1. The number of free electrons per 10 mm of an ordinary copper wire is 2×10^{21} . The average drift speed of the electrons is 0.25 mm/s. The current flowing is:				
A. 0.8 A	B. 8 A	C. 80 A	D. 5 A	
2. Which of the follow A. Daniel	ring cells is more likely to B. Dry	o be damaged due to sho C. Acid	rt circuiting? D. Fuel	
3. A gas expands from A. 1 Joule	5 litre to 105 litre at a co B. 4 Joule	onstant pressure 100N/m C. 8 Joule	² . The work done is D. 10 Joule	
	can be formed from process of chain reactio rough nuclear fusion		ough nuclear fission	
5. In the atom bomb drused was	ropped by Americans in	1945 on Nagasaki, Japan	, the fissionable material	
A. Helium 4	B. Plutonium 239	C. Uranium 235	D. Uranium 233	
	6. The engine of a truck moving a straight road delivers constant power. The distance travelled by the truck in time <i>t</i> is proportional to			
A. t	B. t^2	C. \sqrt{t}	D. $t^{3/2}$	
7. The velocity of elect hydrogen atom is	tron in ground state of			
	$\begin{array}{ccc} \text{C. 2 x } 10^7 & \text{D. 2 x } 10^8 \\ \text{m/s} & \text{m/s} \end{array}$			
		a hydrogen atom is 5.3	10^{-11} m; then the radius	
of the second orbit mu A. 15.9 x 10^{-11} m		C. 21.2 x 10 ⁻¹¹ m	D. 42.4 x 10 ⁻¹¹ m	
	ock of 10 ¹⁰ Kg mass by a	pplying a force of only 1	0N for just 4 seconds.	
The work done is A. 1000 Joule	B. 0 J	C. nearly zero	D. positive	
10. One can take pictu which are sensitive to	res of objects which are o	completely invisible to th	ne eye using camera films	
A. ultra-violet rays	B. sodium light	C. visible light	D. infra-red rays	
11. Light from a 100 watt filament bulb is passed through an evacuated glass tube containing sodium vapour at a high temperature. If the transmitted light is viewed through a spectrometer, we will observe				
A. D_1 and D_2 lines of s intensity	odium with good	B. dark lines where D_1 been observed	and D ₂ lines should have	
C. continuous radiation from the bulb only D. the entire emission spectrum of sodium				

12. Under the action of a constant force, a particle is experiencing a constant acceleration. The power is A. zero B. positive D. increasing uniformly C. negative with time 13. If in a plane convex lens the radius of curvature of the convex surface is 10 cm and the focal length of the lens is 30 cm, the refractive index of the material of the lens will be A. 1.5 B. 1.66 C. 1.33 D. 3 14. A plane convex lens has radius of curvature 30 cm. If the refractive index is 1.33, the focal length of lens is A. 10 cm B. 90 cm C. 30 cm D. 60 cm 15. A beam of light is converging towards a point I on a screen. A plane parallel plate of glass (thickness in the direction of the beam = t, refractive index = μ) is introduced in the path of the beam. The convergence point is shifted by A. t $(\mu - 1)$ away B. t $(1 + 1/\mu)$ away C. t (1 - $1/\mu$) nearer D. t $(1 + 1/\mu)$ nearer 16. In Young's double silt experiment the separation between the silts is halved and the distance between the silts and screen is doubled. The fringe width will be B. halved A. unchanged C. doubled D. quadrupled 17. Wavelength of red light is λ_r , violet rays is λ_v and X -ray is λ_x then the order of wavelengths is C. $\lambda_r > \lambda_x > \lambda_y$ A. $\lambda_x > \lambda_v > \lambda_r$ B. $\lambda_v > \lambda_x > \lambda_r$ D. $\lambda_r > \lambda_v > \lambda$ 18. The amount of work done by the labourer who carries *n* bricks, each of mass *m*, to the roof of a house whose height is *h* is A. n mgh B. mgh/n C. zero D. ghn/m19. In LCR circuit in the state of resonance, which of the following statements is correct? (cos **φ**)= A. 0 B. 0.5 C. 1 D. None of these 20. In LCR circuit, phase difference between voltage and current cannot be C. 145° D. 0° A. 80° **B**. 90° 21. If speed is plotted along x-axis and Kinetic energy against y-axis, then the graph obtained has a shape similar to that of A. circle B. ellipse C. hyperbola D. parabola 22. A magnetic needle lying parallel to a magnetic field requires w units of work to turn it through 60°. The torque needed to maintain the needle in this position will be

A. $(\sqrt{3})$ w

• 1	ards. A point <i>p</i> lies to the tance and another point <i>Q</i>		
A. greater than at Q	B. same as at Q		
C. less than at Q	D. greater or less at <i>Q</i> depending upon the		
O . less than at Q	strength of the current		
24. In a parallel arrang A. less than R_2	ement if $(R_1 > R_2)$, the po B. same as R_2	-	Ince R_1 will be D. none of these
25. For a fuse wire to b immaterial ?	be installed in the supply	line in a house which on	e of the following is
A. the specific resistan fuse wire	ce of the material of the	B. the diameter of the f	fuse wire
C. the length of the fus	e wire	D. none of these	
26. If V is voltage applied, E_a is emf drop across the armature, the armature current of a d.c.			

26. If V is voltage applied, E_a is emf drop across the armature, the armature current of a d.c motor I_a is given by

A. $(V + E_a)/R_a$ B. E_a/R_a C. V- E_a/R_a D. V/R_a

 R_2

27. The current of 2.0 amperes passes through a cell of e.m.f. 1.5 volts having internal resistance of 0.15Ω . The potential difference measured in volts across both the terminals of the cell will be A. 1.35 B. 1.50 C. 1.00 D. 1.20 28. In this circuit, current ratio i_1/i_2 depends upon A. R₁, R₂ B. R, R₁, and R R₂ and E C. R₁ and D. E and R

29. A cell of emf *E* is connected across a resistance *r*. The potential difference between the
terminals of the cell is found to be *V*. The internal resistance of the cell must be
A. 2(E - V)V/rB. 2(E - V)r/EC. (E - V)r/VD. (E - V)/r30. Copper and germanium are both cooled to 70 K from room temperature, then
A. resistance of copper increases while that of
germanium decreases
C. resistance of both decreasesB. resistance of copper decreases while that of
germanium increases
D. resistance of both increases

31. The potential difference between the points A and B of the electrical circuit given is A. 1.5 V B. 1.0 V 25Ω 32. A moving coil galvanometer has a resistance of 9.8 Ω and gives a full scale deflection when a current of 10 mA passes tbrough it. The value of the shunt required to convert it into a mini ammeter to measure current upto 500 mA is A, 0.02 Ω B, 0.2 Ω C, 2 Ω D, 0.4 Ω

33. The total electrical resistance between the points A and B of the circuit shown in the figure is

34. If the plates of a charged parallel plate capacitor are pulled away from each other

A. capacitance increases	B. energy increases	C. voltage increases	D. voltage decreases
--------------------------	---------------------	----------------------	----------------------

35. A parallel plate capacitor is charged by connecting its plates to the terminals of a battery. The battery remains connected and a glass plate is interposed between the plates of the capacitor, then

A. the charge on plates will be reduced

B. the charge on plates will increase

C. the potential difference between the plates of the capacitor will be reduced

D. the potential difference between the plates of the capacitor will increase

36. A person weighing 70Kg wt lifts a mass of 30 Kg to the roof of a building 10 m high. If he takes 50 sec to do so,then the power spent is

A. 19.6 W B. 196 W C. 300 W D. 50 W

37. Work done in carrying a charge q from A to B along a semi-circle is

A. $2\pi rq$ B. $4\pi rq$

C. πrq D. 0

.

38. A particle *A* has charge +q and particle B has charge +4q with each of them having the same mass m. When allowed to fall from rest through same electrical potential difference, the ratio of their speed $V_A : V_B$ will become

A. 2:1 B. 1:2 C. 1:4 D. 4:1

39. The electric field at a small distance R from an infinitely long plane sheet is directly proportional to

A. $R^2/2$ B. R/2C. R^{-2} D. none of these

40. In the diagram, the electric field intensity will be zero at a distance A. between -q and +2q charge B. towards +2q on the line drawn C. away from the line towards +2q D. away from the line towards -q

41. Wein's displacement law is given by

A. $\lambda_m =$ B. $T/\lambda_m =$ C. $\lambda_m T =$ D. $T = \lambda_m$ constant constant = constant

42. If two electrons are forced to come closer to each to each other, then the potential energy A. becomes zero B. increases C. decreases D. becomes infinite

43. The specific heat at constant pressure is greater than that of the same gas at constant volume because

A. at constant volume work is done in expanding the gas

B. at constant pressure work is done in expanding the gas

C. the molecular attraction increases more at constant pressure

D. the molecular vibration increases more at constant pressure

44. The specific heats of CO₂ at constant pressure and constant volume are 0.833 J/kg.K and 0.641 J/kg.K respectively. If molecular weight of CO₂ is 44, what is the universal constant *R*? A. 4.19 x 10^7 erg/cal B. 848.8 J/gm/K C. 8.448 J/mol/K D. 4.19 J/cal

45. The freezing point of the liquids decreases when pressure is increased, if the liquid A. expands while freezing B. contracts while freezing D. none C. does not change in volume while freezing D. none 46. The equation of a transverse wave on a stretched string is given by $y = 0.05 \sin \pi (2t/0.002 - x/0.1)$ where x and y are expressed in metres and t in sec. The speed of the wave is A.100 B. 50 m/s C. 200 m/s D. 400 m/s m/sec

47. The ratio of velocity of the body to the velocity of sound is called

A. Magic number B. Laplace number C. Natural number D. Mach number

48. Television signals on earth cannot be received at distances greater than 100 km from the transmission station. The reason behind this is that

A. the receiver antenna is unable to detect the signal at a distance greater than 100 km

B. the TV programme consists of both audio and video signals

C. the TV signals are less powerful than radio signals

D. the surface of earth is curved like a sphere

49. A ball is thrown from a height of *h* m with an initial downward velocity v_0 . It hits the ground, loses half of its Kinetic energy & bounces back to the same height. The value of v_0 is A. $\sqrt{2gh}$ B. \sqrt{gh} C. $\sqrt{3gh}$ D. $\sqrt{2.5gh}$

kg/m ³ and Young's molength, when hung from increase in length due A. 9.6 x 10 ⁻ B. 19.2 x ${}^{3}m$ 10 ⁻⁵ m 51. Water is falling on	ober of density 1.5×10^3 dulus 5×10^6 N/m ² , 8m i m ceiling of a room, the to its own weight is C. 9.6cm D. 9.6mm the blades of a turbine a ower gained by the turbir	t a rate 6000Kg/min. The	e height of the fall	
A. 10KW	B. 6KW	C. 100KW	D. 600KW	
52. If momentum of al K.E. is that of	pha-particle, neutron, pro	oton, and electron are the	e same, the minimum	
A. alpha-particle	B. neutron	C. proton	D. electron	
	while lifting a given load the motor winds the cab B. 15 kW			
54. If an electric iron electrons are accelerated through a potential difference of V volts. Taking electronic charge and mass to be respectively e and m , the maximum velocity attained by the electrons is				
A. $2eV/\sqrt{m}$	B. $\sqrt{(2eV)/m}$	<i>C.</i> 2 <i>m</i> / <i>eV</i>	<i>D.</i> $v^2/8em$	
55. A particle is movir acceleration is	ng on a circular track of r	adius 20 cm with a const	tant speed of 6 m/s. Its	
A. 0	B. 180 m/s ²	C. 1.2 m/s^2	D. 36 m/s ²	
with a uniform speed with a uniform speed with a uniform speed with a	arth is revolving in a circ v. If gravitational force su e will: vith the speed v along the	ıddenly		
	city v tangentially to the	-		
C. fall downward with	• •	isingly whit		
57. The kinetic energy	D. ultimately come to rest somewhere on the original orbit 57. The kinetic energy <i>K</i> of a particle moving along a circle of radius <i>R</i> depends on the distance covered <i>s</i> as $K = as^2$. The force acting on the part1cle is			
A. $2as^2/R$	B. $2as(1 + s^2/R)^{1/2}$	C. $as(1 + s^2/R^2)^{1/2}$	D. None of these	
58. Einstein was awareA. Photoelectric effectC. General theory of response of the second second		ork in B. Special theory of re D. None of these	lativity	
59. One second is defi A. 1650763.73 periods C. 1650763.73 periods	s of the Krypton clock	B. 652189.63 periods o D. 9192631770 period	• •	

	energy and torque respe B. MLT^2 and ML^2T^2	ctively are C. ML^2T^2 and MLT^2	D. MLT^2 and MLT^2
61. When Benzene dia	zonium chloride reacts v	vith hypophosphorous ac	· •
A. benzene	B. phenol	C. phenylphosphite	
62. The reaction of alip	phatic primary amine wit	th nitrous acid in cold pro	oduces
A. nitrile	B. alcohol	C. diazonium salt	D. secondary amine
A. acetamide	prepared by the action o B. propionamide ation of acetaldehyde res	f bromine and caustic po C. formamide ults in the formation of	otash on D. methyl cyanide
A. CH ₃ COCHOHCH ₃	B. CH ₃ CHOHCH ₂ CHO	O C. CH ₃ CH ₂ CHOHCH	CH ₃ COOH
A. Butan-l-ol	B. Butan-2-ol	reagent at room tempera C. 2-Methyl propan-l-o	D. 2-Methyl propan-2- ol
66. The reaction with I	D ₂ O, (CH ₃) ₃ CMgCl prod	luces	D. (CD ₃) ₃ COD
A. (CH ₃) ₃ CD	B. (CH ₃) ₃ CO	C. (CD ₃) ₃ CD	
A. 1-Butene 68. The active nitrating benzene is	Alcoholic potash, l-chloro B. 1-Butanol g agent during nitration of C. NO_2^- D. HNO ₃	C. 2-Butene	D. 2-Butanol
69. The number of sign	ma and pi bonds in 1-but	en-3-yne are C. 8 sigma and 2 pi	D. 6 sigma and 4 pi
70. The most stable ca	rbonium ion among the o	cations is	D. none of these
A. sec-butyl	B. ter-butyl	C. n-butyl	
71. How many optical	ly active stereo-isomers a	are possible for butane-2	, 3-diol?
A. 1	B. 2	C. 3	D. 4
72. B.P. and M.P. of ir A. high	nert gases are B. low	C. very high	D. very low
73. [CO(NH ₃) ₅ Br] SO	and [CO(NH ₃) ₅ SO ₄] B	r are examples of which	type of isomerism ?
	B. Geometrical	C. Ionization	D. Optical
74. The valency of Cr	in the complex [Cr(H ₂ O)	0 ₄ Cl ₂] ⁺ is	D. 5
A. 3	B. 1	C. 6	

75. In Nessler's reagen A. Hg^+ B. Hg^{2+}	t, the ion is C. HgI_2^{2} D. HgI_4^{2}		
	$_{2}$ O, copper is co-ordinate es B. four water molecule		D. one water molecule
77. Which of the follow A. HCl	wing is a weak acid? B. HBr	C. HP	D. HI
78. When SO_2 is passe A. the solution turns b C. SO_2 is reduced	ed through acidified K ₂ C1 lue	r_2O_7 solution, B. the solution is decol D. green $Cr_2(SO_4)_3$ is f	
79. Which of the follow A. H_2O	wing has lowest boiling J B. H ₂ S	point? C. H ₂ Se	D. H ₂ Te
80. Nitric oxide is prepA. Fe81. The laughing gas isA. nitrous B. nitric oxide oxide	bared by the action of dil B. Cu S C. nitrogen D. nitrogen trioxide pentaoxide	C. Zn	D. Sn
82. Ordinary glass isA. sodium silicateC. calcium and Sodium	n silicate	B. calcium silicate D. copper silicate	
83. The chemical name	e of phosgene is		
A. Phosphene	B. Carbonyl chloride	C. Phosphorous oxychloride	D. Phosphorous trichloride
84. Which one of the f A. BF ₃	ollowing is strongest Lev B. BCl ₃	wis acid? C. BBr ₃	D. BI ₃
85. Three centred bond A. NH ₃	l is present in B. B ₂ H ₆	C. BCl ₃	D. AlCl ₃
86. Plaster of Paris is A. CaSO ₄ .H ₂ O	B. CaSO ₄ .2H ₂ O	C. CaSO ₄ .1/2 H ₂ O	D. CaSO ₄ .3/2 H ₂ O
87. Rocky impurities present in a mineral are calledA. flux B. gangue C. matte D. slag			
88. Free hydrogen is fo A. acids	B. water	C. marsh gas	D. water gas
	ch is hydrated sodium alu	0	-

sodium ions are excha	•	C. SO_4^{2-}	$\mathbf{D} \mathbf{M} \mathbf{C}^{2+}$
A. H^+	B. K^+		D. Mg^{2+}
90. On passing 0.3 far metal deposited on cat		gh aluminium chloride, th	he amount of aluminium
A. 0.27 g	B. 0.3 g	C. 2.7 g	D. 0.9 g
91. The migration of c	colloidal particles under i	influence of an electric fi	eld is known as
A. Electro-osmosis	B. Brownian moveme	nt C. Cataphoresis	D. Dialysis
92. In a colloidal state	, particle size ranges from	m	
A. 1 to 10 A ^o	B. 20 to 50 A ^o	C. 10 to 1000 A ^o	D. 1 to 280 A ^o
A. 1.05 ⁻¹	irst order reaction is 69.3 B. 0.15 ⁻¹ ion of a strong acid and	35. The value of rate con C. 0.015 ⁻¹	stant of the reaction is D. 0.0015 ⁻¹
A. 13.7 B. 9.6	C. 6 D. 11.4		
Kcal/mol Kcal/mol	Kcal/mol Kcal/mol		
95. In exothermic read	ctions,		
A. $H_R = H_P$	B. $H_R > H_P$	C. $H_R < H_P$	D. None of the above
96. Which is a buffer	solution?		
A. $CH_3COOH +$	B. CH ₃ COOH +	C. CH ₃ COOH + NH ₄ C	Cl D. NaOH + NaCl
CH ₃ COONa	CH ₃ COONH ₄		
97. The pH of 0.01 M A. 1.0	solution of HCl is B. 2.0	C. 10.0	D. 11.0
11. 1.0	D . 2 .0	0.10.0	D . 11.0
	llowing case does the real 10^{-2}		
A. $k = 10^2$	B. $k = 10^{-2}$	C. $k = 10$	D. k = 1
1 2	imestone (CaCO ₃) on he	6 6 6	
A. 1000 kg	B. 56 kg	C. 44 kg	D. 50 kg
100. The percentage o	f oxygen in NaOH is		
A. 40	B. 16	C. 18	D. 10
101. If we take 44 g of what will be the mole mixture?			
A. 1/5 B. 1/3	C. 1/2 D. 1/4		
A. 0.2 M	a solution of Na ₂ CO ₃ hav B. 2 M	C. 20 M	D. 0.02 M
			nitial volume pressure to

103. A gas is initially at 1 atm pressure. To compress it to 1/2th of its initial volume, pressure to be applied is

A. 1 atm	B. 4 atm	C. 2 atm	D. 1/4 atm
104. The value of <i>R</i> in A. 0.0831	calorie/degree/mole is B. 8.31	C. 8.31 x 10 ⁷	D. 1.987
105. Which of the follo A. Conductors	owing possesses zero res B. Semi-conductors	istance at 0 K? C. Super-conductors	D. Insulators
106. CsCl has lattice o A. ccp	f the type B. fcc	C. bcc	D. hcp
A. sodium atom is reduced 108. Octahedral molec hybridisation.	tween sodium and chlori B. sodium ion is reduced ular shape exists in C. sp ³ d ³ D. sp ² d ²	ne to form sodium chlor C. chlorine atom is reduced	ide, D. chloride ion is reduced
	n an adduct readily becau	use they form C. an ionic bond	D. a hydrogen bond
110. Diagonal relation A. Li and Mg	ship exists between B. Na and Mg	C. K and Mg	D. Al and Mg
111. Which element ha A. F	as the highest electro-neg B. He	gativity? C. Ne	D. Na
112. Loss of a -particleA. loss of two neutronC. loss of two neutron	=	B. loss of two protonsD. none of the above	only
113. Stable compound A. B	s in + 1 oxidation state a B. Al	re formed by C. Ga	D. Th
114. Sodium hexameta	phosphate is used as		
A. a cleansing agent	B. an insecticide	C. a water softner	D. an iron exchange resin
115. The strongest acidA.B.ClO3(OH)ClO2(OH)	C. D.		
	g the following pairs of i	ons cannot be separated	by H ₂ S in dilute
hydrochloric acid? A. Bi ³⁺ , Sn ⁴⁺	B. Al ³⁺ , Hg ²⁺	C. Zn^{2+} , Cu^{2+}	D. Ni ²⁺ , Cu ²⁺

117. The alkane would have only the primary and tertiary carbon is

A. Pentane	B. 2-methylbutane	C. 2, 2- dimethylpropane	D. 2, 3-dimethylbutane
118. The product of real A. ethane	action of alcoholic silver B. ethene	nitrite with ethy1 bromi C. nitroethane	de is D. ethyl a1coho1
119. Formy1 chloride formyl chloride in form	has not been so prepared nulation?	. Which one of the follow	wing can function as
A. HCHO + HCl	B. $HCOOCH_3 + HCl$	C. CO + HCl	D. $HCONH_2 + HCl$
120. Amongst the follo A. Benzylarnine 121. If the roots of x^2 - consecutive integers, th A. 4 B. 3	bx + c = 0 are	npound is C. Acetanilide	D. p-Nitroaniline
122. Condition that the	e two lines represented by	y the equation $ax^2 + 2hx$	$y + by^2 = 0$ to the
perpendicular is A. $a = -b$	B. ab = 1	C. a = b	D. ab = -1
123. If $A \subseteq B$, then A A. B^{c}	\cap B is equal to B. A ^c	С. В	D. A
124. In order that the f A. $f(0) = 0$	unction $f(x) = (x + 1)^{\cot x}$ B. $f(0) = e$	is continuous at $x = 0$, for C . $f(0) = 1/e$	(0) must be defined as D. none of the above
125. The eccentricity of A. 4/3	of the ellipse $16x^2 + 7y^2 = B.7/16$	= 112 is C. 3/√7	D. 3/4
A. a circle 127. If $[(a^2 + 1)^2]/(2a - equal to)$	ee complex numbers in A B. an ellipse i) = $x + iy$, then $x^2 + y^2 i$	C. a straight line	D. a parabola
A. $[(a^2 + B. [(a + 1)^4]/(4a^2 + 1)^2]/(4a^2 + 1)^2]/(4$	C. $[(a^2 - 1)^2]/(4a^2 - 1)^2$ D. none of the above	2	
128. The vertices of a A. (3/2, 2)	triangle are (0, 0), (3, 0) B. (0, 0)	and (0, 4). Its orthocentro C. (1, 4/3)	e is at D. none of the above
129. The eccentricity of	of the conic $9x^2 - 16y^2 =$	144 is	
A. 5/4	B. 4/3	C. 4/5	D. √7

130. The vertices of a triangle are (0, 3), (-3, 0) and (3, 0). The co-ordinates of its orthocentre are

A. (0, 2)	B. (0, -3)	C. (0, 3)	D. (0, -2)	
131. If t is the paramet A. a [t - (1/t)]	ter for one end of a focal B. a $[t + (1/t)]$	chord of the parabola y^2 C. a $[t - (1/t)]^2$		
132. The value of \cos^2 A. equal to 1 C. greater than or equa 133. The number of po = 1 and y = sin x, -2π s	ll to 2 bints of intersection of 2y	B. less than 1 D. greater than 1, but 1	ess than 2	
A. 2 B. 3	C. 4 D. 1			
134. If $\sin \theta_1 + \sin \theta_2 = A$. 0	+ $\sin \theta_3 = 3$, then $\cos \theta_1 = $ B. 1	$+\cos \theta_2 + \cos \theta_3 =$ C. 2	D. 3	
135. The number of solutions in $0 \le x \le \pi/2$ of the equation $\cos 3x \tan 5x = \sin 7x$ isA. 5B. 7C. 6D. none of the above				
136. One end of a diar A. (4, -9)	meter of the circle $x^2 + y^2$ B. (-9, -4)	$x^{2} - 4x - 2y - 4 = 0$ is (5, -6 C. (4, 9)	5), the other end is D. (9, -4)	
137. The set of values of m for which both the roots of the equation $x^2 - (m + 1)x + m + 4 = 0$ are real and negative consists of all m, such that				
A. $-3 \ge m \text{ or } m \ge 5$		C $4 < m \le -3$	D. $-3 < m \le -1$	
138. Let $P_n(x) = 1 + 2x$ number of real roots of	$x + 3x^{2} + \dots + (n + 1) x$ f P(x) = 0 is	ⁿ be a polynomial such th	nat n is even. Then the	
A. 1	B. n the sequence 1, 3, 6, 10,	C. 0	D. none of the above	
is A. 16 B. 13	C. 15 D. 14			
140. If H is the harmon A. $(P + Q)/PQ$	nic mean between P and B. $PQ/(P + Q)$	Q, then $H/P + H/Q$ is C. 2	D. none of the above	
141. A class is composed of two brothers and six other boys. In how many ways can all the boysbe seated at a round table so that the two brothers are not seated besides each other?A. 4320B. 3600C. 720D. 1440				
	fficient of the 4th term in B. 20		-	
143. For $x \neq 0$, the term independent of x in the expansion of $(x - x^{-1})$ is equal to				

A.
$${}^{2n}C_n$$
 B. $[(-1)^n] [{}^{2n}C_n]$ C. $[(-1)^n] [{}^{2n}C_{n+1}]$ D. ${}^{2n}C_{n+1}$

144.
$$\begin{vmatrix} a_1 b_1 c_1 \\ a_2 b_2 c_2 \\ a_3 b_3 c_3 \end{vmatrix}$$
 is equal to

A.
$$\begin{vmatrix} a_1 & b_1 & kc_1 \\ a_2 & kb_2 & c_2 \\ ka_3 & b_3 & c_3 \end{vmatrix}$$

B.
$$\begin{vmatrix} ka_1 & kb_1 & kc_1 \\ ka_2 & kb_2 & kc_2 \\ ka_3 & kb_3 & kc_3 \end{vmatrix}$$

C.
$$\begin{vmatrix} ka_1 & b_1 & c_1 \\ ka_2 & b_2 & c_2 \\ ka_3 & b_3 & c_3 \end{vmatrix}$$

D.
$$\begin{vmatrix} ka_1 & b_1 & c_1 \\ a_2 & kb_2 & c_2 \\ a_3 & b_3 & kc_3 \end{vmatrix}$$

A. 2/3 B. 8/3 C. 16/3 D. 1/3

146. If
$$|A| =$$

a b c
x y z
p q r
| and $|B| =$

q -b y
-p a -x
r -c z
|
, then

A. |A| = 2 |B| B. |A| = |B| C. |A| = -|B| D. none of the above

147. Equation of the sphere with centre (1, -1, 1) and radius equal to that of sphere $2x^2 + 2y^2 + 2z^2 - 2x + 4y - 6z = 1$ is A. $x^2 + y^2 + z^2 - 2x + 2y - 2z + 1 = 0$ C. $x^2 + y^2 + z^2 - 2x + 2y - 2z - 1 = 0$ 148. Equation of the line passing through the point (1, 1, 1) and parallel to the plane 2x + 3y + 3z + 5 = 0 is A. (x - 1)/1 = (y - 1)/2 = B. (x - 1)/-1 = (y - 1)/1 (z - 1)/1 = (z - 1)/-1C. (x - 1)/3 = (y - 1)/2 = D. (x - 1)/2 = (y - 1)/3 = (z - 1)/1

		e of opposite signs and r n coefficient between ax C r		
150. From a deck of 5 A. 3/13	2 cards, the probability o B. 1/4	f drawing a court card is C. 4/13	D. 1/13	
151. A binomial proba trial, is	bility distribution is sym	metrical if p, the probabi	lity of success in a single	
A. > $1/2$	B . < 1/2	C. $<$ q, where q = 1 - p	D. = 1/2	
	tribution whose mean is $B. (4/5 + 1/5)^{1/50}$	10 and S.D. is $2\sqrt{2}$ is C. $(4/5 + 5/1)^{50}$	D. none of the above	
153. tan (cot ^{-1}x) is equ A. $\pi/4 - x$ 154. If f(x) is an odd p period 2, then f(4) equ A 4 B. 4	B. cot $(\tan^{-1}x)$ eriodic function with	C. tan x	D. none of the above	
	= $[(x^3 + x^2 - 16x + 20)]/(2, f(2))$ should be defined B. 1	(x - 2) is not defined for as C. 2	x = 2. In order to make D. 3	
		sfying $g'(a) = 2$, $g(a) = b$		
A. 0	B. 2/3	C. 1/2	D. none of the above	
157. A cone of maxim the cone to the diameter		n a given sphere. Then th	ne ratio of the height of	
	B. 1/3	C. 1/4	D. 2/3	
158. The function is decreasing in the interval A. $-\infty < x < -10/3$ B. $0 < x < \infty$ C. $-3 < x < 3$ D. $-10/3 < x < 0$ 159. Suppose that f''(x) is continuous for all x and f(0) = f'(1). If $\int_{0}^{1} tf'(t) dt = 0$,				
then the value of f(1)	D none of	f		
A. 3 B. 2	C. 9/2 D. none of the above	-		
160. Integrating factor of differential equation $\cos x (dy/dx) + y \sin x = 1$ is A sin x P see x D cos x				

A. sin x B. sec x C. tan x D. cos x

 $dx/(1 + 4x^2) =$ 161. If then the value of a is **B**. 1/2 A. $\pi/2$ C. $\pi/4$ D. 1 162. The maximum value of $(\log x)/x$ is B. 1/e C. 1 A. 2/e D.e 163. If one root of the equation $x^2 + px + 12 = 0$ is 4, while the equation $x^2 + px + q = 0$ has equal roots, then the value of q is D. none of B. 4/49 A. 49/4 C. 4 the above 164. The sum of the series $1/2 + 1/3 + 1/6 + \dots$ to 9 terms is A. -5/6 B. -1/2 C. 1 D. -3/2 165. The sum of all two digit numbers, which are odd is A. 2475 B. 2530 C. 4905 D. 5049 166. How many ten digit numbers can be formed by using the digits 3 and 7 only? A. ${}^{10}C_1 + {}^9C_2$ **B**. 2^{10} C. ${}^{10}C_2$ D. 10! 167. If x and y are real and different and $u = x^2 + 4y^2 + 9z^2 - 6xyz - 3zx - 2xy$, then u is always A. non-negative D. none of the above B. zero C. non-positive 168. If a be a non-zero vector, then which of the following is correct? B. a. a > 0A. $a \cdot a = 0$ C. a. $a \ge 0$ D. a. $a \le 0$ 169. If two vectors a and b are parallel and have equal magnitudes, then A. they are equal B. they are not equal C. they may or may not D. they do not have the same direction be equal 170. In a triangle, the lengths of the two larger sides are 10 and 9 respectively. If the angles are in A.P., then the length of the third side can be A. $5 \pm \sqrt{6}$ B. 3√3 C. 5 D. none of the above 171. The three lines 3x + 4y + 6 = 0, $\sqrt{2x} + \sqrt{3y} + 2\sqrt{2} = 0$, and 4x + 7y + 8 = 0 are A. sides of a triangle B. concurrent C. parallel D. none of the above 172. The pole of the straight line 9x + y - 28 = 0 with respect to the circle $2x^2 + 2y^2 - 3x + 5y - 7$ = 0 is C. (3, -1) A. (3, 1) B. (1, 3) D. (-3, 1)

173. If the sets A and B are defined as $A = \{ (x, y) : y = e^x, x \in R \}, B = \{ (x, y) : y = x, x \in R \},$ then C. A \subset B A. A \cup B = A D. B \subseteq A B. A \cap B = ϕ 174. The $\frac{2a}{r}$ { f(x)/[f(x) + f(2a) - x)] }dx is equal value of the õ integral to D. none of A. a B. 2a C. 3a the above 175. The slope of the normal at the point (at², 2at) of the parabola $y^2 = 4ax$ is B.t C. - t A. 1/t D. -1/t 176. If z is any complex number such that $|z + 4| \le 3$, then the greatest value of |z + 1| is A. 2 B. 6 C. 0 D. - 6 177. The equation $\cos x + \sin x = 2$ has A. only one solution B. two solutions C. no solution D. infinite number of solutions 178. The most general value of θ , which satisfies both the equations $\tan \theta = -1$ and $\cos \theta = 1/\sqrt{2}$ will be B. $n\pi + (-1)^n (7\pi/4)$ C. $2n\pi + (7\pi/4)$ D. none of the above A. $n\pi + (7\pi/4)$ 179. A spherical ball of radius r placed on the ground subtends an angle of 60° at a point A of the ground. Then the distance of the point A from the centre of the ball is D. none of A. 3r B. 2r C. 4r the above 180. In a triangle ABC, $a^2 \cos 2B + b^2 \cos 2A + 2ab \cos (A - B)$ is equal to A. c $B.c^2$ C. 2c D. none of the above