 Sun releases energy A. nuclear fusion 	by the process of B. nuclear disintegration	C. nuclear fission	D. spontaneous combustion	
2. The number of atoms per unit cell in a <i>sc, bc</i>.A. 1, 2 and 4 respectivelyC. 1, 4 and 2 respectively		<i>bcc</i> , and <i>fcc</i> are B. 8, 6 and 10 respect D. 2, 4 and 1 respectiv	•	
3. In a diode, at satura A. zero	tion current, the plate 1 B. constant and finit		D. variable but finite	
4. An <i>n</i> -type and a <i>p</i> -t A. sodium and magne C. indium and sodium	sium respectively	actor can be obtained by de B. phosphorous and b D. boron and arsenic 1	oron respectively	
5. When the plate volt voltage to 200 V, the	0	V, its cut off voltage is -5 V	V. On increasing the plate	
A4.5V	B5.0V	C. + 2.3 V	D6.06 V	
	6. In a diode vacuum tube, the plate current is 5 mA when the plate voltage is 160 V. A grid is introduced between the plate and cathode and a voltage of -2 V is applied to it. The plate current then become			
A. 20 mA	B. 10 mA	C. 4mA	D. 7.5mA	
7. A long spring is strong potential energy is V		ad a		
by 10cm, its potential	If the spring is stretche energy would be	u		
A. V/25 B. V/5	•••			
-	as measured by an obs he observer with respec	erver moving with respect	t to it is half of its proper	
A. $3/2 c \text{ ms}^{-1}$	B. $c/2 \text{ ms}^{-1}$	C. $(\sqrt{3})/2 c \text{ ms}^{-1}$	D. $1/\sqrt{2} c \text{ ms}^{-1}$	
9. A + μ -meson with a proper half-life of 1.8 x 10 ⁻⁶ s is moving with a speed of 0.9 c with respect to an earth observer. The half-life of this μ -meson according to an observer sitting on it is				
A. $1.8 \ge 10^{-6} $ s	B. 1.8 x $\sqrt{0.19}$ x 10^{-6}	6 s C. 1.8/ $\sqrt{0.19}$ x 10 ⁻⁶ s	D. 1.8 x 0.19 x 10 ⁶ s	
10. The mass per nucleon in an ordinary hydrogen atom is				
A. l/l6th mass per nucleon in an oxygen atomB. slightly greater than the mass per nucleon in an oxygen atom				
	er nucleon in an oxyge			
	in the mass per nucleor			
11. Consider the follo	wing nuclear reaction			
$_{2}\text{He}^{4} + _{Z}X^{A} = _{Z+2}Y^{A+3} + W$				

 $_{2}\text{He}^{4} + _{Z}X^{A} = _{Z+2}Y^{A+3} + W$ What particle does *W* denote ?

A. electron	B. positron	C. proton	D. neutron
12. The function of gr	aphite and the control 1	ods in a nuclear read	ctor are
A. to produce neutron	s and to shield the reac	tor	
B. to slow down the n	eutrons and to absorb t	he excess neutrons r	espectively
C. to absorb the exces	s neutrons and to shield	l the reactor respecti	ively
D. to absorb neutrons	and to reduce the energy	gy of the neutrons re	spectively
${}_{7}N^{14} + {}_{2}He^{4} = X + {}_{1}H^{1}$ The element in this re A. ${}_{8}O^{17}$		C. 8N ¹⁷	D. ₈ Ne ¹⁷
	periment, the specific c J. Thomson. The speed	• • •	ticles is found to be 1/4th of the s is
A. √ 5/4 c	B. √ 15/4 c	C. 1/4 c	D. c
15. When the mass is	rotating in a plane abou	it a	
	r momentum is directed	1	
alama			
0	B the tangent to orb	it	
along A. the radius C. line at an angle of	B. the tangent to orb	it	

16. A photo-cell with a constant p.d. of V volts across it, is illuminated by a point source from a distance 25 cm. When the source is moved to a distance of 1 m, the electrons emitted by the photo-cell

A. carry 1/4th their previous energy	B. are 1/16th as numerous as before
C. are 1/4th as numerous as before	D. carry 1/4th their previous momentum

17. A convex lens of focal length 40 cm is in contact with a concave lens of focal length 25 cm. The power of combination is

	A1.5D	B6.5D	C. 1.5 D	D. 6.5 D
--	-------	-------	----------	----------

18. A prism splits a beam of white light into its seven constituent colours. This is so becauseA. phase of different colour is differentC. energy of different colours is differentD. velocity of different colours is different

19. A prism has a refracting angle of 60° when a ray of light is incident on its face at 45° , it suffers minimum deviation. The angle of minimum deviation is

A. 30° B. 60° C. 45° D. 90° 20. A car driver sees an image of a bus in his driving mirror, which has a radius of curvature of 4 m. The bus which is 10 m long, is parallel

rotation

to and following the car in front of the bus 18 m from the mirror. The apparent length of the bus as seen in the mirror is

A. 700 mm B. 670 mm C. 800 cm D. 800 mm

21. A single slit of width d is placed in the path of a beam of wavelength λ . The angular width of principal maximum obtained is

C. $2\lambda/d$ A. d/λ B. λ/d D. $2d/\lambda$

22. A closed tube, partly filled with a liquid & set horizontal, is rotated about a vertical axis passing through its centre. In the process, the moment of inertia of the system about its axis would

A. increase always	B. decrease always
C. remain constant	D. increase if tube is less than half filled,
	decrease otherwise

23. In an A.C. circuit the instantaneous current through and voltage across a capacitor are represented as I = I₀ sin ($\omega t + \pi/4$) and v = V₀ sin ($\omega t + \pi/8$) respectively. The current leads the voltage by

B. $3\pi/8$ C. $\pi/2$ A. $\pi/4$ D. $\pi/8$

24. A transformer having 2100 turns in the primary and 4200 turns in the secondary has an a.c. source of 120 V, 10 A connected to its primary. Then the secondary voltage and current are A. 240 V and 5 A B. 120 V and 10 A C. 240 V and 10 A D. 120 V and 20 A 25. When a magnet falls through a metal ring, acceleration through the metal ring during the free falls is

A. less than g throughout its fall

B. less than g when it is above the ring and more than g

when it is below the ring

C. more than g throughout its fall

D. more than g when it is above the ring and less than g

when it is below the ring

26. A copper rod is suspended in a non-homogeneous magnetic field region. The rod when in equilibrium, will then align itself

A. in the region where the magnetic field is strongest

B. in the direction in which it was originally suspended

C. in the region where the magnetic field is weakest and parallel to the direction of the magnetic field there

D. none of these

27. The substance which	ch shows permanent	magnetism is called	
A. anti-ferromagnetic	B. paramagnetic	C. diamagnetic	D. ferromagnetic

28. A magnetic substance is heated to 800 K and then cool down slowly to 300 K, then it B. retains its magnetism below curie points A. retains its magnetism

C. does not retain magnetism D. none of these 29. Two heater wires of equal length are first connected in series and then in parallel. The ratio of heat produced in the two cases is A. 2:1 B. 1:2 C. 4:1 D. 1:4

30. A galvanometer with a coil resistance of 100Ω gives a full-scale deflection when a current of 1 mA is passed through it. The resistance of the shunt needed to convert this galvanometer into an ammeter 5 of range 10 A is nearly

 A. 0.01Ω
 B. 0.001Ω
 C. 0.1Ω
 D. 0.099Ω

31. The resistance of a 50 cm long wire is 10Ω . The wire is stretched to uniform wire of length 100 cm. The resistance now will be

A. 15Ω B. 30Ω C. 20Ω D. 40Ω

32. In the given circuit, the currents i, j, and k are in the ratio

D. 3:1:2

A. 1:2:3 B. 3:2:1

C. 2:1:3

33. A conducting sphere of radius R is given a charge Q. Consider three points B at the surface, A at centre and C at a distance R/2 from the center. The electric potential at these points are such that

A. $V_A = V_B = V_C$ B. $V_A = V_B \neq V_C$ C. $V_A \neq V_B \neq V_C$ D. $V_A \neq V_B = V_C$ 34. The mass of a proton is 1847 times that of an electron.

An electron and a proton are projected into a uniform

electric field in a direction of right angles to the direction of

the field with the same initial kinetic energy. Then

A. both the trajectories will be equally curved

B. the proton trajectory will be less curved than the electron trajectory

C. the electron trajectory will be less curved than the proton trajectory

D. the relative curving of the trajectories will be dependent on the value of initial kinetic energy

35. The wavelength of maximum radiation from the moon is 14×10^{-6} m. If the value of the constant in Wein's displacement law is 0.00293 mK, the surface temperature of moon is A. 207 K B. 146 K C. 227 K D. 103.5 K 36. A given mass of gas is subjected to an external pressure of 0.5 x 10^{10} N/m². If $K = 10^{10}$ Nm⁻², the ratio of the density before and after applying the pressure is A. 1 : 1 B. 1 : 2 C. 2 : 1 D. 1 : 4

37. The heat reservoir of an ideal Carnot engine is at 800 K and its sink is at 400 K. The amount of heat taken in it in one second to produce useful mechanical work at the rate of 750 K is

has 50% efficiency. If	B. 1125 J with its cold body at 17° the temperature of its ho by 145°C, the efficiency	ot	D. 750 J	
A. 55% B. 60%	C. 40% D. 45%			
-	m increases in length by ume expansion of the wi	10^{-4} m when heated throus re is	ugh 10 ² degree celsius.	
A. 2 x 10 ⁻⁶	B. 1 x 10 ⁻⁶	C. 3 x 10 ⁻⁶	D. 4 x 10 ⁻⁶	
40. The pitch of a sour	nd wave is related to its			
A. frequency	B. amplitude	C. velocity	D. beats	
41. A mass <i>m</i> is hung its initial position; this		me, it was observed that	mass <i>m</i> moves up from	
A. decrease in temperature	B. increase in temperature	C. the statement is wrong	D. change in humidity	
in parallel; the equival	lent force constant of the	system is	and the two are connected	
A. 16 Nm ⁻¹	B. 32 Nm ⁻¹	C. 8 Nm ⁻¹	D. 24 Nm ⁻¹	
 43. A light spring of constant <i>k</i> is cut into two equal parts. The spring constant of each part is A. <i>k</i> B. 2<i>k</i> C. <i>k</i>/2 D. 4<i>k</i> 44. A wave equation which gives the displacement along y-direction is given by y = 10⁻⁴ sin (60t + x) where x and y are in meters and <i>t</i> is time in seconds. This represents a wave A. travelling with a velocity of 300 ms⁻¹ in the -ve x-direction B. of wavelength π meters C. of frequency 30/π hertz D. of amplitude 10⁴ meter travelling along the positive x-direction 45. The periodic times <i>T</i> of a simple pendulum are observed for different length <i>l</i>. If a graph of log <i>T</i> against log 1 is plotted, the slope of the graph is 				
A. 2 C. $\sqrt{2}$	noncu, me stope of the g	B. $1/2$ D. $1/\sqrt{2}$		
46. Ordinarily, the val	ue of coefficient of resti	tution varies from		
A. 0 to1	B. 0 to 0.5	C. –1 to +1	D0.5 to +0.5	
47. In a gravitational field, if a body is bound with earth, then total mechanical energy it has is				

47. In a gravitational	field, if a body is bouil	u with earth, then total	mechanical energy it has is
A. a +ve value	B. a zero value	C. a -ve value	D. K.E. less than P.E.

48. The mass of a planet is twice the mass of earth and diameter of the planet is thrice the diameter of the earth, then the acceleration due to gravity on the planet's surface is

A. g/2 B. 2g C. 2g/9 D. $3g/\sqrt{2}$

49. A stationary bomb explodes into two parts of masses 3 kg and 1 kg. The total K.E. of the two parts after explosion is 2400J. The K.E. of the smaller part is
A 600 J B 1800 J C 1200 J D 2160 J
50. In a perfectly elastic collision
A. both momentum and K.E. are conserved
C. only K.E. is conserved
D. neither K.E. nor momentum is conserved

51. A bullet of mass 7g is fired at a velocity of 900 ms⁻¹ from a rifle of mass 3.5 kg. What is the recoil velocity of the rifle?

A 0.9 ms⁻¹ B 180 ms⁻¹ C 900 ms⁻¹ D 1.8 ms⁻¹

52. In the arrangement shown in the figure, P and Q are in inflexible strings moving downward with uniform speed U, pulleys A and B are fixed. Mass M move upwards with a speed of

A. 2 U cos θ B. U/cos θ

C. $2U/\cos\theta$ D. U cos θ

53. The figure shows the angular velocity-time graph of a flywheel. The angle, in radians, through which the flywheel turns during 25 sec is

A. 75 B 480 C. 615 D. 750 rad/s 0 4 Time (sec) 20 25

54. A ball is dropped from the top of a building 100m high. At the same instant another ball is thrown upwards with a velocity of 40 ms^{-1} from the bottom of the building. The two balls will meet after

A. 5 sec B. 2.5 sec C. 2 sec D. 3 sec

55. A train accelerating uniformly from rest attains a maximum speed of 40 ms⁻¹ in 20 seconds. It travels at this speed for 20 seconds and is brought to rest with uniform retardation in further 40 seconds. What is the average velocity during this period?

A. $80/3 \text{ ms}^{-1}$ B. 40 ms^{-1} C. 25 ms^{-1} D. 30 ms^{-1}	A. $80/3 \text{ ms}^{-1}$	B. 40 ms ⁻¹	C. 25 ms ⁻¹	D. 30 ms
---	---------------------------	------------------------	------------------------	----------

56. Two bodies are held and separated by 19.8m vertically one above the other. They are released simultaneously to fall freely under gravity. After 2 seconds, the relative distance between them is:

moves in a straight line ms ⁻² . The time at which from the starting point	B. 19.6m th a velocity of 2 ms ⁻¹ and e with a retardation of 0.7 h the particle is 1.5 m far is C. 30 sec D. 40 sec	l	D. 39.2m
58. The units of curren A. 1 A	t in C.G.S. system is B. 1/10 A	C. 1/100 A	D. 1/1000 A
59. The units of electri A. volt/metre	c field are B. volt ² /metre	C. volt x metre	D. metre ²
60. The unit of moment A. kg-m	t of inertia is B. kg-m ²	C. kg/m	D. kg/m ²
 61. Fischer Tropsch promanufacture of A. B. synthetic thermosettic petrol plastics 	ocess is used for the ang C. ethanol D. benzer	ne	
62. Brown ring test is a A. iodide	used to detect B. nitrate	C. iron	D. bromide
63. Carbohydrates areA. for obtaining vitamicC. for all its development	ins	B. as source of energy D. for building muscle	s
64. The polymer conta A. Nylon	ining an amide group is B. Polythene	C. Polystyrene	D. Terylene
65. The organic compo A. $(C_2H_5)_4$ Pb	ound used as antiknock a B. TNT	gent in petroleum is C. CH ₃ MgBr	D. (C ₂ H ₅) ₂ Hg
A. aliphatic 2° amine C. aliphatic 1° amine	s used in the detection of amine when treated with	B. aromatic 1 [°] amine D. both aliphatic and a	romatic 1 [°] amines
A. benzyl B. nitro alcohol benzene	D. C. benzene diazonium salt		

68. Which of petroleum A. C_{15} - C_{18}	n corresponds to keroser B. C_{10} - C_{12}	ne oil? C. C ₅ - C ₉	D. C ₁ - C ₄	
69. Aldehydes and ket A. bromoform	ones can be distinguishe B. solubility in water	•	D. Mollich test	
70. Aspirin is obtained A. phenol	by the reaction of CH ₃ C B. benzoic Acid	COCl with C. benzaldehyde	D. salicylic acid	
71. Correct order of th A. $I > I^- > I^+$	e size of iodine species i B. $I^- > I > I^+$	^s C. $I^+ > I > I^-$	D. $I^{-} > I^{+} > I$	
72. Nitrolin is a name A. CaCN ₂ + C	-	C. Ca(CN) ₂	D. Ca(NO ₃) ₂	
	und, which cannot exit to H B. Na ₂ CO ₃ and NaOH	•	I_3 D. NaHCO ₃ and NaCl	
74. One of the constitu A. Ag	ents of the german silver B. Cu	r is C. Mg	D. Al	
75. Which compound A. 4-chloro, l-hydroxy C. Secondary butyl am	butane	B. 3° butyl alcohol D. n-butyl alcohol		
76. Plumbo solvancy i A. bases	mplies dissolution of lea B. acids	d in C. ordinary water	D. CuSO ₄ sol	
77. Indigo dye belongs A. Vat dye	s to B. Mordant dye	C. Direct dye	D. Ingrain dye	
78. Dipole moment is A. 1, 4-dichloro benze C. trans, -1, 2-dichloro	ne	B. cis, 1, 2-dichloro et D. trans, -1, 2-dichloro		
 79. When acetylene is passed through H₂SO₄ containing HgSO₄, it gives A. ethyl alcohol B. acetic Acid C. acetaldehyde D. ethylene 80. The compound, which does not leave any residue on heating, is A. NaNO₃ B. NH₄NO₃ C. CuSO₄ D. AgNO₃ 				
	wing alloys contain only B. Brass		D. Bell metal	

82. Gold number is a measure of theA. stability of a colloidal systemC. coagulating power of colloids		B. efficiency of a protective colloids D. size of the colloidal particle	
83. Whose name is not A. Prout's	associated with the deve B. Newlands	elopment of Periodic Tal C. Rutherford	ble? D. Loother Meyer
•	lide ions increases in the B. Cl ⁻ , Br ⁻ , I ⁻ , F ⁻		D. F ⁻ , Cl ⁻ , Br ⁻ , I ⁻
85. Acetylene molecule	es contain		
A. 5σ bond	B. 4σ bond and 1π bond	C. 3σ and 2π	D. 3σ and 3π
 86. The oxidation numbers A 2.5 87. In ideal gas equation A. mole-B. atm/K litre/mole 	B. 2.5 on, the dimension of R is C. litre- D. erg/K	C 10	D. + 10
	ch occurs in the first shor	-	ctronic structure s ² p ¹ .
What are the formula a $A. XO_3$, basic	nd acid-base character o B. X ₂ O ₃ , basic	C. X_2O_3 , acidic	D. XO ₂ , acidic
89. The uncertainty in uncertainty in its veloc	the position of a moving	bullet of mass 10 gm is	10^{-5} m. Calculate the
	B. $3.0 \ge 10^{-28}$ m/sec	C. 5.2 x 10 ⁻²² m/sec	D. 3 x 10 ⁻²² m/sec
90. Which is not param A. O_2	$\begin{array}{c} \text{agnetic?} \\ \text{B. } \text{O_2}^+ \end{array}$	C. O_2^{2-}	D. O ₂ ⁻
 91. What is wrongly stated about electrochemical series? A. It is the representation of element in order of increasing or decreasing standard electrode reduction potential B. It does not compare the relative reactivity of metals C. It compares relative strengths of oxidising agents D. H₂ is centrally placed element 			
of O ₂ because	B. F ⁻ and O ⁻ gy of N_2 is more than the	C. Na ⁺ and K ⁺ at	D. Na ⁺ and Mg ⁺²
A. of the extra stability of half filled p-orbitals in N ₂	B. of the smaller size on N_2	f	
C. the former contains less number of electrons	D. the former is less electronegative		

94. Stainless steel is ar A. 8% Cr, 5% Mn	alloy of iron with B. 10% Ni, 2% Mn,	C. 2%Cr, 3%C	D. 12%Cr, 1%N		
95. Highest pH (14) is A. 0.1 M H ₂ SO ₄	given by B. 0.1 M NaOH	C. 1 N NaOH	D. 1 N HCl		
96. N ₂ atom has 3 unpa A. Hund's Rule	aired electrons, because o B. Uncertaintity Principle	of C. Pauli's Exclusion Principle	D. Aufbau's Rule		
97. A group of atoms of A. it is a small molecul C. it is a negatively characteristic characteri		nly when B. it has an unshared electron pair D. it is positively charged ion			
 98. When potassium dichromate crystals are heated with conc. HCl, A. O₂ is evolved B. Chromyl chloride vapours are evolved C. Cl₂ is evolved D. No reaction takes place 99. Aluminium is more reactive than Fe. But Al is less easily corroded than iron because 					
A. Al is noble metalC. Al forms a protective oxide layer	B. Fe forms both mono and divalent ions ve D. Fe undergoes reaction easily with H ₂ O)			
100. The ratio of C_v/C_1 A. 1.33	, for inert gas is B. 1.66	C. 2.13	D. 1.99		
101. The pH of blood isA. less than 6 BC. greater than 8 and less than 9		B. greater than 7 and less than 6 D. greater than 10			
102. Sodium carbonate A. CO_2 and NH_3	e is manufactured by Solv B. CO ₂ and NH ₄ Cl	vay process. The recycle C. NaCl	d products are D. $CaC1_2$ and CaO		
103. Among the following which is the weakest base?A. NaOHB. $Ca(OH)_2$ C. KOHD. $Zn(OH)_2$					
A. $n = 1, l = 1, m = 1, k$ C. $n = 1, l = 0, m = 0, k$	S = -1/2 f A \rightarrow B follows second the concentration of A	for an electron in an ato B. n = 1, l = 0, m = 0, d D. n = 2, l = 0, m = 0, d	S = +1/2		

C. 1/2 A. 1/4 **B**. 2 D. 9 106. Amino group in the benzene group can be protected by B. salfoniation A. arylation C. chlorination D. acetylation 107. The light radiation with discrete quantities of energy is called A. electron B. photon C. positron D. meson 108. How many primary amines are possible for the formula $C_4H_{11}N$? C. 3 A. 1 B. 2 D. 4 109. Base catalysed aldol condensation occurs with A. propanaldehyde B. benzaldehyde C. 2, 2-dimethyl propionaldehyde D. none of the above 110. A sample of chloroform before being used as an anaesthetic is tested by A. Fehling's solution B. ammonical cuprous chloride C. silver nitrate solution D. silver nitrate solution after boiling with alcoholic potassium hydroxide 111. 1-chlorobutane on reaction with alcoholic potash gives A. 1-butene B. 1-C. 2-butene D. 2butanol butanol 112. The halogen which is most reactive in the halogenation of alkanes under sunlight is C. iodine D. fluorine A. chlorine B. bromine 113. The highest b.p. is expected for A. iso octane B. only ketone C. n-octane D. n-butane 114. The bond between carbon atom (1) and carbon atom (2) in compound N= C-CH=CH₂ involves the hybrids as C. sp and sp^2 A. sp^3 and sp^2 B. sp^3 and spD. sp and sp 115. If two compounds have the same empirical formula but different molecular formula, they must have A. different percentage composition B. different molecular weight C. same viscosity D. same vapour density 116. Optical isomerism is shown by A. Butanol-1 B. Butanol-2 C. Butene-1 D. Butene-2 117. The ion that cannot be precipitated by both HCl and H_2S is D. Sn²⁺ A. Pb^{2+} B. Cu^+ C. Ag^+ 118. The aqueous solution of the following salts will be coloured in case of A. B. LiNO₃ C. D. ArCl₃

Zn(NO₃)2CO(NO₃)2119. The highest degree of paramagnetism per mole of the compound at 25°C will be shown by
A. MnSO₄.7H₂OB. COCl₂.6H₂OC. FeCl₃.4H₂OD. NiCl₂.6H₂O120. Bromine can be liberated from KBr solution by the action of
A. iodine solutionB. chlorine waterC. sodium chlorideD. potassium iodide121. If A and B be any two sets, then (A
$$\cup$$
 B)' is equal to
A. A \cap BB. A \cup BC. A' \cap B'D. A' \cup B'122. If A = {1, 2, 3, 4} then which of the following are functions from A to itself?
A. f₄ = { (x, y) : x + y > 5 }B. f₃ = { (x, y) : y < x }C. f₂ = { (x, y) : x + y > 4 }D. f₁ = { (x, y) : y = x + 1 }123. The solution of 6 + x - x² > 0 is
A. -1 < x < 2B. -2 < x < 3C. -2 < x < -1A. -1 < x < 2B. -2 < x < 3C. -2 < x < -1D. none of the above124. If z = x + iy and
 $\omega = \frac{1 \cdot iz}{plane, z \cdot i}$ b. z lies on the unit circle
B. z lies on the imaginary axis
D. none of the above125. The first term of a G.P., whose second term is 2 and sum to infinity is 8, will be
A. 6B. 3C. 4D. 1126. Equation of circle having diameters 2x - 3y
= 5 and 3x - 4y = 7, and radius 8 is
A. x² + y² + 2x + 2y - 2 = 0D. none of the above127. A and B are points in the plane such that PA/PB = K (constant) for all P on a circle. The
value of K cannot be equal to
A. -1/2B. 1/2C. -1D. 1128. If the centroid and circumcentre of a triangle are (3, 3) and (6, 2) respectively, then the
orthocentre is
A. (-3, 5)B. (-3, 1)C. (3, -1)D. (9, 5)

129. If sin x + cos x = 1/5, $0 \le x \le \pi$, then tan x is equal to

133. The average of n numbers x_1 , x_2 , x_3 ,, x_n is M. If x_n is replaced by x', then new average is

 $\begin{array}{cccc} M - x_{n} + x' & & & & \\ A. & & & & \\ & n & & & \\ & n M - x_{n} + x' & & \\ C. & & & \\ & n & & \\ & & & D. \ M - x_{n} + x' \end{array}$

(**x**) =

134. In an entrance test, there are multiple choice questions. There are four possible answers to each question of which one is correct. The probability that a student knows the answer to a question is 90%. If he gets the correct answer to a question, then the probability that he was guessing is

A. 1/9 B. 36/37 C. 1/37 D. 47/40 135. The value of $\tan \left[\cos^{-1}(4/5) + \tan^{-1}(2/3)\right]$ is D. none of C. 7/16 A. 16/7 B. 6/17 the above 136. Lt x - [x], where k is an integer, is equal to $x \rightarrow k$ -A. -1 **B**. 1 C. 0 D. 2 tan x [log (x - 2)] **137.** The values of **x** where the function **f** is discontinuous are given

by

A. $(-\infty, 2) \cup \{3, n\pi, n\}$ C. $(-\infty, 2) \cup \{2n\pi, \pi/2\}$ d ² x 138. If y = x + e ^x , is		$x^{2} - 4x + 3$ B. (- ∞ , 2) D. none of the above		
+ e, then dy^{2} A. $(1 + e^{x})^{2}$ e^{x} C. $(1 + e^{x})^{3}$	$B\frac{e^{x}}{(1+e^{x})^{2}}$ D. e^{x}			
139. At $x = 5\pi/6$, $f(x)$ A. zero	$= 2 \sin 3x + 3 \cos 3x \text{ is}$ B. maximum	C. minimum	D. none of the above	
140. If a < 0, the funct x is given by A. x < 1	tion $(e^{ax} + e^{-ax})$ is a strictly B. $x > 1$	y monotonically decrease C. x < 0	ing function for values of D. x > 0	
141. $\int [\sin(\log x) + \cos(\log x)] + \cos(\log x) + \sin(\log x) + \cos(\log x) + \cos(\log x) + \cos(\log x) + \sin(\log x) + \cos(\log x) + \cos(\log x) + \sin(\log x) + \cos(\log x) + \cos(\log x) + \cos(\log x) + \cos(\cos x) + \cos$	os (log x)] dx is equal to og x) + c	B. sin (log x) + c D. none of the above		
A. 0 B. 1	C. $(\pi\sqrt{2} + D)$ none of $4\sqrt{2} - 8/\pi^2$ the above	2		
 143. Solution of differential equation xdy - ydx = 0 represents A. parabola whose vertex is at origin C. a rectangular hyperbola B. circle whose centre is at origin D. straight line passing through origin 				
144. If $h(x) = f(x) + f(x)$ A. even function	-x), then h(x) has got an B. odd function	extreme value at a point C. zero	where f '(x) is D. none of the above	
145. If $x = 1/3$, then the A. 3rd term	ne greatest term in the exp B. 6th term	coansion of $(1 + 4x)^8$ is C. 5th term	D. 4th term	

146. Roots of $x^2 + k = 0$, k < 0 are A. real and equal B. rational C. real and distinct D. equal 147. In a quadratic equation with leading coefficient 1, a student reads the coefficient 16 of x strongly as 19 and obtains the roots as -15 and - 4. The correct roots are A. 8, 8 C. - 6, - 10i D. - 8, - 8 B. 6, 10 148. The value of m for which the equation $x^2 - mx^2 + 3x - 2 = 0$ has two roots equal in magnitude but opposite in sign is A. 4/5 B. 3/4 C. 2/3 D. 1/2 149. If 1/(b-a) + 1/(b-c) = 1/a + 1/c, then a, b, c are in A. H.P. B. G.P. C. A.P. D. none of the above 150. If every term in G.P. is positive and also every term in the sum of two proceeding terms, then the common ratio of the G.P. is C. $(\sqrt{5} - 1)/2$ A. $(1 - \sqrt{5})/2$ B. $(\sqrt{5} + 1)/2$ D. 1 151. If $y = -(x^3 + x^6/2 + x^9/3 + \dots)$, then $\mathbf{C} \mathbf{x}^3 = \mathbf{e}^{\mathbf{y}}$ A. $x^3 = 1 - e^y$ B. $x^3 = \log(1 + y)$ D. $x^3 = 1 + e^y$ 152. Vinay, Manish, Rahul, and Sumit have to give speeches in a class. The teacher can arrange the order of their presentation in D. 256 A. 12 ways B. 24 ways C. 4 ways ways 153. There are n (>2) points in each of two parallel lines. Every point on one line is joined to every point on the other line by a line segment drawn within the lines. The number of points (between the lines) in which these segments intersect is C. ${}^{2n}C_2 - 2({}^{n}C_1) + 2$ B. ${}^{2n}C_2 - 2({}^{n}C_2)$ D. none of the above A. ${}^{n}C_{2} \times {}^{n}C_{2}$

154. The number of ways in which 7 persons can sit around a table so that all shall not have the same neighbours in any two arrangements is

A. 360 B. 720 C. 270 D. 180

155. The length of sub normal to the parabola $y^2 = 4ax$ at any point is equal to A. $a\sqrt{2}$ B. $2\sqrt{2}a$ C. $a/\sqrt{2}$ D. 2a

 156. The expansion of $(8 - 3x)^{3/2}$ in terms of power of x is valid only if

 A. x > 8/3 B. |x| < 8/3 C. x < 3/8 D. x < 8/3

 157. If $y = -(x^3/2 + x^3 - x^4/4 +)$, then x is
 A. $e^y - 1$ B. $\log(1 + C, e^y + 1)$ D. e^y

y)

158. If a, b, c are in G.P., then log_am , log_bm , log_cn are inA. G.P.B. H.P.C. A.P.D. none of the above

159. If A is a matrix of order 3 x 4, then each row of A hasA. 12 elementsB. 3 elementsC. 7 elementsD. 4 elements

 $\begin{array}{c} 160. \\ \text{If A} \\ = \end{array} \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}, n \in \mathbb{N}, \text{ then } A^{4n} \\ \text{equals} \end{array}$

161. If α , β , γ are the roots of the equation $x^2 + px + q = 0$, then the value of the determinant

α	β	γ	
β	γ	α	is
γ	α	β	

A. q B. 0 C. p D. $p^2 - 2q$

162. If A, B, C are any three matrices, then A' + B' + C' is equal to A. A + B + CB. (A + B + C)'C. - (A + B + C)D. a null matrix 163. If A is any matrix, then the product A.A, i.e., A^2 is defined only when A is a matrix of order B. m = nC. m < n D. $m \ge n$ A. m > n \rightarrow \rightarrow 164. The area of are the parallelogram of ⁱ andi+j adjacent is which A. $\sqrt{2}$ C. 2 **B**. 1/2 D. 1 165. If the direction cosines of line are (1/c, 1/c, 1/c), then D. $\pm \sqrt{3}$ A. 0 < c < 1B. c > 2C. c > 0x - 2 **y** - 3 z - 4 166. The sine of the angle between the and straight line 3 5 4 the plane 2x - 2y + z = 5 is D. $(2\sqrt{3})/5$ A. 10/(6√5) B. $4/(5\sqrt{2})$ C. $\sqrt{2/10}$ 167. Constant term in the expansion of $(x - 1/x)^{10}$ is B. - 152 C. - 252 A. 152 D. 252 168. The latus rectum of the ellipse $5x^2 + 9y^2 = 45$ is B. 10/3 A. 5/3 C. $(2\sqrt{5})/3$ D. $\sqrt{5/3}$ 169. $i^2 + i^4 + i^6 + \dots + (2n + 1)$ terms = A. - 1 **B**. 1 C. - i D. i 170. If the sum of the series 2, 5, 8, 11, is 60100, then n is A. 100 B. 200 C. 150 D. 250 171. Two of the lines represented by the equation $ay^4 + bxy^3 + cx^2y^2 + dx^3y + ex^4 = 0$ will be perpendicular, then A. $(b + d)(ad + be) + (e - a)^{2}(a + c + e) = 0$ B. $(b + d)(ad + be) + (e + a)^{2}(a + c + e) = 0$ C. $(b - d)(ad - be) + (e - a)^{2}(a + c + e) = 0$ D. $(b - d)(ad - be) + (e + a)^{2}(a + c + e) = 0$ 172. The probability that an event A happens on trial of an experiment is 0.4. Three independent trials of the experiment are formed. The probability that the event A happens at least once is

173. The numbers are selected at random from 1, 2, 3, 100 and are multiplied, then the

C. 0.904

D. 0.984

B. 0.784

A. 0.936

probability correct to two places of decimals that the product thus obtained is divisible by 3, is A. 0.55 B. 0.44 C. 0.22 D. 0.33 174. If $p^2 + q^2 = 1$ and $m^2 + n^2 = 1$, then A. $| p_m + q_n B. | p_m + q_n C. | p_q + mnD. | p_q +$ $|\leq 0$ $| \leq 1$ |>1 mn | < 2175. In a football championship, there were played 153 matches. Every two team played one match with each other. The number of teams participating in the championship is A. 9 C. 13 **B**. 11 D. 18 176. The solution of |(x - 1) + 2| = 1 is A. 1 **B**. 2 C. 5 177. The equation $\log_e x + \log_e (1 + x) = 0$ can be written as A. $x^2 + x - e = 0$ B. $x^2 + x - 1 = 0$ C. $x^2 + x + 1 = 0$ D. $x^2 + xe - e = 0$ 178. Both the roots of the equation (x - b)(x - c) + (x - a)(x - c) + (x - a)(x - b) = 0 are always B. negative C. real D. imaginary A. positive 179. The value of tan x/tan 3x whenever defined never lies between A. 1/3 and B. 1/4 and C. 1/5 and D. 5 and 6 5 3 4

 180. Given (a + d) > (b + c) where a, b, c, d are real numbers, then

 A. a, b, c, d are in A.P.

 C. (a + b), (b + c), (c + d), (a + d) are in A.P.

 D. 1/(a + b), 1/(b + c), 1/(c + d), 1/(a + d) are in A.P.

 A. a, b, c, d are in A.P.

 B. 1/a, 1/b, 1/c, 1/d are in A.P.

 D. 1/(a + b), 1/(b + c), 1/(c + d), 1/(a + d) are in A.P.