Reg. No. :
FY 51
Name : \qquad

IMPROVEMENT JULY 2019

Time : $21 / 2$ Hours

Cool-off time : 15 Minutes

Part - III
 MATHEMATICS (COMMERCE)

Maximum : 80 Scores

General Instructions to Candidates:

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

1. If $\mathrm{A} \times \mathrm{B}=\{(1,2),(2,2),(1,3),(2,3),(1,4),(2,4)\}$
(a) Write A and B in roster form
(b) Find B - A
2. Let $\mathrm{M}=\{1,2,3,4,5,6\}$ and R is a relation defined on M defined by $\mathrm{R}=\{(x, \mathrm{y}): x+\mathrm{y}=6 ; x, \mathrm{y} \in \mathrm{M}\}$.
(a) Write R in roster form
(b) Find the domain of R
3. (a) If one root of the quadratic equation $x^{2}-2 x+5=0$ is $1-2 \mathrm{i}$, then the other root is
(i) $-1+2 \mathrm{i}$
(ii) $1+2 \mathrm{i}$
(iii) $-1-2 \mathrm{i}$
(iv) $2-4 \mathrm{i}$
(b) Convert the complex number $1+\mathrm{i}$ into the polar form.
4. (a) The number of three digit numbers that can be formed from the digits 1, 2, 34 and 5 , if the digits cannot be repeated is
(i) 40
(ii) 60
(iii) 120
(iv) 125
(b) Find the value of x if $\frac{1}{8!}-\frac{1}{9!}=\frac{x}{10!}$

3 ⿷ฺை

$$
(6 \times 3=18)
$$

1．If $\mathrm{A} \times \mathrm{B}=\{(1,2),(2,2),(1,3),(2,3),(1,4),(2,4)\}$ Øிறி円

（b） B －A ゅ๐మ్మณ．

 வృఅృ ஷßの゙？
（i）$-1+2 \mathrm{i}$
（ii） $1+2 \mathrm{i}$
（iii）$-1-2 \mathrm{i}$
（iv） $2-4 \mathrm{i}$

（i） 40
（ii） 60
（iii） 120
（iv） 125

5. In an arithmetic progression the $11^{\text {th }}$ term is 53 and $16^{\text {th }}$ term is 78 .
(a) Find the first term and common difference.
(b) Find the $27^{\text {th }}$ term.
6. Consider the points $(1,2)$ and $(-1,-4)$
(a) Find the slope of the line passing through the above points.
(b) If $(2, k)$ is a point on the above line, find the value of k.
7. (a) A coin is tossed twice. Write the event of getting atleast one head.
(b) If A and B are mutually exclusive events, $\mathrm{P}(\mathrm{A})=0.25$ and $\mathrm{P}(\mathrm{B})=0.4$ then find

$$
\begin{equation*}
\mathrm{P}\left(\mathrm{~A}^{\prime} \cap \mathrm{B}^{\prime}\right) \tag{2}
\end{equation*}
$$

Answer any eight questions from 8 to 17. Each carries four scores.
8. (a) Complete the following table.

x	-3	-1	$\cdots \cdots \cdots$	2	3
$\mathrm{y}=\|x\|+2$	5	$\ldots \ldots \ldots$	2	$\ldots \ldots \ldots$	$\ldots \ldots \ldots$

(b) Sketch the graph of the real function $\mathrm{f}(x)=|x|+2$.
9. Consider the statement
$\mathrm{P}(\mathrm{n})=\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{\mathrm{n}}\right)=(\mathrm{n}+1)$
(a) Check whether $\mathrm{P}(1)$ is true.
(b) Using principle of mathematical induction prove that $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \in \mathbb{N}$.

(b) 27-О० నß० ळОறృృద.

உ๐ைை

x	-3	-1	$\ldots \ldots .$.	2	3
$\mathrm{y}=\|x\|+2$	5	$\ldots \ldots \ldots$	2	$\ldots \ldots \ldots$	$\ldots \ldots \ldots$

9. $\mathrm{P}(\mathrm{n})=\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots .\left(1+\frac{1}{\mathrm{n}}\right)=(\mathrm{n}+1)$

10. (a) The value of $\frac{1}{\mathrm{i}}=$
(i) 1
(ii) i
(iii) -i
(iv) -1
(b) Find the square root of the complex number $3+4 \mathrm{i}$.
11. (a) Expand $\left(x^{2}+\frac{3}{x}\right)^{4} ; x \neq 0$ using binomial theorem.
(b) Hence write the term independent of x in the expansion of $\left(x-\frac{3}{x}\right)^{4}$.
12. (a) $1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots$. is equal to
(i) $\frac{1}{2}$
(ii) 2
(iii) 1
(iv) $\frac{3}{2}$
(b) The sum of first three terms of a Geometric progression is $\frac{21}{2}$ and their product is 8. Find the geometric progression.
13. (a) Find the slope of the line $x+y-2=0$.
(b) Find the equation of a line which is perpendicular to the above line and passing through the point $(5,1)$.
(c) Find the point of intersection of the above two perpendicular lines.

(i) 1
(ii) i
(iii) -i
(iv) -1

12. (a) $1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots$ คஜิ வி巳
(i) $\frac{1}{2}$
(ii) 2
(iii) 1
(iv) $\frac{3}{2}$

14. (a) Find the foci of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$.
(b) Find the equation of the circle with centre $(3,0)$ and passing through the foci of the above ellipse.
15. (a) In three dimensional Geometry $(0,0, z)$ represents
(i) XY-plane
(ii) Z-axis
(iii) X -axis
(iv) Y -axis
(b) Find the perimeter of the triangle whose vertices are $(3,0,0),(0,3,0)$ and $(0,0,3)$.
16. (a) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$ is equal to
(i) 4
(ii) 2
(iii) 0
(iv) 1
(b) Find the derivative of $\mathrm{f}(x)=x^{2}$ with respect to x from first principles.
17. (a) Write the contrapositive of the statement "If it is raining, then I will not come."
(b) By the method of contradiction, prove that $\sqrt{6}$ is irrational.

（i）XY－றைஃ
（ii）Z－ாロேタ10
（iii） X －ாாேளு
（iv）Y－דাaryo

（i） 4
（ii） 2
（iii） 0
（iv） 1
（1）
 வெமிி カலறும．

＂If it is raining，then I will not come．＂

Answer any five questions from 18 to 24. Each carries six scores.

18. Consider the sets $U=\{1,2,3,4,5,6,7,8\}$
$\mathrm{A}-\mathrm{B}=\{1,3\} ; \mathrm{B}-\mathrm{A}=\{5,6\}$ and
$\mathrm{A} \cap \mathrm{B}=\{2,4\}$ then
(a) Draw a Venn diagram to represent the above data.
(b) Write down A and B in roster form.
(c) Find $(A \cup B)-(A \cap B)$.
19. (a) The radian measure corresponding to $22 \frac{1}{2}^{\circ}$ is
(i) $\frac{\pi}{8}$
(ii) $\frac{\pi}{6}$
(iii) $\frac{\pi}{4}$
(iv) $\frac{\pi}{12}$
(b) Find the value of $\sin 75^{\circ}$.
(c) Prove that $\frac{\cos 5 x+\cos 3 x}{\sin 5 x-\sin 3 x}=\cot x$.
20. (a) Solve $\frac{3(x-2)}{5} \leq \frac{5(2-x)}{3} ; x \in \mathbb{R}$.
(b) Solve the system of inequalities graphically.
$x+\mathrm{y} \leq 4 ; x+\mathrm{y} \geq 2, \mathrm{y} \leq 2, \mathrm{y} \geq 0$.
21. (a) Find the number of 8 letter arrangements with or without meaning that can be made from the letters of the word QUESTION. How many of these arrangements have vowels occurring together.

$\mathrm{U}=\{1,2,3,4,5,6,7,8\}, \mathrm{A}-\mathrm{B}=\{1,3\} ; \mathrm{B}-\mathrm{A}=\{5,6\}, \mathrm{A} \cap \mathrm{B}=\{2,4\}$.

(c) $(\mathrm{A} \cup \mathrm{B})-(\mathrm{A} \cap \mathrm{B})$ ळ๐ஸுమ .

(i) $\frac{\pi}{8}$
(ii) $\frac{\pi}{6}$
(iii) $\frac{\pi}{4}$
(iv) $\frac{\pi}{12}$

(c) $\frac{\cos 5 x+\cos 3 x}{\sin 5 x-\sin 3 x}=\cot x$ กை

 $x+\mathrm{y} \leq 4 ; x+\mathrm{y} \geq 2, \mathrm{y} \leq 2, \mathrm{y} \geq 0$.

(b) (i) If ${ }^{\mathrm{n}} \mathrm{C}_{3}={ }^{\mathrm{N}} \mathrm{C}_{4}$ then find the value of n .
(ii) How many chords can be drawn through 21 points on a circle?
22. Consider the given data :

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	5	10	20	5	10

(a) Find the mean.
(b) Find the standard deviation.
(c) Find the coefficient of variation.
23. Consider the frequency distribution table.

Marks	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Numbers of Students	4	6	10	20	10	6	4

(a) Find the median of the data.
(b) Find the mean deviation about median.
24. (a) Let $\mathrm{P}=\{1,2,3\}$ AND $\mathrm{Q}=\{2,3,4\}$. Consider the experiment of selecting a pair from $\mathrm{P} \times \mathrm{Q}$ at random.
(i) Write the sample space.
(ii) Find the probability of getting a sum 5 on the selected pair.

	0－10	10－20	20－30	30－40	40－50
（1刀வృmை	5	10	20	5	10

๑๐øิロด์	10－20	20－30	30－40	$40-50$	50－60	60－70	$70-80$
 ロ円円	4	6	10	20	10	6	4

(b) In a class 63% of the students passed in Economics and 62% passed in Mathematics, and 45% of the students passed in both Economics and Mathematics. If a student is selected at random from this class, Find the probability that the selected student
(i) Passed in Economics or Mathematics.
(ii) Failed in both Economics and Mathematics.

 விஜமிશ్మ内 b^{3} ：
 ๕（ロコறறிழிிிி．
 றவ க๐றூゥ．

