1+\frac{3}{m}\right)$ (d) $\frac{P}{AE}\left(1-\frac{1}{2m}\right)$ (c) $\frac{P}{AE}\left(1-\frac{2}{m}\right)$ 15. Ans: (c) Sol: $\varepsilon_{\rm v} = \frac{\sigma_{\rm x} + \sigma_{\rm y} + \sigma_{\rm z}}{E} (1 - 2\mu)$ $\varepsilon_v = \frac{p}{E}(1-2\mu)$ [Use $p = \frac{P}{A}$ and $\mu = \frac{1}{m}$] $\varepsilon_{v} = \frac{P}{AE} \left(1 - \frac{2}{m} \right)$ End of Solution The normal stresses on two mutually perpendicular planes are 140 N/mm² (Tensile) and 70 16. N/mm² (Tensile). If the maximum shear stress is 45 N/mm², the shear stress on these planes will be nearly (a) 20.9 N/mm^2 (b) 24.6 N/mm^2 (d) 32.0 N/mm^2 (c) 28.3 N/mm^2 16. Ans: (c) 70 MPa Sol: 140 MPa ►140 MPa

ACE Engineering Publications

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

70 MPa

	ACE ESE-2019_PRELIMS_Solutions
	$\tau_{max} = 45 \text{ MPa}$
	$\tau_{max} = \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$
	$(45)^2 = \left[\frac{140 - 70}{2}\right]^2 + \tau_{xy}^2$
	$2025 = \left(\frac{70}{2}\right)^2 + \tau_{xy}^2$
	$2025 = 1225 + \tau_{xy}^2$
	$\tau_{xy} = 28.3 \text{ MPa}$
17.	The normal stresses on the two mutually perpendicular planes at a point are 120 MPa (Tensile)
	and 60 MPa (Tensile). If the shear stress across these planes is 30 MPa, the principal stresses will
	be nearly
	(a) 124 MPa (Tensile) and 24 MPa (Compressive)
	(b) 132 MPa (Tensile) and 24 MPa (Compressive)
	(c) 124 MPa (Tensile) and 48 MPa (Tensile)
	(d) 132 MPa (Tensile) and 48 MPa (Tensile)
17.	Ans: (d)
Sol:	60 MPa 120 MPa 30 MPa 60 MPa 120 MPa 60 MPa
ACE E	zincering Publications (Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

CIVIL ENGINEERING _ (SET – A)

12

ACE Engineering Publications

ACE Engineering Publications

CIVIL ENGINEERING _ (SET – A)

14

ACE Engineering Publications

21.	Which one of the following statements specifies shear flow?
	(a) Flow of shear force along the beam
	(b) It is the product of the shear stress at any level and the corresponding width b (of the section)
	(c) Unbalanced force on any side of given section divided by area of section
	(d) The deformation at any level due to sudden variation in shear stress
21.	Ans: (b)
Sol:	Shear flow = Product of shear stress multiplied with width
	Shear Flow = $\tau b = \frac{VA\overline{y}}{I}$
	End of Solution
22.	Which one of the following statements is correct for the rotating shafts transmitting power?
	(a) Lower the frequency of shaft lower will be the torque
	(b) Higher the frequency of shaft lower will be the torque
	(c) Frequency of the shaft does not influence the torque
	(d) Higher the frequency of shaft higher will be the torque
22.	Ans: (b)
Sol:	$P = 2\pi NT$
	Frequency, $N \propto \frac{1}{T}$ Since 1995
	End of Solution
23	The maximum shear stress induced in a solid circular shaft of diameter 15 cm, when the shaft
20.	transmits 150 kW power at 180 rpm will be
	(a) 16 N/mm^2 (b) 14 N/mm^2
	(c) 12 N/mm^2 (d) 10 N/mm^2
23.	Ans: (c)
Sol:	$ au_{\max} = ?$
	Diameter, $d = 15 \text{ cm} = 150 \text{ mm}$
	P = 150 kW = 150 kN-m/s
ACE En	gincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

15

ACE Engineering Publications

21.

21.

Sol:

22.

22.

Sol:

23.

23.

Sol:

ESE-2019 _ PRELIMS_Solutions

ACE Engineering Publications

CIVIL ENGINEERING _ (SET - A)

N = 180 rpmPower transmitted, $P = \frac{2\pi NT}{60}$ $150 = \frac{2\pi(180)T}{60}$ $T = \frac{150}{6\pi} = 7.95 \text{ kN-m}$ For solid circular section $\tau_{\max} = \frac{16T}{\pi d^3} = \frac{16(7.95 \times 10^6)}{\pi (150)^3} = 12$ MPa End of Solution 24. A closely coiled helical spring made of 10 mm diameter steel wire has 15 coils of 100 mm mean diameter. The spring is subjected to an axial load of 100 N. For a modulus of rigidity of 8.16 × 10^4 N/mm², the stiffness of the spring will be nearly (a) 5.9 N/mm (b) 6.8 N/mm (c) 7.7 N/mm (d) 8.8 N/mm 24. Ans: (b) Sol: d = 10 mmSince 1995 n = 15 R = 50 mmP = 100 N $G = 8.16 \times 10^4 \text{ N/mm}^2$ K = ? Stiffness of spring, $K = \frac{Gd^4}{64R^3n}$ $=\frac{(8.16\times10^{4})(10^{4})}{64\times50^{3}\times15}$ K = 6.8 N/mm

16

ACE Engineering Publications

NEW YEAR Special OFFER from 31st Dec 2018 to 9th Jan 2019 25% Discount

Available Now

No. of Tests : 64 +

Free 22 Practice Tests of GATE - 2018 Online Test Series

Available Now

No. of Tests : 44 +

Free 30 Practice Tests of ESE - 2018 Online Test Series

All tests will be available till GATE - 2019 & ESE -2019 (Prelims) examinations respectively.

🕓 040 - 48539866 / 040 - 40136222 📓 testseries@aceenggacademy.com

APPSC-AEE (Prelims) ---Online Test Series

No. of Tests : 18

Topic Wise Tests : 15 | Mock Tests - 3 Civil | Mechanical | Electrical

Available Now

All Tests will be available till 18th February 2019

🕓 040 - 48539866 / 040 - 40136222 🛛 😫 testseries@aceenggacademy.com

ACE Engineering Publications

	ACE 19 ESE-2019_PRELIMS_Solution
26.	Ans: (b)
Sol:	V = 50 kN
	b = 250 mm
	h = 200 mm
	For triangular section
	$\tau_{\rm NA} = \frac{4}{3} \left[\tau_{\rm avg} \right] = \frac{4}{3} \left[\frac{50 \times 10^3}{\frac{1}{2} \times 250 \times 200} \right]$
	= 2.66 MPa = 2.7 MPa
	CINEERING
	End of Solution
27.	A timber beam, 100 mm wide and 150 mm deep, supports a UDL over a span of 2 m. If the sa
	stresses are not to exceed 28 MPa in bending and 2 MPa in shear, the maximum load that the
	beam can support is
	(a) 16 kN/m (b) 20 kN/m
	(c) 24 kN/m (d) 28 kN/m
27.	Ans: (b)
Sol:	$\sum_{2m} \sum_{m} \sum_{$
	$f_{max} = 28 MPa$
	$\tau_{max} = 2 \text{ MPa}$
	For rectangular section, $\tau_{\text{max}} = \frac{3}{2} \left[\tau_{\text{avg}} \right] = \frac{3}{2} \left[\frac{F}{bd} \right]$
	$2 = \frac{3}{2} \left[\frac{F}{100 \times 150} \right]$
	$F = 20,000 N = 20 kN = \frac{w\ell}{2}$
	$w = 20 \text{ kN/m} \dots (1)$
ACE E	ginecring Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedaba

21

CIVIL ENGINEERING _ (SET – A)

Using moment distribution method

Step :1 Distribution factors (DF)

Joint	Member	K	ΣΚ	$D = \frac{K}{\Sigma K}$
	BA	$\frac{3}{4} \times \frac{1}{4}$	$\frac{3I}{1} + \frac{I}{1} = \frac{5I}{1}$	$\frac{3}{5}$
В	BC	$\frac{3}{4} \times \frac{1}{6}$	16 8 16	$\frac{2}{5}$

22

EERINGA

Step 2: Assume all supports are fixed and fixed end moments (FEM) are calculated for each span **For span AB:**

40 kN

Since 1995

2 m

M_{FBA}

2 m

$$M_{FBA} = \frac{-WL}{8} = -20 \text{ kN-m}$$

$$M_{FBA} = \frac{WL}{8} = 20 \text{ kN-m}$$

Sign conventions

Anticlockwise moment is negative & clockwise moment is positive.

M_{FAB}

For span BC:

 $M_{FBC} = M_{FCB} = 0$ [Because no load on span BC]

ACE Engineering Publications

23

		24	CIVIL ENGINEERING _ (SET – A)
31.	Which of the following statements a	re correct in resp	ect of temperature effect on a load-carrying
	three-hinged arch?		
	1. No stresses are produced in a three	e-hinged arch du	e to temperature change alone.
	2. There is a decrease in horizontal tl	hrust due to rise	n temperature
	3. There is an increase in horizontal	thrust due to rise	in temperature.
	(a) 1 and 2 only	(b) 1 and 3 only	

(c) 2 only (d) 3 only

31. Ans: (a)

Sol: While no stresses are produced in a three hinged arch due to temperature change alone, it may be noted that, since the rise of the arch is altered as a consequence of the temperature change, the horizontal thrust for the arch already carrying a load will also alter.

Suppose a three hinged arch of span '*l*' and rise 'h' carries a uniformly distributed load of 'w' per unit run over the whole span

The horizontal thrust for the arch 'H' = $\frac{wL^2}{8h}$

Hence, change in the horizontal thrust due to change in the rise of the arch.

$$dH = \frac{-wL^2}{8h^2}dh$$
, $\frac{dH}{H} = \frac{-dh}{h}$, $dH = \frac{-dh}{h} \times H$

This is the decrease in the horizontal thrust due to rise in temperature

ACE Engineering Publications

ACE Engineering Publications

25

ACE Engineering Publications

ACE Engineering Publications

Note: In this problem, the section of the beam is not specified. We have to choose the location of maximum BM. Maximum BM occurs near centre.

To get more BM under a choosen wheel load, the resultant of load system and the choosen load must be at equal distance from centre. Then more BM occurs under the choosen load. In this problem 150 kN load is greater and nearer to the resultant, then more BM will occur under 150 kN load only.

ACE Engineering Publications

CIVIL ENGINEERING _ (SET - A)

30

ACE

ACE Engineering Publications

ACE

32

ACE Engineering Publications

S	ACE Engineering Publications	33	ESE-2019 _ PRELIMS_Solutions	
40.	A wind brace is to be	e provided between two columns s	paced at 5 m, at an inclination of 30° with	
	the horizontal, to resist a tension of 320 kN developed by a wind force. The effective area			
	required will be near	ly (considering 150 N/m ² as a relev	vant factor)	
	(a) 1670 mm ²	(b) 1640	mm ²	
	(c) 1600 mm^2	(d) 1570	mm ²	
40.	Ans: (*)			
Sol	The questions seems	to have insufficient data hence no	solution can be concluded	
		End of Solution		
41.	A beam column for a	a non-sway column in a building f	rame is subjected to a factored axial load	
	of 500 kN, factored moment at bottom of column of 45 kNm. For ISHB 200, the values are A			
	4750 mm ² , $\gamma_y = 45.1$	l, h = 200 mm, b = 200 mm, $b_f = 9$	9 mm and the effective length is 0.8 L. Its	
	buckling load will be		NOA	
	(a) 910 kN	(b) 930 kN	3	
	(c) 950 kN	(d) 980 kN		
41.	Ans: (c)			
Sol:	Factored axial load P	P = 500 kN		
	Factored moment M	= 45 kN -m		
	For ISHB 200 ; $A = 4750 \text{ mm}^2$; $r_{yy} = 45.1 \text{ mm}$			
	h = 1	200 mm; b = 200 mm = 1995		
		$2M$ $2 \times 45 \times 10^{3}$		
	Buckling load $P_e = F$	$P + \frac{210}{d} = 500 + 21000000000000000000000000000000000000$	kN	
		End of Solution –		
42.	Which of the followi	ng assumptions are correct for idea	Il beam behaviour?	
	1. The compression flange of the beam is restrained from moving laterally.			
	2. The tension flange of the beam is restrained from moving laterally.			
	3. Any form of local	buckling is prevented.		
	(a) 2 and 3 only	(b) 1 and 3 only		
	(c) 1 only	(d) 3 only		

CIVIL ENGINEERING _ (SET – A

42. 2 Sol: 7 2 5 43. 1 43. 1 6 1	 Ans: (b) Two important Assumptions are made to achient. 1. The compression flange of beam restration buckling. 2. Any form of local buckling is prevented. So that a beam loaded predominantly in flat capacity, when local buckling and lateral (or). Hence option 1 & 3 are correct. End of So In which one of the following industrial combination of pure flexure and flexure debetween the ends of the top and bottom chord for the following industrial for the following flexure debetween the ends of the top and bottom chord for the following flexure and flexure debetween the ends of the top and bottom chord for the following flexure and flexure debetween the ends of the top and bottom chord for the following flexure and flexure debetween the ends of the top and bottom chord for the following flexure and flexure debetween the ends of the top and bottom chord for the following flexure and flexure debetween the ends of the top and bottom chord for the following flexure and flexure debetween the ends of the top and bottom chord for the following flexure and flexure debetween the ends of the top and bottom chord for the following flexure and flexure debetween the ends of the top and bottom chord for the following flexure and flexure debetween the ends of the top and bottom chord for the following flexure and flexure debetween the ends of the top and bottom chord for the following flexure and flexure debetween the ends of the top and bottom chord for the following flexure debetween the ends of the top and bottom chord for the following flexure debetween the ends of the top and bottom chord for the following flexure debetween the ends of the top and bottom chord for the following flexure debetween the ends of the top and bottom chord flexure debetween the ends of the following flexure debetween the ends of the following flexure debet	ieve ideal beam behaviour ined against lateral buckling (or) lateral-Torsiona exure to attain its full moment capacity and shear lateral-Torsional buckling of beam are prevented. Solution roofing contexts, is the loading carried by the lue to shear induced by the relative deformation I members?		
Sol: 7	 Two important Assumptions are made to achient. 1. The compression flange of beam restration buckling. 2. Any form of local buckling is prevented. So that a beam loaded predominantly in flat capacity, when local buckling and lateral (or). Hence option 1 & 3 are correct. End of Se In which one of the following industrial combination of pure flexure and flexure debetween the ends of the top and bottom chord for the following industrial for the following	ieve ideal beam behaviour ined against lateral buckling (or) lateral-Torsiona exure to attain its full moment capacity and shear lateral-Torsional buckling of beam are prevented. Solution roofing contexts, is the loading carried by the lue to shear induced by the relative deformation members?		
43. I	 The compression flange of beam restration buckling. Any form of local buckling is prevented. So that a beam loaded predominantly in flat capacity, when local buckling and lateral (or). Hence option 1 & 3 are correct. End of So In which one of the following industrial combination of pure flexure and flexure debetween the ends of the top and bottom chord for the following industrial combination. 	ined against lateral buckling (or) lateral-Torsiona exure to attain its full moment capacity and shea lateral-Torsional buckling of beam are prevented. Solution roofing contexts, is the loading carried by the lue to shear induced by the relative deformation members?		
43. I	buckling. 2. Any form of local buckling is prevented So that a beam loaded predominantly in fle capacity, when local buckling and lateral (or) Hence option 1 & 3 are correct. End of S In which one of the following industrial combination of pure flexure and flexure d between the ends of the top and bottom chord	exure to attain its full moment capacity and shea lateral-Torsional buckling of beam are prevented. Solution roofing contexts, is the loading carried by the lue to shear induced by the relative deformation members?		
43. 1 43. (2. Any form of local buckling is prevented So that a beam loaded predominantly in fle capacity, when local buckling and lateral (or) Hence option 1 & 3 are correct. End of S In which one of the following industrial combination of pure flexure and flexure do between the ends of the top and bottom chord	exure to attain its full moment capacity and shea lateral-Torsional buckling of beam are prevented. Solution roofing contexts, is the loading carried by the lue to shear induced by the relative deformation members?		
43. 1 43. (So that a beam loaded predominantly in fle capacity, when local buckling and lateral (or) Hence option 1 & 3 are correct. End of S In which one of the following industrial combination of pure flexure and flexure d between the ends of the top and bottom chord	exure to attain its full moment capacity and shea lateral-Torsional buckling of beam are prevented. Solution roofing contexts, is the loading carried by the lue to shear induced by the relative deformation members?		
43. I (capacity, when local buckling and lateral (or) Hence option 1 & 3 are correct. End of S In which one of the following industrial combination of pure flexure and flexure d between the ends of the top and bottom chord	lateral-Torsional buckling of beam are prevented. Solution roofing contexts, is the loading carried by the lue to shear induced by the relative deformation members?		
43. 1 43. (Hence option 1 & 3 are correct. End of S In which one of the following industrial combination of pure flexure and flexure d between the ends of the top and bottom chord	Solution roofing contexts, is the loading carried by the lue to shear induced by the relative deformation I members?		
43. 1 6 1 (End of S In which one of the following industrial combination of pure flexure and flexure d between the ends of the top and bottom chord () M = 1	Solution roofing contexts, is the loading carried by the lue to shear induced by the relative deformation I members?		
43. 1 6 1 (In which one of the following industrial combination of pure flexure and flexure d between the ends of the top and bottom chord $(\cdot) V_{i}$	roofing contexts, is the loading carried by the lue to shear induced by the relative deformation members?		
1 (combination of pure flexure and flexure d between the ends of the top and bottom chord $()$ V_{i} = 1 = 1 = 1	lue to shear induced by the relative deformation I members?		
ł (between the ends of the top and bottom chord $()$ X'	l members?		
($()$ \mathbf{V} 1 1 1 1			
	(a) Vierendeel girders	(b) Scissors girders		
((c) Lenticular girders	(d) Mansard girders		
43. <i>1</i>	Ans: (a)			
Sol: \	Vierendeel girder is a series of rectangula	ar frames, which achieves stability by the rigid		
C	connections of vertical web members to the to	op and bottom chord.		
I	In a vierendeel girder, the loading is carried l	by a combination of pure flexure and flexure due to		
S	shear induced by relative deformation betwee	en the ends of the top and bottom chord members.		
	End of S	Solution		
44. I	Bearing stiffeners are provided			
((a) At the ends of plate girders			
((b) At the ends of plate girder and on both faces of the web			
((c) At the ends of plate girder and only on on	e face of the web		
((d) At the points of concentrated loads, to pro	tect the web from the direct compressive loads		

ACE Engineering Publications

	ACE 35 ESE-2019_PRELIMS_Solution
44. <i>A</i>	ans: (d)
Sol:	Bearing stiffeners are used to transfer concentrated loads on girder and heavy reactions
	support to the full depth of the web. They are required to prevent web yielding, web buckling
	and web crippling.
	Hence bearing stiffeners at point of concentrated load and at support.
	End of Solution
45.	If the cost of purlins /unit area is p and the cost of roof covering / unit area is r, then cost of
	trusses / unit area l for an economical spacing of the roof trusses will be
	(a) $p + r$ (b) $2p + r$
	(c) $p + 2r$
	ANGINE ACA
45.	Ans: (b)
Sol:	Let 'S' be spacing of truss
	'p' = cost of purlin per unit area
	't' = cost of truss per unit area
	'r' = cost of roof sheeting per unit area
	x = total (or) overall cost of truss per unit area
	$t\alpha \frac{1}{S} \Rightarrow t = \frac{C_1}{S} \Rightarrow C_1 = t \times S$
	$P \propto S^2 \Rightarrow p = C_2 S^2 \Rightarrow C_2 = \frac{p}{S^2}$ Since 1995
	$r \propto S \Rightarrow r = C_3 S \Rightarrow C_3 = \frac{r}{S}$
	$x = t + p + r = \frac{C_1}{S} + C_2S^2 + C_3S$
	To minimize the over all cost, the condition should be
	$\frac{\mathrm{d}x}{\mathrm{d}S} = 0 \Longrightarrow \frac{\mathrm{d}}{\mathrm{d}S} \left[\frac{\mathrm{C}_1}{\mathrm{S}} + \mathrm{C}_2 \mathrm{S}^2 + \mathrm{C}_3 \mathrm{S} \right] = 0$
	$-\frac{C_1}{S^2} + 2C_2S + C_3 = 0$

ACE Engineering Publications
	ACE Engineering Publications	36CIVIL ENGINEERING _ (SET - A)
	$\frac{C_1}{C_2} = 2C_2S + C_3$	
	S⁻ t×S [p] r	
	$\frac{1}{S^2} = 2\left[\frac{P}{S^2}\right]S + \frac{1}{S}$	
	$\frac{t}{r} = \frac{2p}{r} + \frac{r}{r}$	
	S S S t = 2n + r	
	p - 1	End of Solution
46.	A welded plate gird	er of span 25 m is laterally restrained throughout its length. It has to carry a
	load of 80 kN/m o	ver the whole span besides its weight. If $K = 200$ and $f_y = 250$ MPa, the
	thickness of web wi	ll be nearly CINEERING
	(a) 10 mm	(b) 14 mm
	(c) 16 mm	(d) 20 mm
10		W=127.5 kN/m
sol:		
		L = 25 m
	Span of girder $L = 2$	25 m Since 1995
	$f_y = 250 \text{ MPa}; K = -\frac{1}{t}$	$\frac{d}{d} = 200$
	Total load = 80 kN/m	m
	Factored load $= 1.5$	< 80 = 120 kN/m
	Self weight of welde	ed plate girder = $\frac{W}{400} = \frac{80 \times 25}{400} = 5 \text{ kN/m}$
	Factored self weight	$k = 1.5 \times 5 = 7.5 \text{ kN/m}$
	Total factored load	inclusive of self weight $W = 120 + 7.5$
		= 127.5 kN/m
	Maximum fac	tored bending moment $M_Z = \frac{WL^2}{8}$
ACE E	ngincering Publications Hydera	abad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE

37

Optimum thickness of web plate
$$t_w = \left[\frac{M_{zz}}{f_y \times K^2}\right]^{1/3}$$

$$= \left[\frac{9960.9375 \times 10^6}{250 \times 200^2}\right]^{1/3} = 9.99 \text{ mm} \simeq 10 \text{ mm}$$

End of Solution

47. A propped cantilever ABCD is loaded as shown in figure. If it is of uniform cross-section, the collapse load of the beam will be nearly

ACE Engineering Publications

ACE Engineering Publications No. of possible plastic hinges 'N' = 3 [at A, B & C]

No. of plastic hinges required to form a mechanism 'n' = $D_s + 1$

= 2

38

No. of independent mechanism 'I' = $N - D_S$

$$= 3 - 1$$

= 2 [Two beam mechanisms]

External work done $W_e = load \times displacement$ under the load

If load and displacements are in different direction, then work done is negative. Note:

$$W_{e} = + W_{c} \times \delta_{1} - \frac{W_{c}}{8} \times \delta_{2}$$
$$\delta_{1} = \frac{L}{2} \theta$$
$$\delta_{2} = \frac{L}{3} \theta$$
$$W_{e} = W_{c} \times \frac{L}{2} \theta - \frac{W_{c}}{8} \times \frac{L}{3} \theta$$
$$= W_{c} L \theta \left[\frac{1}{2} - \frac{1}{24} \right]$$
$$= \frac{11}{24} W_{c} L \theta$$

ACE Engineering Publications

ACE

 $W_{c} = \frac{24M_{p}}{L}$ Internal workdone (w_i) = Moment × Rotation $= M_{P} \theta + M_{P} \theta + M_{P} \theta$ $= 3M_{P} \theta$ $W_{e} = W_{i}$ $\frac{11}{24} W_{c} L \theta = 3M_{P} \theta$ $W_{c} = \frac{3 \times 24}{11} \times \frac{M_{P}}{L}$ $W_{c} = \frac{72M_{p}}{11L}$ $W_{c} = 6.5 \frac{M_{P}}{L}$ Beam mechanism in span CD :

39

 $M_{e} = \frac{W_{c}}{8} \times \delta_{3} = \frac{W_{c}}{8} \times \frac{L}{3} \theta$ $W_{e} = \frac{W_{c}}{8} \times \delta_{3} = \frac{W_{c}}{8} \times \frac{L}{3} \theta$ $W_{i} = M_{P} \theta$ $W_{e} = W_{i}$ $\frac{W_{c}}{8} \times \frac{L}{3} \theta = M_{P} \theta$ $W_{c} = \frac{24M_{P}}{L}$

True collapse load is least of above beam mechanism i.e $6.5 \frac{M_{P}}{L}$

HEARTY CONGRATULATIONS TO OUR ESE 2018 RANKERS

AIR

AIR

JAPJIT SINGH E&T

VITTHAL PANDEY ME

AIR

AIR

AIR

AIR

AMIT KUMAR ME

RATIPALLI NAGESWAR

AIR

AIR

AIR

AIR

ROHIT BANSAL

and many more ...

AIR

AIR

AIR

TEKCHAND DESHWAL

EE

MAYUR PATIL ME

ROHIT KUMAR CE

(RAVI TEJA MANNE EE

ANKIT GARG

KUMUD JINDAL

AIR

MILAN KRISHNA

VIJAYA NANDAN CE

EE

CIVIL ENGINEERING _ (SET – A)

42

ACE Engineering Publications

	ACE Engineering Publications	(44)	CIVIL ENGINEERING _ (SET – A)
51.	A circular column is subjected to a	n un-factored load	d of 1600 kN. The effective length of the
	column is 3.5 m, the concrete is M	25, and the value	e of $\rho_g = \frac{A_{SC}}{A_g} = 2\%$ for Fe 415 steel. The
	design diameter of the column will b	e nearly	
	(a) 446 mm	(b) 432 mm	
	(c) 424 mm	(d) 410 mm	
51.	Ans: (a)		
Sol:	Factored load, $P_u = 1.5P$		
	$= 1.5 \times 1600 = 2400 \text{ kN}$	NEERING	
	Load carrying capacity of a circular	column with latera	al ties (General case)
	$P_u = 0.4 \ f_{ck} \ A_c + 0.67 \ f_y \ A_{sc}$		Cont.
	$2400 \times 10^{3} = 0.4 \times 25 \times (A_{g} - A_{sc}) +$	$0.67 \times 415 \times A_{sc}$	2
	$= 0.4 \times 25 \times \left(A_{g} - \frac{2}{100}A_{g}\right)$	$\left(\right) + 0.67 \times 415 \times \frac{2}{10}$	$\frac{2}{20}A_{g}$
	$= 9.8 A_{\rm g} + 5.6 A_{\rm g} = 15.4$	Ag	
	$A_g = 155844.16 \text{ mm}^2$		
	$\frac{\pi}{4}D^2 = 155844.16$	> <	
	$D = 445.45 \text{ mm} \simeq 446 \text{ mm}$	Since 1995	
	Α	\mathbf{C}	E

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ESE-2019 _ PRELIMS_Solutions

Design constants

ACE Engineering Publication

$$K = \frac{m}{m+r} = \frac{18}{18 + \frac{140}{5}} = 0.39 \simeq 0.4$$
$$J = 1 - \frac{K}{3} = 1 - \frac{0.4}{3} = 0.87$$
$$Q = \frac{1}{2}JK = \frac{1}{2} \times 5 \times 0.87 \times 0.4 = 0.87$$

Moment of Resistance of B.S

$$MR = Qbd^{2} = 0.87 \times 200 \times 350^{2} = 21.315 \times 10^{6} \text{ N-mm}$$

47

 $B.M > M.R \therefore O.R.S$

Actual depth of N.A (x_a)

$$B.M = \frac{1}{2}Cbx_{a}\left(d - \frac{x_{a}}{3}\right)$$
$$24 \times 10^{6} = \frac{1}{2} \times 5 \times 200x_{a}\left(300 - \frac{x}{3}\right)$$

 $x_a = 162.19 \text{ mm}$

$$\frac{C}{x_a} = \frac{\frac{T_a}{m}}{d - x_a}$$

$$\frac{5}{250} = \frac{\frac{T_a}{18}}{250 - 162 + 10}$$

$$\frac{1}{162.19} = \frac{1}{350 - 162.19}$$

 $T_a = 104.2 \text{ N/mm}^2$

Area of tension steel required

$$C = T$$

$$\frac{1}{2}Cbx_{a} = T_{a}A_{st}$$

$$\frac{1}{2} \times 5 \times 200 \times 162.19 = 104.2 \times A_{st}$$

$$A_{st} = 778.26 \text{ mm}^{2}$$

ACE Engineering Publications (Hyder

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

1995

CIVIL	ENGINEERIN	G_(SET – A)

56.	5. Which of the following statements are correct with reference to ensuring minimum shrinka			
	prestressed concrete?			
	1. The water-cement ratio and proportion of cement paste should be kept minimum to reduc			
	shrinkage.			
	2. Aggregates of larger size, well graded for minimum void, need a smaller amount of cemer			
	paste, and attendant shrinkage will be smaller.			
	3. Harder and denser aggregates of low water absorptions and high modulus of elasticity wi			
	exhibit small shrinkage.			
	(a) 1 and 2 only (b) 1 and 3 only			
	(c) 2 and 3 only (d) 1, 2 and 3			
56.	Ans: (d)			
Sol:				
	• Rich mixes exhibit a relatively greater shrinkage than lean mixes since the contraction of th			
	cement gel increases with the cement content.			
	• The rate and amount of shrinkage will depend very much upon the ratio of surface area to			
	volume of the member, to minimise shrinkage lesser surface area of coarse aggregate t			
	selected.			
	• Aggregates of rock types having high modulus of elasticity and low values of deferred strai			
	are more effective in restraining the contraction of the cement paste.			
	S End of Solution 5			
57.	During earthquakes, the corner and edge columns may be subjected to			
	(a) Uniaxial bending			
	(b) Biaxial bending			
	(c) Combined biaxial bending and torsion			
	(d) Combined biaxial bending and tension			
57.	Ans: (c)			
Sol:	The corner and edge columns during earthquakes may be subjected to combined biaxial bendin			
	and torsion.			
·				

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

48

ACE Engineering Publications

	ACE Engineering Publications	(49)	ESE-2019 _ PRELIMS_Solutions	
58.	The minimum number of ba	ars required in a rectangu	lar column for an earthquake resistant	
	design, is			
	(a) 4	(b) 6		
	(c) 8	(d) 10		
58.	Ans: (a)			
Sol:	The minimum number of bar	s required in a rectangular	column for an earthquake resist design :	
	4			
59.	The permissible or allowable	compressive stress f _{ac} of bri	ick masonry does not depend on	
	(a) Type and strength of brick	ts (b) Efflore	scence of bricks	
	(c) Strength of mortar	(d) Slende	rness ratio	
			70.	
59.	Ans: (b)	()	EZ.	
Sol:	Efflorescence of bricks does	not affect the strength of	brick or brick masonry. Hence, correct	
	option is (b)			
		End of Solution		
60.	A masonry dam 8 m high, 1.5	5 m wide at the top and 5 m	wide at the base retains water to a depth	
	of 7.5 m, the water face of the dam being vertical. If the weight of water is 9.81 kN/m ³ , weight of			
	masonry is 22 kN/ m^3 , the may	ximum intensity of stress de	eveloped at the base will be nearly	
	(a) 196 kN/m^2	(b) 182 kN/m^2 1995		
	(c) 160 kN/m^2	(d) 148 kN/m^2		
60.	Ans: (b)			
Sol:				
	7.5m	\mathbf{W}_{1} \mathbf{W} \mathbf{W}_{2}		
	P			
		$\frac{1.5\text{m}}{5\text{m}}$ 3.5m B		
ACE E	ngineering Publications Hyderabad • Delhi • Bho	opal • Pune • Bhubaneswar • Lucknow • Patna • Be	ngaluru • Chennai • Vijavawada • Vizag • Tirupati • Kolkata • Ahmedabad	

ACE

50 Total water pressure = $\gamma H^2/2$ Taking moments about 'B' overturning moment due to water pressure $=\left(\frac{\gamma H^2}{2}\right) \times \frac{H}{3}$ $=\frac{\gamma H^3}{6}=9.81\times\frac{7.53^3}{6}=689.76\,\text{KNm/m}$ Resisting moment = $W_1 \times \left(3.5 + \frac{1.5}{2}\right) + W_2 \left(2 \times \frac{3.5}{3}\right)$ $W_1 = 22 \times 1.5 \times 8 = 264 \text{ kN/m}$ length of dam $W_2 = 22 \times 0.5 \times 3.5 \times 8 = 308$ kN/m length of dam Resisting moment = $264(4.25)+(308\times7/3)$ = 1122 + 718.67= 1840.67 kNm/m. Net moment = 1840.67 - 689.76= 1150.91 kNm Total downward force = $W_1 + W_2$ = 264 + 308 = 572 kN Point of application of resultant force from B $=\frac{M}{P}=\frac{1150.91}{572}$ Since 1995 = 2.01 mEccentricity $e = \frac{b}{2} - \overline{x} = \frac{5}{2} - 2.01 = 0.49m.$ Maximum pressure occurs at the $=\frac{\sum W}{b}\left(1+\frac{6e}{b}\right)$ $=\frac{572}{5}\left(1+\frac{6\times0.49}{5}\right)$

 $= 181.66 \text{ kN/m}^2$

ACE Engineering Publications

	ACE Engineering Publications	(51)	ESE-2019 _ PRELIMS_Solutions
61.	A front-end loader on a giv	ven job moves a load of 1.5 m ³	of loose soil in one cycle consisting of
	loading-lifting-travelling-un	nloading-return trip-and-ready	for next loading. If each cycle time is
	1.2 minutes, the actual outp	out will be	
	(a) 75 m ³ /hour	(b) 70 m ³ /hour	
	(c) $65 \text{ m}^3/\text{hour}$	(d) 60 m^3 /hour	
61. A	.ns: (a)		
Sol:			
	Given data		
	Volume of front - end loade	er bucket capacity (V) = 1.5 m^3	/cycle
	Cycle time $(CT) = 1.2 \min$	ites C	
	$= 1.2 \times 60 = 72 \text{ sec}$		O _n
	Output capacity of loader =	$= \frac{\text{Volume of bucket} \times 3600}{\text{cycle time}} \times (\text{fa})$	actors if any)
	$=\frac{1.5\times3600}{72}$	$-\times(1\times1) = 75 \text{ m}^3/\text{hr}$ End of Solution	
62.	Which of the following tecl	hniques belong to 'Project Tim	e Plan'?
	1. Critical path method		
	2. Precedence network anal	lysis Since 1995	
	3. Line of balance techniqu	e	
	4. Linear programme chart		
	(a) 1, 2 and 3 only	(b) 1, 2 and 4 only	
	(c) 3 and 4 only	(d) 1, 2, 3 and 4	
62.	Ans: (a)		
Sol:	Project Planning and sched	uling techniques	
	1. Charts:		
	i) Horizontal bar chart		
	ii) Linked bar chart		
	iii) Mile stone chart		

	EXACTE (52)	CIVIL ENGINEERING _ (SET – A)
	2. Network Diagrams:	
	i) CPM	
	ii) PERT	
	3. Precedence Network:	
	4. Line of Balance	
	Linear Programme Chart is not existing.	
	End of Solution	
63.	B. A construction equipment has an initial cost of $₹$ 2,00	0, 000 and salvage value of \gtrless 50,000 at the
	end of an economic life of 5 years. The rate of straig	ght-line depreciation and total depreciation
	will be	
	(a) 0.1 and ₹ 1,50,000 (b) 0.2 and ₹ 1,5	50,000
	(c) 0.1 and \gtrless 1,00,000 (d) 0.2 and \gtrless 1,0	00, 000
63.	8. Ans: (b)	
Sol:	bl: Initial cost (P) = $2,00,000$	
	Salvage value (SV) = 50,000	
	Life period $(n) = 5$ years	
	Rate of depreciation $=\frac{1}{n}$ Since 1995	
	$=\frac{1}{5}=0.2$	F.
	Total depreciation = $P - SV$	
	= 2,00,000 - 50000 = 1,50,000/-	

	ACE Engineering Publications	53 ESE-2019_PRELIMS_Solutions
64.	Consider the fo	ollowing assembly with different operations:
		$A \xrightarrow{E} F$
	Operation	Standard time minutes
	А	60
	В	65 NEERING
	С	29 6 4 6 4
	D	37
	E	~ 28
	F	63
	G	36
	Н	126
	K	64
	There are 250	working days in a year to produce 4000 units in a year. The minimum number of
	work stations r	required will be Since 1995
	(a) 13	(b) 12 (c) 11 (d) 10
64.	Ans: (a)	
Sol:		\sim \sim \sim
		$(B,65) \longrightarrow (D,37) \longrightarrow (G,36)$
		A,60 E,28 H,126 $K,64$ C,29 $F,63$

	ACE Engineering Publications	54CIVIL ENGINEERING _ (SET - A)
	Path	Duration
	$\mathbf{A}-\mathbf{B}-\mathbf{D}-\mathbf{H}-\mathbf{K}$	388
	$\mathbf{A}-\mathbf{C}-\mathbf{E}-\mathbf{G}-\mathbf{H}-\mathbf{K}$	343
	$\mathbf{A}-\mathbf{C}-\mathbf{F}-\mathbf{H}-\mathbf{K}$	342
	Time required to complete	one product = 388 min.
	Total time required to prod	luce 4000 units = 4000×388
		= 15,52,000 min
	Available time $= 250$	$\times 8 \times 60 = 1,20,000 \text{ min}$
	Minimum number of work	stations = $\frac{\text{Total time required}}{\text{Available time}}$
	$=\frac{1}{1}$	$\frac{5,52,000}{,20,000} = 12.93 \approx 13$
		End of Solution
65.	Flattening and smoothing t	he road surface by scrapping is called
	(a) Compaction	(b) Consolidation
	(c) Grading	(d) Ditch digging
65.	Ans: (c)	
Sol:	Flattening and smoothing b	by road roller is called Compaction.
	Flattening and smoothing b	by scrapper is called grading
		End of Solution
66.	The amount of time by wh	ich the start of the activity may be delayed without interfering with the
	start of any succeeding act	ivity is called
	(a) Activity float	(b) Free float
	(c) Total float	(d) Interfering float
66.	Ans: (b)	
Sol:	Free float is a permissib	le delay period within which the activity can be delayed without
	affecting the occurrence of	next activity.
ACE En	gineering Publications Hyderabad • Delhi	• Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE Engineering Publications		(55)	ESE-2019 _ PRELIMS_Solutions		
67.	A crew consisting of tw	o carpenters ar	nd one helper can fix	10 m ² of a slab form work in 8 hours		
	and the hourly labour ra	ate of a carpent	ter is ₹ 85 and for a	helper is ₹ 69.50. An average hourly		
	rate per worker of the cr	ew will be near	rly			
	(a) ₹90	(b) ₹ 80	(c) ₹ 70	(d) ₹ 60		
67.	Ans: (b)					
Sol:	Crew : 2 carpenters					
	1 helper					
	Hourly rate of crew = $(2$	2 × 85 + 69.5)				
	= 239.5	CIN	EERING			
	Average hourly rate per	worker = $\frac{239}{2}$	$\frac{5}{2} = 79.83$			
	riverage nearly rate per	3		TZ I		
		र	$\simeq 80$	2		
		I	End of Solution			
68.	A project with the proc	luction cost of	₹ 100 crores, has 20	0,000 man-months as direct labour, o		
	which 60% is non-pro-	luctive time. 7	The labour cost as	estimated while tendering is 20% o		
	project cost. If 15% of	the wastage re	esulting from non-pr	oductive time is eliminated by using		
	improved methods, the resulting saving in labour cost will be					
	(a) 14.5%	(b) 18	.5%e 1995			
	(c) 22.5%	(d) 26	.5%			
68.	Ans: (c)					
Sol:	Labour $cost = 20\%$ of	project cost				
	$= 0.2 \times 100$					
	= 20 Cr					
	Productive $cost = 0.4$ >	< 20				
	= 8 Cr					
	Non-productive cost = $0.6 \times 20 = 12$ Cr					
ACE Er	ngineering Publications Hyderabad • D)elhi • Bhopal • Pune • Bhul	baneswar • Lucknow • Patna • Bengal	uru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabao		

56

ESE / GATE / PSUs - 2020 ADMISSIONS OPEN

CENTER	COURSE	BATCH TYPE	DATE
HYDERABAD - DSNR	GATE + PSUS – 2020	Regular Batches	26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - DSNR	ESE + GATE + PSUs - 2020	Regular Batches	21st March, 26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - DSNR	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - DSNR	GATE + PSUs - 2020	Morning/Evening Batch	21st Jan 2019
HYDERABAD - DSNR	ESE – 2019 STAGE-II (MAINS)	Regular Batch	17th Feb 2019
HYDERABAD - Abids	GATE + PSUS – 2020	Regular Batches	26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - Abids	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - Abids	ESE + GATE + PSUs - 2020	Morning Batch	21st Jan 2019
HYDERABAD - Abids	ESE – 2019 STAGE-II (MAINS)	Regular Batch	17th Feb 2019
HYDERABAD - Abids	GATE + PSUs - 2020	Weekend Batch	19th Jan 2019
HYDERABAD - Abids	ESE+GATE + PSUs - 2020	Spark Batches	11th May, 09th June 2019
HYDERABAD - Kukatpally	GATE + PSUs - 2020	Morning/Evening Batch	21st Jan 2019
HYDERABAD - Kukatpally	GATE + PSUS – 2020	Regular Batches	17th May, 1st, 16th June, 1st July 2019
HYDERABAD - Kukatpally	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - Kothapet	ESE + GATE + PSUS - 2020	Regular Batches	21st March, 26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - Kothapet	ESE+GATE + PSUs - 2020	Spark Batches	11th May, 09th June 2019
DELHI	ESE+GATE+PSUs - 2020	Weekend Batches	13 th Jan, 2 nd Feb 2019
DELHI	ESE+GATE+PSUs - 2020	Regular Evening Batch	18 th Feb 2019
DELHI	ESE+GATE+PSUs - 2020	Regular Day Batch	11 th May 2019
DELHI	ESE+GATE+PSUs - 2020	Spark Batch	11 th May 2019
DELHI	ESE+GATE+PSUs - 2021	Weekend Batch	13 th Jan 2019
DELHI	GATE+PSUs - 2020	Short Term Batches	11 th , 23 rd May 2019
BHOPAL	ESE + GATE+PSUs - 2020 & 21	Evening Batch	09 th Jan 2019
BHOPAL	ESE+GATE+PSUs - 2020	Regular Day Batch	01st Week of June 2019
PUNE	GATE+PSUs - 2020	Weekend Batch	19 th Jan 2019
PUNE	ESE+GATE+PSUs - 2021	Weekend Batch	26 th Jan 2019
BHUBANESWAR	GATE+PSUs - 2020 & 21	Weekend Batch	12 th Jan 2019
BHUBANESWAR	GATE+PSUs - 2020	Regular Batch	02nd Week of May 2019

FOR BATCH DETAILS VISIT : www.aceenggacademy.com

	ACE	58	CIVI	L ENGINEERING _ (SET – A)	
70.	A systematic measurement	and evaluation of	the way in which	ch an organization manages its	
	health and safety programm	e against a series of	specific and attain	nabale standards is called	
	(a) Safety inspection	(b) Safety	audit		
	(c) Safety plan	(d) Safety	committee		
70.	Ans: (c)				
Sol:	Safety Inspection: A forma	alized and properly	documented proc	ess of identifying hazards in the	
	workplace. It can also be ca	lled as 'Safety Audit	t'		
	Safety Plan : A formal proc generally contains rules and	edure to be followe regulations to be fo	ed to ensure safet	y of workers at a work place. It te plan map.	
	Safety Committee: A grou	p of members from	management, wo	orkforce from all departments to	
	promote and communicate s	afety and health at a	work place.		
		End of Solu	ition		
71.	On a construction project, the contractor, on an average, employed 100 workers with 50 hours				
	working per week. The project lasted for 35 weeks and, during this period, 14 disabling injuries				
	occurred. The injury-freque	ncy rate will be (bas	ed on one lakh of	man hours worked)	
	(a) 5 (b) 6	((:) 7	(d) 8	
71.	Ans: (d)				
Sol:	No. of workers/week = 100	Since 1	995		
	Working hours/week = 50				
	Project duration = 35 weeks				
	Project duration in lakhs of	man hours = $\frac{35 \times 50}{35 \times 50}$	×100		
		10	5		
		= 1.75 lal	ch man hrs		
	No. of injuries = 14				
	Injury frequency rate = $\frac{\text{No. of injuries}}{\text{Man hrs in lakh}}$				
	=	$=\frac{14}{1.75}=8$			

60

(a)
$$\frac{k}{k-1}\frac{p_1}{w_1} + \frac{v_1^2}{2g} + z_1 = \frac{k}{k-1}\frac{p_2}{w_2} + \frac{v_2^2}{2g} + z_2 + h_L$$

(b) $\frac{k}{k-1}\frac{p_1}{w_1} + \frac{v_1^2}{2g} + z_1 = \frac{k}{k-1}\frac{p_2}{w_2} + \frac{v_2^2}{2g} + z_2$
(c) $\frac{p_1}{w_1} + \frac{v_1^2}{2g} + z_1 + H_m = \frac{p_2}{w_2} + \frac{v_2^2}{2g} + z_2$
(d) $\frac{k}{k-1}\frac{p_1}{w_1} + \frac{v_1^2}{2g} + z_1 + H_m = \frac{p_2}{w_2} + \frac{v_2^2}{2g} + z_2 + h_L$

ACE Engineering Publications

ACE (61) Ans: (b)

62 CIVIL ENGINEERING (SET - A) 76. Ans (b) Sol: Before and after the jump formation, the flow is essentially one-dimensional Hence assumption '1' is wrong. The channel floor is horizontal (or) the slope is gentle so that the weight component of the water mass comprising the jump is <u>very less</u>. Hence assumption '3' is wrong.

Only assumption '2' is correct

(b) 3

77. Water is to be pumped out of a deep well under a total head of 95 m. A number of identical pumps of design speed 1000 rpm and specific speed 900 rpm with a rated capacity of 150 *l*/s are available. The number of pumps required will be

(c) 5

(d) ′

(a) 1

77. Ans: (b)

Sol: For each identical pump

$$N_s = \frac{N\sqrt{Q}}{H^{3/4}}$$

 $900 = \frac{1000\sqrt{150}}{H^{3/4}}$

$$H^{3/4} = \frac{10}{9}\sqrt{150} = \frac{10}{9} \times 12.247 = 13.6$$
 Since 1995

H = 32.46

No of pumps to be connected in series

$$= \frac{\text{Total Head}}{\text{Head of each pump}}$$

$$=\frac{95}{32.46}=2.92$$

Say '3'

Note: Difficult to do with out calculator

Consider the following data from a test on Pelton wheel: Head at the base of the nozzle = 32 m Discharge of the nozzle = 0.18 m³/s

(d) 2.3 kW

Area of the jet = 7500 mm^2

Power available at the shaft = 44 kW

Mechanical efficiency = 94%

The power lost in the nozzle will be nearly

- (a) 3.9 kW (b) 4.7 kW
- (c) 3.5 kW

78. Ans: (b)

78.

Sol: The jet velocity is given by

$$V = \frac{Q}{a} = \frac{0.18}{7500 \times 10^{-6}} = 24 \text{ m/s}$$

Head lost in nozzle (h_{fn}) is given by

$$h_{\rm fn} = H - \frac{V^2}{2g}$$

 \therefore Power lost in nozzle = ρ g Q h_{fn}

$$pgQ\left[H - \frac{V^2}{2g}\right] = \rho gQH - \frac{\rho Q}{2}V^2$$

$$9810 \times 0.18 \times 32 - \frac{1000 \times 0.18 \times 22}{2}$$

End of Solution

2

A certain hydropower plant utilizes the flow as it occurs, without any provision for storage. It is premised that a defined minimum dry weather flow is available. Such a plant is classified as
 (a) Diverted-flow plant
 (b) Pooled storage plant

(c) Base-load plant (d) Run-of-river plant

= 4.67 kw

79. Ans: (d)

Sol: Hydro power plant with small or no storage of water is called run of river hydro power plant.

ACE Engineering Publications

84.	A double-acting reciprocating pump having piston area 0.1 m^2 has a stroke 0.30 m long. The				
	pump is discharging 2.4 m ³ of water per minute at 45 rpm through a height of 10 m. The slip of				
	the pump and power required to drive the pump will be nearly				
	(a) 0.005 m^3 /s and 4.8 kW (b) 0.003 m^3 /s and 4.8 kW				
	(c) 0.005 m^3 /s and 4.4 kW (d) 0.003 m^3 /s and 4.4 kW				
84.	Ans: (c)				
Sol:	Theoretical discharge for double acting reciprocating pump is given by				
	2(A - A)IN 2AIN				
	$Q_{th} = \frac{-(2 - 4r_p)(2 - 4r_p)}{60} \approx \frac{27101}{60}$				
	Where $A_p = Area$ of piston rod. CINEERING 4				
	$2 \times 0.1 \times 0.3 \times 45$ 0.045 3/				
	$Q_{th} = \frac{1}{60} = 0.043 \text{ m}^{-1} \text{ s}^{-1}$				
	$Slip = Q_{th} - Q = 0.045 - 0.04 = 0.005 \text{ m}^3/\text{s}$				
	The power required to drive the pump is given by				
	$P = \frac{\rho g Q [H + h_f]}{\rho g Q [H + h_f]}$				
	η₀				
	Assuming overall efficiency 1 & neglecting frictional losses				
	$P = \frac{9810 \times 0.04 \times 10}{1} = 3.92 \text{ kW}$ Since 1995				
Note:	If 'g' is considered as 10 m/s ² and theoretical discharge is considered instead of actual discharge				
	then answer is 4.4 kW.				
	End of Solution				
85.	In intensity-duration analysis by Sherman, the intensity of rainfall i is represented as				
	(a) $\frac{b^{n}}{(t+a)}$ (b) $\frac{a^{n}}{(t+b)^{n}}$				
	(c) $\frac{(a+t)^n}{b}$ (d) $\frac{a}{(t+b)^n}$				
	where t is time and a, b, n are constants for the area.				

66

	ACE 67 ESE-2019_PRELIMS_Solutions
85.	Ans: (d)
Sol:	Empirical IDP formula by Sherman
	$i = \frac{a}{(d+b)^e}$
	i = rainfall intensity (mm/hour)
	d = duration in mins
	a, b & e are constants
	Similarly,
	$i = \frac{a}{(t+b)^n}$
	a, b & n are constants
	t – time
	i – intensity of rainfall
86.	 Which one of the following points should be kept in mind while selecting the site for a rain gauge station? (a) The site where a rain gauge is set up should be close to a meteorological observatory. (b) The rain gauge should be on the top of a hill. (c) A fence, if erected to protect the rain gauge from cattle etc. should be located within twice the height of the fence. (d) The distance between the rain gauge and the nearest object should be at least twice the height of the object.
86.	Ans: (d)
Sol:	The distance between the rainguage and nearest obstruction should be atleast twice the height of
	obstruction.

	ACI Engineering Publica	Cions	68	CIVIL ENGINEERING _ (SET – A)		
87.	Which of the following statements relates to a retarding reservoir?					
	1. T	here are no gates at the outlets	s and hence the	e possibility of human error in reservoir		
	0	operation is eliminated.				
	2. T	2. The high cost of gate installation and also its operation is saved.				
	3. An automatic regulation may cause coincidence of flood crest farther downstream where					
	tv	two or more channels taking off from retarding reservoirs join together.				
	(a) 1,	2 and 3	(b) 1 and 2 o	nly		
	(c) 1 a	and 3 only	(d) 2 and 3 o	nly		
87.	Ans: (a)					
Sol:	Retarding Reservoirs:					
	A reta	arding reservoirs is the one in wh	ich the spillway	v and outlets are not controlled by gates or		
	valves.					
	Adva	ntages:				
	\rightarrow	No gates at the outlets and hence	e the possibility	of human error in reservoirs operation is		
		eliminated.				
	\rightarrow	The cost of expensive gate insta	allation and oper	ration is saved.		
	Disad	Disadvantages:				
	\rightarrow	Automatic regulation may cau	se coincedence	of flood crest farther downstream where		
		two or more channels taking of	ff from retarding	g reservoirs join together.		
		All statements 1, 2 and 3 are rel	lated to retarding	g reservoirs.		
		A				
			End of Solution -			
88.	The c	oefficient of transmissibility T fo	or a confined aq	uifer can be determined by a pumping-out		
	test together with other relevant observations. The applicable formula is (where Q = Discharge,					
	and Δ	S = Difference in drawdowns in t	two wells)			
	(a) —	Q (b) Q	— (c)	$\frac{Q}{\Delta S}$ (d) $\frac{Q}{\Delta S}$		
	^(u) 2.	$72\Delta S \qquad \qquad (0) \qquad 1.72\sqrt{2}$	$\overline{\Delta S}$ (c)	2.72 (u) 2.72		
ACE E	ngineerin <u>g P</u> i	ublications Hyderabad • Delhi • Bhopal • Pune • Bhuk	baneswar • Lucknow • Patna	• Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad		

	ACE Engineering Publications	69ESE-2019_PRELIMS_Solutions
88.	Ans: (a)	
Sol:	Confined Aquifer:-	
	$Q = \frac{2\pi T(S_{1} - S_{2})}{\ln(r_{2} / r_{1})}$	
	$T = \frac{Q \times \ln(r_2 / r_1)}{2\pi(S_1 - S_2)}$	
	$T = \frac{Q}{\Delta S} \times \frac{\ln(r_2 / r_1)}{2\pi}$	
	Assume $r_2 = 100 \text{ m \& } r_1$	= 10 m
	$T = \frac{Q}{\Delta S} \times \frac{\ln(100)}{2\pi}$	/10)
	$T = \frac{Q}{\Delta S} \times \frac{\ln(10)}{2 \times 3.5}$	
	$T = \frac{Q}{\Delta S} \times \frac{2.3}{6.284}$	
	$T = \frac{Q}{\Delta S} \times 0.366$	
	$T = \frac{Q}{2.72 (\Delta S)}$	
		End of Solution
		Since 1995
89.	The volume of water belo	w the minimum pool level in a reservoir is known as (1) C_{1} (1)
	(a) Useful storage	(b) Surcharge storage
	(c) Dead storage	(d) Bank storage
89.	Ans: (c)	
Sol:	The water stored in the re	servoir below the minimum pool level is called dead storage.
ACEE	Hydershad - Del	hi • Rhonal • Duna • Rhuhanaewar • Lucknow • Datna • Rengaluru • Chennai • Vijayawada • Vizag • Tirunati • Kolkata • Ahmedahad

	ACE Engineering Publications	(70)	CIVIL ENG	INEERING _ (SET – A)		
90.	Depending upon the source from which the water is drawn, flow irrigation can be sub-divided					
	into					
	1. River canal irrigation	n				
	2. Reservoir or tank irr	igation				
	3. Combined storage and lift irrigation					
	4. Combined storage and diversion irrigation					
	Which of the above designations are relevant?					
	(a) 1, 2 and 3 only	(b) 1, 2 and 4 only	(c) 1, 3 and 4 only	(d) 2, 3 and 4 only		
90.	Ans: (b)					
Sol:	Flow irrigation will ha	ve components EER/A	GAC			
	1. River canal irrigatio	n en l	40			
	2. Reservoir or tank irr	igation and	E.			
	4. Combined storage an	nd diversion irrigation onl	y, lift irrigation is not in	cluded.		
		End of Solut	ion			
91.	Consider the following	data				
	Root zone depth = 2 m					
	Existing water content	= 5%				
	Dry density of soil = 15 kN/m^3					
	Water applied to the soil = 500 m^3 Since 1995					
	Water loss due to evaporation and deep percolation = 10%					
	Area of plot = 1000 m^2					
	The field capacity of the	ne soil will be nearly				
	(a) 16.8% (b)	17.7% (c) 18.	8% (d) 19.7	%		
91.	Ans: (d)					
Sol:	d = 2m					
	mc = 5%	Volume Supplied = 500	m ³			
	$S = \frac{\gamma}{\gamma_w} = \frac{15}{9.81}$	Loss = 10%				
ACE E	ngineering Publications Hyderabad	• Delhi • Bhopal • Pune • Bhubaneswar • Luckno	ow • Patna • Bengaluru • Chennai • Vijayawa	ada • Vizag • Tirupati • Kolkata • Ahmedabad		

	ACE Engineering Publications	(72)	CIVIL ENGINEERING _ (SET – A)
93.	Ans: (b)		
Sol:	Masonry or concrete slope weir	is the one suitable for s	oft sandy foundations. It is used where
	difference in weir crest and down	nstream river is limited to	o 3 meters.
		- End of Solution	
94.	Consider the following data wh	hile designing an expan	nsion transition for a canal by Mitra's
	method		
	Length of flume = 16 m		
	Width of throat $= 9 \text{ m}$		
	Width of canal = 15 m		
	If B_X is the width at any distance	e x from the flumed secti	on, the values of B_X at $x = 8$ m and at x
	= 16 m are nearly	CINE AC	
	(a) 10.8 m and 15 m	(b) 11	.3 m and 15 m
	(c) 10.8 m and 13 m \sim	(d) 11	.3 m and 13 m
94.	Ans: (b)		
Sol:	Mitra's transition		
	$B = \frac{B_n B_f L}{B_n B_f L}$	<u>4</u> f	
	$L_{f}B_{n} - (B_{n})$	$-B_{f}$)x	
	Given		
	$B_n = 15 m$		
	$B_f = 9 m$	Since 1995	
	$L_{f} = 16 m$		
	at x = 9 m		
	at $x - 0$ m		
	$B_x = \frac{15(9)(10)}{16(15) - 6(8)}$		
	15(9)(16)		
	$=\frac{15(9)(10)}{192}=11.25$	ōm	
	at x = 16 m		
	р 15(9)(16)	15(9)(16)	
	$B_x = \frac{16(15) - 6(16)}{16(15) - 6(16)}$	$=\frac{13}{144}$ = 13 m	

	ACE Engineering Publications	(73)	ESE-201	19_PRELIMS_Solutions		
95.	Consider the follo	wing data for a drain				
	L = 50 m, a = 10 r	n, b = 10.3 m, and k = 1×10^{-10}	⁻⁵ m/s			
	If the drains carry	1% of average annual rainfa	ll in 24 hrs, the average	annual rainfall for which		
	this system has be	en designed will be				
	(a) 78 cm	(b) 84 cm	(c) 90 cm	(d) 96 cm		
95.	Ans: (b)					
Sol:	Tile drain					
	$\frac{4K(b^2-a^2)}{L} = \frac{100}{100}$	\overline{PL} $\times 86400$				
	$4(10^{-5})(103^2 - 10^{25})$	\overline{P} 50, GINEER/	VGAC			
	50	$\frac{1}{100(86400)} = \frac{100}{100(86400)}$	AD.			
	$\Rightarrow \overline{P} = 0.84 \mathrm{m} = 8$	4 cm 🗸	13			
		End of Solu	ution			
96.	The purpose of co	nstructing a 'Groyne' is to				
	(a) Expand a river	channel to improve its depth				
	(b) Encourage mea	indering				
	(c) Train the flow along a certain course					
	(d) Reduce the silt	ing in the river bed Ince 1	995			
96.	Ans: (c)					
Sol:	Main purpose of groyne is as a river training work					
	i.e., to train the flo	w along a certain course				

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE Engineering Publications	(74)	CIVIL ENGINEERING _ (SET – A)		
97.	Which one of the following compounds of nitrogen, when in excessive amounts in water, contributes to the illness known as infant methemoglobinemia?				
	(a) Ammoniacal nitrogen	(b) Albuminoid ni	trogen		
	(c) Nitrite	(d) Nitrate			
97.	Ans: (d)				
Sol:	Methemoglobinemia also know	wn as blue baby syndron	ne caused by Nitrates (Nitrate nitrogen)		
		End of Colution			
98.	Consider the following data reg	arding a theoretical prof	ile of a dam:		
	Permissible value of compressible stress $\sigma = 350$ tonnes/m ²				
	Specific gravity of concrete s =	2.4	3		
	Uplift coefficient $c = 0.6 m$				
	The value of $\gamma = 1$				
	The height and base width will	be nearly			
	(a) 125 m and 63 m	(b) 175 m and	l 63 m		
	(c) 125 m and 93 m	(d) 175 m and	193 m		
98.	Ans: (c)				
Sol:	$\sigma = \gamma_{\rm w} {\rm H} ({\rm G} - {\rm C} + 1)$	Since 1995			
	H = $\frac{\sigma}{\gamma_w(G-C+1)} = \frac{3500}{1(2.4-0.6)}$	$\frac{1}{(1+1)} = 125 \text{ m}$			
	$B = \frac{H}{\sqrt{G - C}} = \frac{125}{\sqrt{2.4 - 0.6}} = 93.2$	$16 \text{ m} \simeq 93 \text{ m}$			
		— End of Solution —			
99.	Chlorine usage in the treatmen	nt of 25,000 m ³ /day of	water has been 9 kg/day. The residual		
	chlorine after 10 minutes contac	et is 0.2 mg/l. The chlori	ne demand of water would be nearly		
	(a) 0.28 mg/ <i>l</i>	(b) 0.22 mg/ <i>l</i>			
	(c) $0.16 \text{ mg/}l$	(d) $0.12 \text{ mg/}l$			

	To ACCE (75)	ESE-2019 _ PRELIMS_Solutions
99.	9. Ans: (c)	
Sol:	Sol: $Q = 25000 \text{ m}^3 / \text{day} = 25 \text{ MLD}$	
	Total C l_2 usage = 9 kg/day	
	Total Cl_2 usage : $Q \times Cl_2$ dose	
	$9(kg/day) : 25(MLD) \times Cl_2 dose(mg/l)$	
	Cl_2 dose : $\frac{9}{25}$ mg/lit	
	Residual $Cl_2 = 0.2 \text{ mg/l}$	
	Cl_2 demand = Cl_2 dose – Residual Cl_2	
	$=\frac{9}{25}-0.2=0.16$ mg/l GINEER/NG	4
	End of Solution	- AO EZ
100.	.00. The demand of water is 150 litres/head/day in a city	y of one lakh population. The factor of safety
	is taken as 1.5, detention time as 4 h and overflow	rate as 20,000 litres/day/m ² . The area of 3 m
	deep plain sedimentation tank as per surface loading	g consideration will be
	(a) 1025 m^2 (b) 1075 m^2	
	(c) 1125 m^2 (d) 1175 m^2	
100.	100. Ans: (c)	
Sol:	Sol: $Q = Population \times per capita water demand e 199$	5
	$Q_{\min} = 1.5 Q$	
	$= 1.5 \times 100000 \times 150 $ lit / day	H.
	Surface over flow rate = $20000 \text{ lit/day/m}^2$	
	Surface area of sedimentation tank = $\frac{Q}{SOR}$	
	$=\frac{1.5\times100000\times150}{20000}=1125$	m^2

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

I

ESE / GATE / PSUs - 2020 ADMISSIONS OPEN

CENTER	COURSE	ВАТСН ТҮРЕ	DATE
CHENNAI	GATE+PSUs - 2020 & 21	Weekend Batch	19 th Jan 2019
CHENNAI	GATE+PSUs - 2020	Regular Batch	02nd Week of May 2019
BANGALORE	GATE+PSUs - 2020 & 21	Weekend Batch	19 [™] Jan 2019
BANGALORE	GATE+PSUs - 2020	Regular Batch	17 th June 2019
BANGALORE	KPSC-AE (CE) – PAPER 1 & PAPER 2	Regular Batch	19 [™] Jan 2019
LUCKNOW	ESE+GATE+PSUs - 2020 & 21	Evening Batch	06 th Feb 2019
LUCKNOW	GATE+PSUs - 2020	Regular Batch	Mid - May 2019
PATNA	GATE+PSUs - 2020	Weekend Batch	19 th Jan 2019
TIRUPATHI	GATE+PSUs - 2020 & 21	Weekend Batch	19 [™] Jan 2019
KOLKATA	GATE+PSUs - 2020	Weekend Batch	19 th Jan 2019
KOLKATA	ESE+GATE+PSUs - 2021	Regular Batch	19 [™] Jan 2019
AHMEDABAD	ESE+GATE+PSUs - 2020&21	Weekend Batch	19 th Jan 2019
AHMEDABAD	GATE+PSUs - 2020	Regular Batch	02nd Week of June 2019

	ACE agineering Publications	(78)	CIVIL EN	GINEERING _ (SET – A)		
103.	The MLSS concentration	on in an aeration tank	t is 2000 mg/l and th	e sludge volume after 30		
	minutes of settling in a	1000 ml graduated cyli	nder is 176 ml. The val	ue of sludge density index		
	(SDI) will be nearly					
	(a) 3.34 g/m <i>l</i>	(b) 2.22 g/m <i>l</i>	(c) 1.14 g/m <i>l</i>	(d) 0.26 g/m <i>l</i>		
103.	Ans: (c)					
Sol:	$SDI = \frac{100}{SVI}$ MLSS =	2000 mg/l = 2 gm/lit				
	$SVI = \frac{space occupied}{MLSS} =$	$SVI = \frac{space \text{ occupied}}{MLSS} = \frac{176}{2} = 88 \text{ ml/gm}$				
	$SDI = \frac{100}{88} \text{ gm} / \text{ml} = 1.1$	36 gm/ml = 1.14 gm/m	NG AC			
	SDI = 1.14 gm/ml	y the	TOFA			
		End of Sol	ution 2			
104	Which one of the fallow	wing gasses is the princi	nal by product of anon	which decomposition of the		
104.	organic content in waste water?					
	(a) Carbon monoxide (b) Ammonia					
	(c) Hydrogen sulphide	(d) Metha	ne			
	(c) Hydrogen sulplide	(u) Metha				
104.	Ans: (d)	Since 1	995			
Sol:	Principal by product of	anaerobic decompositio	n is methane			
		End of Sol	ution			
105.	Consider the following domestic waste water	statements with refere	nce to the mixing of in	ndustrial waste water with		
1.	The industrial waste wa	ter can be mixed with d	omestic water when it h	as higher BOD.		
2.	The industrial waste water can be mixed with domestic water when the pH value of industrial					
	waste water is highly alkaline.					
	Which of the above stat	ements is/are correct?				
	(a) 1 only	(b) 2 only (c) Both 1 and 2	(d) Neither 1 nor 2		

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACCE 79 ESE-2019_PRELIMS_Solution
105.	Ans: (c)
Sol:	Industrial waste water if it contain very high BOD can be mixed to domestic waste water
	pH.
	-
	End of Solution
106.	The waste water from a factory having a pH of 10, contains KOH only. For waste water
	discharge is 80 m ³ /day. The total quantity of KOH per day will be nearly
	(a) 4.5 kg/day (b) 5.4 kg/day (c) 6.3 kg/day (d) 7.2 kg/day
106.	Ans: (a)
Sol:	1 M of OH ⁻ : 1 M of KOH
	∴ KOH : OH
	pH + pOH : 14
	pOH = 14 - pH
	= 14 - 10
	= 4
	$OH^{-} = 10^{-4} \text{ mol/liter}$
	$\therefore \text{ KOH} = \text{OH}^{-} = 10^{-4} \text{ mol/liter} \qquad \text{Since 1995}$
	Molecular weight of KOH = 56.105 gm/mol
	$KOH(mg/lit) = KOH(mg/lit) \times Molecular weight of KOH \times 1000$
	$= 10^{-4} \times 50.105 \times 1000$
	= 5.6105
	Total quantity $KOH = Q \times KOH = 0.8 \times 5.6105$
	$= 4.48 \approx 4.5 \text{ kg/day}$

CIVIL ENGINEERING _ (SET - A)

84

ACE Engineering Publications

	ACE Singineering Publications	(86)	CIVIL ENC	INEERING _ (SET – A)		
118.	A raft foundation	10 m wide and 12 m long is	s to be constructed in a	clayey soil having shear		
	strength of 12 kN/r	m ² . Unit weight of soil is 16	kN/m ³ . The ground sur	face carries a surcharge of		
	20 kN/m^2 ; the fact	or of safety is 1.2 and the val	lue of $N_c = 5.7$. The saf	e depth of foundation will		
	be nearly					
	(a) 8.2 m	(b) 7.3 m	(c) 6.4 m	(d) 5.5 m		
118.	Ans: (d)					
Sol:	For rectangular for	otings in clays,				
	Gross ultimate bearing capacity, $q_u = CN_e \left(1 + 0.3 \frac{B}{L}\right) + (\gamma D_f + q)$ $q_u = 12 \times 5.7 \left(1 + 0.3 \times \frac{10}{12}\right) + (16D_f + 20))$ $= 85.5 + 16D_f + 20$					
	$= 105.5 + 16 D_{\rm f}$					
	Base failure will occur when q _u is equal to zero					
		$\therefore 0 = 105.5 + 16 D_{f}$				
		$D_{f} = -6.6 m$				
	(the minus sign indicates that it is excavation)					
	\therefore Critical depth = 6.6 m					
		Safe depth = $\frac{\text{Critical depth}}{\Gamma}$	<u>19</u> 95			
		$=\frac{6.6}{1.2} = 5.5 \mathrm{m}$				
		End of Solu	ution			
119.	The skin frictional	resistance of a pile driven in	sand does not depend o	n		
	(a) Lateral earth pressure coefficient					
	(b) Angle of friction between pile and soil					
	(c) Pile material					
	(d) Total stress and	lycie				

119. Sol:	Ans: (d) Skin frictional resistance of pile in sands, $Q_s = A_s$. k. $\sigma'_{va} \tan \delta$ The skin frictional resistance depends on the lateral earth pressure coefficient (k) and the of friction between pile and soil (δ). This angle of friction in turn will depend on the type of material. In the case of sandy soils, effective stress analysis is generally used; not the total stress anal Inview of the above, the correct answer is (d).	angle of pile lysis.				
Sol:	Skin frictional resistance of pile in sands, $Q_s = A_s$. k. $\sigma'_{va} \tan \delta$ The skin frictional resistance depends on the lateral earth pressure coefficient (k) and the of friction between pile and soil (δ). This angle of friction in turn will depend on the type of material. In the case of sandy soils, effective stress analysis is generally used; not the total stress anal Inview of the above, the correct answer is (d).	angle of pile lysis.				
	The skin frictional resistance depends on the lateral earth pressure coefficient (k) and the of friction between pile and soil (δ). This angle of friction in turn will depend on the type of material. In the case of sandy soils, effective stress analysis is generally used; not the total stress anal Inview of the above, the correct answer is (d).	e angle of pile lysis.				
	of friction between pile and soil (δ). This angle of friction in turn will depend on the type of material. In the case of sandy soils, effective stress analysis is generally used; not the total stress anal Inview of the above, the correct answer is (d).	of pile lysis.				
	In the case of sandy soils, effective stress analysis is generally used; not the total stress anal Inview of the above, the correct answer is (d).	lysis.				
	Inview of the above, the correct answer is (d).					
		Inview of the above, the correct answer is (d).				
	End of Solution					
	End of Solution					
120.	An excavation is made with a vertical face in a clay soil which has $C_u = 50 \text{ kN/m}^2$, $\gamma_t = 18 \text{ J}$	kN/m ³				
	and $s_n = 0.261$. The maximum depth of a stable excavation will be nearly					
	(a) 10.6 m (b) 12.4 m (c) 14.2 m (d) 16.0 m					
120.	Ans: (a)					
Sol:	Stability number, $S_n = \frac{C}{F_c.\gamma.H}$ or $\frac{C}{\gamma.H_c}$					
	$\therefore \text{ Critical height, } H_{e} = \frac{C}{S_{n}.\gamma}$					
	$=\frac{50}{0.261\times18}=10.6$ m					
	End of Solution					
121.	Reconnaissance survey for determining feasibility and estimation of scheme falls und	er the				
	classification based on the					
	(a) Nature of the field of survey					
	(b) Object of surveying					
	(c) Instruments used					
	(d) Method employed					

	ESE-20	19_PRELIMS_Solutions
123.	123. In plane surveying where a graduated staff is observed either with h	norizontal line of sight or
	inclined line of sight, the effect of refraction is to	
	(a) Increase the staff reading	
	(b) Decrease the staff reading	
	(c) Neither increase nor decrease the staff reading	
	(d) Duplicate the staff reading	
123.	123. Ans: (b)	
Sol:	Sol: Correction for refraction is positive.	
	\Rightarrow Error due to refraction is negative EPING	
	\Rightarrow Measured staff refraction is less than correct staff reading.	
	(or)	
	Due to refraction LOS bonds towards earth surface	
	∴`staff reading reduces	
	Horizontal line LOS M.staff	
	End of Solution	
124	124 A sidereal day is the average time taken by 2005	
1 2 7.	(a) The Earth to move around the Sun once	
	(b) The Moon to move around the Earth once	
	(c) The first point of Aries to cross the same meridian successively	
	(d) The Earth to move around its own axis once	
124:	124: Ans: (c)	
Sol:	Sol: Sidereal Day: The time between 2 consecutive transit of first point of A	Aries.
ACE E	ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijaya	awada • Vizag • Tirupati • Kolkata • Ahmedabad

- (a) It should be tangential to the straight approaches at the two ends.
- (b) It should meet the circular curve tangentially.
- (c) Its curvature will necessarily be non-zero at the point of take-off from the straight approaches.
- (d) The rate of increase of curvature along the transition reach should match with the increase of cant.

HEAD OFFICE : HYDERABAD

Sree Sindhi Guru Sangat Sabha Association, # 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001. Address - II : # 204, Rahman Plaza, Abids, Hyderabad - 500001. Contact No: 040-23234418/19/20, 040-24750437 E-Mail : hyderabad@aceenggacademy.com

DELHI

Address I : Plot No. 3, Kh.No. 264, Near Saket Metro Station, Saidulajab, New Delhi-110030. Address II : # 63, FNS House, Beside Oriental Bank of Commerce, Near Hauz Khas Metro Station,Kalu Sarai,New Delhi-110016.

Contact No : 9205282121, 9205282123, 7838971777, 9205282120.

BHOPAL

G – 1, Plot no : 207, Zone II, M.P Nagar, M. P – 462013. Contact No: 0755-2554512, 0755-2554612, 0755-4280242

PUNE

302, Vekatesh Villa, Upstairs JANATHA Sahakari Bank, Shivaji Nagar, Pune, Maharashtra - 411005. Contact No : 020- 25535950, 09343499966

BHUBANESWAR

Plot No: 625/A, 3rd Floor, Janpath, Saheed Nagar, Bhubaneswar. Contact No: 0674-2540340, 9861566244, 09379099966

LUCKNOW

A-7, Sector-J, Aliganj, Lucknow, Uttar Pradesh – 226024 Contact No. : 93421 99966, 8081 99 99 66, 0522 4046966

PATNA

1st Floor, N. P. Tower, Kankarbagh, PATNA - 800020. Contact No.: 08252194512, 9308699966, 9212188818

DILSUKH NAGAR

Gaddiannaram,Dilsukhnagar, Hyderabad. Contact No : 040 – 40209345, 040 – 40044451 **KUKATPALLY** 2nd floor, BSR Bellezza, Opp : JNTUH Campus, KPHB, Kukatpally, Hyderabad- 500072. Contact No: 040-6597 4465, 040-40199966, 93476 99966

BENGALURU

223, G R Arcade, 2nd floor, Malleswaram, Bangalore - 560003. Contact No: 080-23466699,41526699, 09341299966.

CHENNAI

39, North Usman Road, T Nagar, Chennai - 600017. Contact No : 044 - 42123289 , 9343799966

VISHAKAPATNAM

Door No. 48-14-91/6, 3rd Floor, Sri Nagar, Visakhapatnam – 530001. Contact No : 0891-6616001, 08374808999

VIJAYAWADA

Opp Stella College, Near Benz Circle, Vijayawada – 520 008 Contact No. : 0866-2490001, 96760 76001

TIRUPATI

Plot No:10, AIR Bypass Road, Tirupathi – 517502. Contact No : 0877-2244388, 9618155166, 09341499966

KOLKATA

3rd Floor, 369/4, EM Bypass, Avishar Shopping Mall, Kolkata - 700078. Contact No : 8297899966, 8886899966

AHMEDABAD

Shop.No 231, 2nd Floor, Sunrise Mall, Near Mansi Circle, Vasthrapur-Gujarat-380015. Contact No : 079 4890 2228, 9160499966

For Batch Details Visit : www.aceenggacademy.com

	PS ESE-2019_PRELIMS	S_Solutions				
132.	An unconformity is					
	(a) A surface of erosion or non-deposition as detected in a sequence of rocks					
	(b) A layer of boulders and pebbles in a sequence of rocks					
	(c) A layer of clay or shale in an igneous mass					
	(d) A type of joint especially associated with folded and faulted rocks					
132.	Ans: (a)					
Sol:	It is defined as a surface of erosion or non deposition occurring within a sequence of	rocks.				
	End of Solution					
133.	Consider two cars approaching from the opposite directions at 90 km/h and 60 l	km/h. If the				
	reaction time is 2.5s, coefficient of friction is 0.7 and brake efficiency is 50% in both the cases					
	the minimum sight distance required to avoid a head-on collision will be nearly					
	(a) 154 m (b) 188 m (c) 212 m (d)	236 m				
133.	Ans: (d)					
Sol:	$SSD = SSD_1 + SSD_2$					
	$SSD_1 = vt + \frac{v^2}{2gf\eta}$					
	$= 25 \times 2.5 + \frac{25^2}{2 \times 10 \times (0.7 \times 0.5)}$ Since 1995					
	= 151.78 m					
	Similarly					
	$SSD_2 = 16.67 \times 2.5 + \frac{16.67^2}{2 \times 10 \times (0.7 \times 0.5)}$					
	= 81.36 m					
	$SSD = SSD_1 + SSD_2 = 233.13 \text{ m} \simeq 236 \text{ m}$					

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

REGULAR BATCH: 02nd JAN 2019

BHUBANESWAR BHUBANESWAR A

ESE|GATE|PSUs - 2020 & 21 @ Delhi

Weekend Batch Start on

13th January 2019

Early Bird Discount Rs. 5000/- Off

on Registration Before 31st Dec, 2018 Call: 7838971777, 9205282120, 23

	ACE ngineering Publications		98	CIVIL E	ENGINEERING _ (SET – A)
136.	The main drawback of automatic counters-cum-classifiers, used for traffic volume studies, is that				
	it is not yet possible to	classify and r	record		
	(a) Vehicle type		(b) Axle spacing		
	(c) Axle load		(d) Speed		
136.	Ans: (a)				
Sol:	Type of vehicle canno	ot be justified	by automatic count	ers	
			End of Solution -		
137.	Which one of the follo	owing is not a	part of 'speed and o	lelay' studies	s?
	(a) Floating car metho	d SI	(b) Vehicle number	er method	
	(c) Interview techniqu	e culture	(d) License numbe	er method	
137.	Ans: (b)	হ			
Sol:	Vehicle number meth	od is not a par	t of speed and delay	y studies.	
		$\boldsymbol{<}$		$\mathbf{>}$	
			End of Solution		
138.	Consider the following data with respect to the design of flexible pavement:				
	Design wheel load = 4	200 kg	Since 1005		7
	Tyre pressure $= 6.0$ kg	g/cm ²	Since 1995		
	Elastic modulus = 150	kg/cm ²			
	Permissible deflection	= 0.25 cm			
	(take $\pi^{1/2} = 1.77$, $\pi^{-1/2} = 0.564$, $\frac{1}{\pi} = 0.318$, and $\pi^2 = 9.87$)				
	The total thickness of flexible pavement for a single layer elastic theory will be nearly.				
	(a) 42 cm	(b) 47 cm	(c) 5	1 cm	(d) 56 cm

	ACE Engineering Publications	(99)	ESE-2019_PRELIMS_Solutions
138.	Ans: (c)		
Sol:	Pressure, $P = \frac{P}{\pi a^2} \Longrightarrow \frac{4200}{\pi (a)^2} = 6$		
	a = 15 cm		
	Thickness of pavement layer, $h = \sqrt{1}$	$\sqrt{\frac{3P}{2\pi E\delta} - a^2}$	
	= 1	$\sqrt{\frac{3 \times 4200}{2 \times \pi \times 150 \times 0.25}} - 15$	$5^2 = 51 \text{ cm}$
		End of Solution	
		NEERINGA	
139.	The minimum possible grade that can be provided in a tunnel and its approaches with providing		
	adequately for proper drainage is		
	(a) 0.1% (b) 0.2%	(c) 0.3%	(d) 0.4%
139.	Ans: (b)		
Sol:	For proper drainage in a tunnel		
	Minimum gradient = $\frac{1}{500} = \frac{1}{500} \times 100 = 0.2\%$		
		Since 1995	
1.40		End of Solution —	
140.	The section of the tunnel adopted perfectly in lieu of ease of construction and maintenance in		
	water or from loose or unstable soil conditions on tunnel lining is practically non existent is		
	(a) Circular section	(b) Segmental roof	soution
	(a) Horse-shoe section	(d) Egg-shaped sect	ion
		(d) Egg-snaped see	1011
140.	Ans: (c)		
Sol:	Horse shoe tunnel are generally employed in hard rock tunnels where there is a risk of root		
	failure the arch action.		

ACE CIVIL ENGINEERING _ (SET - A) 100 Which one of the following methods is adopted for tunneling in soft soils? 141. (a) Pilot tunnel method (b) Drift method (c) Needle beam method (d) Heading and benching method 141. Ans: (c) Sol: Needle beam method is commonly used method in soft soils. The other methods are Fore poling method Belgian method **End of Solution** 142. Which one of the following features does not pertain to Littoral drift? (a) It depends on length of wave (b) It is the process of erosion of deposition by waves (c) Waves caused by prevailing wind, stir up and move sand particles (d) Wind tends to carry drifting sand in a zigzag way 142. Ans: (d) Wind tends to carry drifting sand in a linear way. Sol: End of Solution Consider the following data for designing a taxiway for operating Boeing 707-320 aeroplane: 143. Wheel base = 17.70 mTread of main loading gear = 6.62 m Turning speed = 40 km/hCoefficient of friction between tyres and pavement surface = 0.13The turning radius of the taxiway will be (a) 98.5 m (b) 94.5 m (c) 89.5 m (d) 86.5 m

ACE Engineering Publications

143. Ans: (b)

Sol: Comfort/Centrifugal criteria

$$\mathbf{e} + \mathbf{f} = \frac{\mathbf{v}^2}{\mathbf{gR}} = -\frac{\mathbf{v}^2}{127\mathbf{R}}$$

No super elevation is required on taxiway

$$0 + 0.13 = \frac{40^2}{127(R)}$$

R = 94.5 m

End of Solution

101

- 144. Which one of the following instances of performance of aircraft is **not** considered for determining basic runway length?
 - (a) Normal landing case (b) Normal take-off case
 - (c) Engine failure case (d) Emergency landing case

144. Ans: (d)

Sol: Emergency landing case is not considered.

Directions: Each of the next six (06) items consists of two statements, one labelled as 'Statement (I)' and the other as 'Statement (II)'. You are to examine the two statements carefully and select the answer to these items using the codes given below:

Codes:

- (a) Both Statement (I) and Statement (II) are individually true and Statement (II) is the correct explanation of Statement (I)
- (b) Both Statement (I) and Statement (II) are individually true but Statement (II) is **not** the correct explanation of Statement (I)
- (c) Statement (I) is true, but Statement (II) is false
- (d) Statement (I) is false, but Statement (II) is true

 $\sigma_{\rm R}$ = Resultant stress = $\sqrt{\sigma^2 + \tau^2}$

$$\beta = \tan^{-1} \left[\frac{\tau}{\sigma} \right]$$

The angle of repose of a granular material is the steepest angle at which the soil can be piled without slumping.

(104)

The term "angle of repose" is generally used with respect to granular material like sand. In the case of loose granular material, the angle of friction (ϕ) and angle of repose are equal to each other.

Failure envelope for granular material is shown below.

For failure plane, the β will be maximum ce 1995

$$\beta_{\rm max} = \tan^{-1} \left[\frac{\tau_{\rm f}}{\sigma} \right]$$

From the above, $\beta_{max} = \phi$

: Statement I is false

$$\sin\phi = \frac{\frac{\sigma_1 - \sigma_3}{2}}{\frac{\sigma_1 + \sigma_3}{2}} \qquad (\text{or}) \quad \sin\phi = \frac{\sigma_1 - \sigma_3}{\sigma_1 + \sigma_3}$$

: Statement II is true

ACE Engineering Publications

105

150. Ans: (b)

Sol: Alum need alkalinity to produce flock and it settle better at when viscosity of water is less both statements are correct and statement 2 is not correct explanation of statement 1.

End of Solution

AHMEDABAD

Now @

9160499966

 Shop.no 231, 2nd Floor, Sunrise mall, Near Mansi Circle, Vasthrapur Gujarat-380015.

www.aceenggacademy.com