MATHS

Q. 1. The mean of the numbers a, b, 8, 5, 10 is 6 and the variance is 6.80 . Then which one of the following gives possible values a and b?

i. a = 1, b = 6ii. a = 3, b = 4iii. a = 0, b = 7iv. a = 5, b = 2

Sol.

$$Mean = \frac{\sum x}{n} = 6$$

$$Variance = \frac{\sum x^{2}}{n} - \left(\frac{\sum x}{n}\right)^{2} = 6.8$$

$$-\frac{a^{2} + b^{2} + 64 + 25 + 100}{5} - 36 - 6.8$$

$$\Rightarrow a^{2} + b^{2} + 189 - 180 = 34$$

$$\Rightarrow a^{2} + b^{2} = 25$$

Possible values of a and b is given by (2)

Q. 2. The vector $\vec{a} = a\hat{i} + 2\hat{j} + \beta \hat{k}$ lies in the plane of the vectors $\vec{b} = \hat{i} + \hat{j}$ and $+\vec{c} = \hat{j} + \hat{k}$ and bisects the angle between \vec{b} and \vec{c} . Then which one of the following gives possible values of \vec{a} and $\vec{\beta}$?

i.
$$\alpha = 2, \beta = 1$$

ii. $\alpha = 1, \beta = 1$
iii. $\alpha = 2, \beta = 2$
iv. $\alpha = 1, \beta = 2$

Sol.

As
$$\vec{a}$$
, \vec{b} and \vec{c} are coplanar
:: $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = 0$
Or, $\alpha + \beta = 2$ (i)
Also \vec{a} bisects the angle between \vec{b} and \vec{c}
:: $\vec{a} = \lambda \left(\vec{b} + \vec{c} \right)$
or, $\vec{a} = \lambda \left(\frac{\hat{i} + 2\hat{j} + \vec{k}}{\sqrt{2}} \right)$ (ii)
But $\vec{a} = \alpha \ \vec{2} + 2\hat{j} + \beta \vec{k}$
Hence $\lambda = \sqrt{2}$ and $\alpha = 1$, $\beta = 1$
Which also satisfy (i)
:: Correct answer is (2)

Q. 3.

The non-zero vectors \vec{a} , \vec{b} and \vec{c} are related by $\vec{a} = 8\vec{b}$ and $\vec{c} = -7\vec{b}$. Then the angle between \vec{a} and \vec{c} is

і. <mark>72</mark> іі. **77** ііі. 0 іі. 0 іv. **4**

Sol. The sign of \vec{a} and \vec{c} are opposite. Hence they are parallel but directions are opposite. Therefore angle between \vec{a} and \vec{c} is \vec{u}

\therefore correct answer is (2)

Q. 4. The line passing through the points (5, 1, a) and (3, b, 1) crosses the yz-plane at the

point
$$\left(0, \frac{17}{2}, \frac{-13}{2}\right)$$
. Then

i. a = 6, b = 4ii. a = 8, b = 2iii. a = 2, b = 8iv. a = 4, b = 6 Sol. Equation of line through (5, 1, a) and (3, b, 1) is

$$\frac{x-5}{-2} = \frac{y-1}{b-1} = \frac{z-a}{1-a} = \lambda$$

any point on (i) is
 $\{5-2\lambda, 1+(b-1)\lambda, a+(1-a)\lambda\}$ (ii)
 $As\left(0, \frac{17}{2}, -\frac{13}{2}\right)$ lies on (i)
 $5-2\lambda = 0 \Rightarrow \alpha = \frac{5}{2}$ (iii)
 $1+(b-1)\times\frac{5}{2} = \frac{17}{2}$
or, $2+5b-5=17$
or, $b=4$
and $a+(1-a)\times\frac{5}{2} = -\frac{13}{2}$
or, $2a+5-5a=-13$
or, $a=6$
 \therefore Correct answer is (1)
Q. 5. If the straight lines $\frac{x-1}{k} = \frac{y-2}{2} = \frac{x-3}{3}$ and $\frac{x-2}{3} = \frac{y-3}{k} = \frac{z-1}{2}$ intersect at a point, then the

integer k is equal to

i. 2 ii. 2 iii. 5 iv. 5

Sol.As the given lines intersect

$$\begin{vmatrix} 2-1 & 3-2 & 1-3 \\ k & 2 & 3 \\ 3 & k & 2 \end{vmatrix} = 0$$

or,
$$\begin{vmatrix} 1 & 1 & 2 \\ k & 2 & 3 \\ 3 & k & 2 \end{vmatrix} = 0$$

or,
$$k = -5, \frac{5}{2}$$

Integer is -5 only
 \therefore Correct answer is (3)

Q. 6. The differential of the family of circles with fixed radius 5 units and centre on the line y = 2 is

i.
$$(y-2)^2 y'^2 = 25 - (y-2)^2$$

ii. $(x-2)^2 y'^2 = 25 - (y-2)^2$
iii. $(x-2) y'^2 = 25 - (y-2)^2$
iv. $(y-2) y'^2 - 25 - (y-2)^2$

Sol. The required equation of circle is

 $(x-a)^{2} + (y-2)^{2} = 25$ (i) differentiating we get 2(x-a) + 2(y-2)y' = 0or, a = x + (y-2)y' (ii) putting a in (i) $(x - x - (y-2)y')^{2} + (y-2)^{2} = 25$ or, $(y-2)^{2}y'^{2} = 25 - (y-2)^{2}$: The correct answer is (1)

Q. 7. Let a, b, c be any real numbers. Suppose that there are real numbers x, y, z not all zero such that x = cy + bz, y = az + cx and z = bx + ay. Then $a^2 + b^2 + c^2 + 2abc$ is equal to

i. 0 ii. 1 iii. 2 iv. -1

Sol.

$$x = cy + bz \Rightarrow x - cy - bz = 0 \qquad (i)$$

$$y = az + bx \Rightarrow bx - y + az = 0 \qquad (ii)$$

$$z = bx + ay \Rightarrow bx + ay - z = 0 \qquad (iii)$$
Elim inating x, y, z from (i), (ii) and (iii) weget
$$\begin{vmatrix} 1 & -c & -b \\ c & -1 & a \\ b & a & -1 \end{vmatrix} = 0$$
or, $a^2 + b^2 + c^2 + 2abc = 1$.
: The correct answer is (2)

Q. 8. Let A be a square matrix all of whose entries are integers. Then which one of the following is true?

$$_{\rm i}$$
 If det $A = \pm 1$, then A^{-1} exists and all its entries are int egers

ii. If det
$$A = \pm 1$$
, then A^{-1} need not exist

$$_{\text{iii.}}$$
 If det $A = \pm 1$, then A^{-1} exist but all its entries are not necessarily int egers

If det $A = \pm 1$, then A^{-1} exist and all its entries are ncn - nt egers

Sol. The obvious answer is (1).

Q. 9. The quadratic equations $x^2 - 6x a = 0$ and $x^2 - cx + 6 = 0$ and have one root in common. The other roots of the first and second equations are integers in the ratio 4 : 3. Then the common root is

i. 3 ii. 2 iii. 1

iii. 1 iv. 4

Sol.

Let the roots of $x^2 - 6x + a = 0$ be α and 4β and that of $x^2 - cx + 6 = 0$ be α and 3β $\therefore \alpha + 4\beta = 6$ (i)= *a* $4 \alpha \beta$ (ii) $\alpha + 3\beta$ = c(iii) $3\alpha\beta = 6$ (iv)Using (ii) & (iv) $\frac{4}{3} = \frac{a}{6} \Rightarrow a = 8$ $x^2 - 6x + a = 0$ Then reduces to $x^2 - 6x + 8 = 0$ $x = \frac{6 \pm \sqrt{36 - 32}}{2}$ $=\frac{6\pm 2}{2}=4,2$ $\therefore \alpha = 2, \beta = 1$

:. Correct answer is (2)

Q. 10. How many different words can be formed by jumbling the letters in the word MISSISSIPPI in which no two S are adjacent?

i.
$$6.8.^7 C_4$$

ii. $7.^6 C_4. {}^8 C_4$
iii. $8.^6 C_4. {}^7 C_4$
iv. $6.7.^8 C_4$

Sol. M = 1, I = 4, P = 2

These letters can be arranged by

$$\frac{(1+4+2)!}{1!4!2!} = 7 \ ^{6}C_{4} \ ways$$

The remaining 8 gaps can be filled by 4 S by ${}^{*}C_{4}$ ways

- : Total no. of ways = $7 C_4 = C_4$
- : Correct answer is (2)

Q. 11.

Let
$$I = \int_{0}^{1} \frac{\cos x}{\sqrt{\lambda}} dx$$
. Then which one of the following is true?

$$I < \frac{2}{3} and J > 2$$
i.

$$I < \frac{2}{3} and J < 2$$
ii.

$$I > \frac{2}{3} and J > 2$$
ii.

$$I > \frac{2}{3} and J > 2$$
ii.

$$I < \frac{2}{3} and J > 2$$
iv.

Sol.

We Know
$$\frac{\sin x}{x} < 1$$
, when $x \in (0, 1)$

$$\therefore \frac{\sin x}{\sqrt{x}} < \sqrt{x}$$

$$\Rightarrow \int_{0}^{1} \frac{\sin x}{\sqrt{x}} dx < \int_{0}^{1} \sqrt{x} dx$$

$$\Rightarrow \int_{0}^{1} \frac{\sin x}{\sqrt{x}} dx < \frac{2}{3}$$
Also, $\cos x < 1$, when $x \in (0,1)$

$$\therefore \frac{\cos x}{\sqrt{x}} < \frac{1}{\sqrt{x}}$$

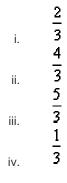
$$\Rightarrow \int_{0}^{1} \frac{\cos x}{\sqrt{x}} dx < \int \frac{1}{\sqrt{x}} dx$$

$$\int_{0}^{1} \frac{\cos x}{\sqrt{x}} dx < 2$$

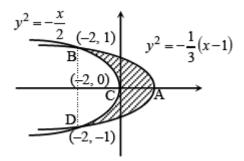
$$\therefore I < \frac{2}{3} and J < 2$$

$$\therefore Correct answer is (4)$$

Q. 12. The area of the plane region bounded by the curve $x + 2y^2 = 0$ and $3y^2 = 1$ is equal to



Sol.



$$x + 2y^{2} = 0 \Rightarrow y^{2} = -\frac{x}{2}$$

$$x + 3y^{2} = 1 \Rightarrow y^{2} = -\frac{1}{3}(x - 1)$$

$$\therefore -\frac{x}{2} = -\frac{1}{3}(x - 1)$$
or,
$$-\frac{x}{2} = -\frac{x}{3} + \frac{1}{3}$$
or,
$$\frac{x}{3} - \frac{x}{2} = -\frac{1}{3}$$
or,
$$-\frac{x}{6} = -\frac{1}{3}$$
or,
$$x = -2$$

$$\therefore y^{2} = 1 \Rightarrow y = \pm 1$$

Area of the region BCA

$$= \left| \int_{0}^{1} \{ (-2y^{2}) - (1 - 3y^{2}) \} dy \right|$$
$$= \left| \int_{0}^{1} (y^{2} - 1) dy \right|$$
$$= \left| \left[\frac{y^{3}}{3} y \right]_{0}^{1} \right|$$
$$= \left| \frac{1}{3} - 1 \right| = \frac{2}{3}$$

Hence area of the region bounded by the curve is equal to $2 \times \frac{2}{3} = \frac{4}{3}$

:. Correct answer is (2)