Electrochemistry is the study of production of electricity from the energy released during a spontaneous chemical reaction and the use of electrical energy to bring about non-spontaneous chemical transformations.

2. ELECTROCHEMICAL CELLS

A spontaneous chemical process is the one which can take place on its own and in such a process the Gibb's energy of the system decreases. It is this energy that gets converted to electrical energy. The reverse process is also possible in which we can make non-spontaneous processes occur by supplying external energy in the form of electrical energy. These inter conversions are carried out in equipments called Electrochemical Cells.

3. TYPES

Electrochemical Cells are of two types:

3.1 Galvanic Cells

Converts chemical energy into electrical energy

3.2 Electrolytic Cells

Converts electrical energy into chemical energy.

4. GALVANIC CELL

Cell energy is extracted from a spontaneous chemical process or reaction and it is converted to electric current. For example, Daniell Cell is a Galvanic Cell in which Zinc and Copper are used for the redox reaction to take place.

 $Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$

Oxidation Half : $Zn(s) \longrightarrow Zn^{2^+}(aq) + 2e^-$

Reduction Half : $Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$

Zn is the reducing agent and Cu^{2+} is the oxidising agent. The half cells are also known as **Electrodes.** The oxidation half is known as **Anode** and the reduction half is called **Cathode**. Electrons flow from anode to cathode in

the external circuit. Anode is assigned **negative polarity** and cathode is assigned **positive polarity**. In Daniell Cell, Zn acts as the anode and Cu acts as the cathode.

5. ELECTROLYTIC CELL

These electrodes are dipped in and electrolytic solution containing cations and anions. On supplying current the ions move towards electrodes of opposite polarity and simultaneous reduction and oxidation takes place.

5.1 Preferential Discharge of ions

Where there are more than one cation or anion the process of discharge becomes competitive in nature. Discharge of any ion requires energy and in case of several ions being present the discharge of that ion will take place first which requires the energy.

6. ELECTRODE POTENTIAL

It may be defined as the tendency of an element, when it is placed in contact with its own ions to either lose or gain electrons and in turn become positively or negatively charged.

The electrode potential will be named as oxidation or reduction potential depending upon whether oxidation or reduction has taken place.

$$M(s) \xrightarrow{\text{oxidation}} M^{n+}(aq) + ne^{-}$$
$$M^{n+}(aq) + ne^{-} \xrightarrow{\text{reduction}} M(s)$$

6.1 Characteristics

(a) Both oxidation and reduction potentials are equal in magnitude but opposite in sign.

(b) It is not a thermodynamic property, so values of E are not additive.

7. STANDARD ELECTRODE POTENTIAL (E°)

It may be defined as the electrode potential of an electrode determined relative to standard hydrogen electrode under standard conditions. The standard conditions taken are :

- (i) 1M concentration of each ion in the solution.
- (ii) A temperature of 298 K.
- (iii) 1 bar pressure for each gas.

8. ELECTROCHEMICAL SERIES

The half cell potential values are standard values and are represented as the standard reduction potential values as shown in the table at the end which is also called Electrochemical Series.

9. CELL POTENTIAL OR EMF OF A CELL

The difference between the electrode potentials of two half cells is called cell potential. It is known as electromotive force (EMF) of the cell if no current is drawn from the cell.

 $\mathbf{E}_{\text{cell}} = \mathbf{E}_{\text{cathode}} + \mathbf{E}_{\text{anode}}$

For this equation we take oxidation potential of anode and reduction potential of cathode.

Since anode is put on left and cathode on right, it follows therefore,

 $= E_{R} + E_{L}$

For a Daniel cell, therefore

$$E_{cell}^{o} = E_{Cu^{2+}/Cu}^{o} - E_{Zn/Zn^{+2}}^{o} = 0.34 + (0.76) = 1.10 V$$

10. CELL DIAGRAM OR REPRESENTATION OF A CELL

The following conventions or notations are applied for writing the cell diagram in accordance with IUPAC recommendations. The Daniel cell is represented as follows :

 $Zn(s) | Zn^{2+}(C_1) || Cu^{2+}(C_2) | Cu(s)$

(a) Anode half cell is written on the left hand side while cathode half cell on right hand side.

(b) A single vertical line separates the metal from aqueous solution of its own ions.

$$\begin{array}{cc} Zn(s) \mid Zn^{2+}(aq); & Cu^{2+}(aq) \mid Cu(s) \\ & \text{Anodic chamber} \end{array}$$

(c) A double vertical line represents salt bridge

(d) The molar concentration (C) is placed in brackets after the formula of the corresponding ion.

(e) The value of e.m.f. of the cell is written on the extreme right of the cell. For example,

 $Zn(s) | Zn^{2+}(1M) || Cu^{2+}(1M) | Cu EMF = +1.1V$

(f) If an inert electrode like platinum is involved in the construction of the cell, it may be written along with the working electrode in bracket say for example, when a zinc anode is connected to a hydrogen electrode.

 $Zn(s)|Zn^{2+}(C_1)||H^+(C_2)|H_2|(Pt)(s)$

11. SALT BRIDGE

Salt bridge is used to maintain the charge balance and to complete the circuit by facilitating the flow of ions through it. It contains a gel in which an inert electrolyte like Na_2SO_4 or KNO_3 etc are mixed. Negative ions flow to the anode and positive ions flow to the cathode through the salt bridge and charge balance is maintained and cell keeps on functioning.

12. SPONTANEITY OF A REACTION

 $\Delta G = - nFE_{CELL}$

For a spontaneous cell reaction ΔG should be negative and cell potential should be positive.

If we take standard value of cell potential in the above equation we will obtain standard value of ΔG as well.

$$\Delta G^{o} = - nFE^{0}_{CELI}$$

13. TYPES OF ELECTRODES

13.1 Metal-Metal Ion electrodes

A metal rod/plate is dipped in an electrolyte solution containing metal ions. There is a potential difference between these two phases and this electrode can act as a cathode or anode both. Anode: $M \longrightarrow M^{n+} + ne^{-}$

Cathode: $M^{n+} + ne^{-} \longrightarrow M$

13.2 Gas Electrodes

Electrode gases like H_2 , Cl_2 etc are used with their respective ions. For example, H_2 gas is used with a dilute solution of HCl (H⁺ ions). The metal should be inert so that it does not react with the acid.

Anode: $H_2 \rightarrow 2H^+ + 2e^-$

Cathode: $2H^+ + 2e^- \longrightarrow H_2$

The hydrogen electrode is also used as the standard to measure other electrode potentials. Its own potential is set to 0 V as a reference. When it is used as a reference the concentration of dil HCl is taken as 1 M and the electrode is called "Standard Hydrogen Electrode (SHE)".

13.3 Metal-Insoluble salt electrode

We use salts of some metals which are sparingly soluble with the metal itself as electrodes. For example, if we use AgCl with Ag there is a potential gap between these two phases which can be identified in the following reaction:

 $AgCl(s) + e^{-} \longrightarrow Ag(s) + Cl^{-}$

This electrode is made by dipping a silver rod in a solution containing AgCl(s) and Cl^{-} ions.

13.4 Calomel Electrode

Mercury is used with two other phases, one is a calomel paste (Hg_2Cl_2) and electrolyte containing Cl^- ions.

Cathode :

 $Hg_2Cl_2(s) + 2e^- \longrightarrow 2Hg(l) + 2Cl^-(aq)$

Anode:

$2 \text{Hg}(l) + 2 \text{C} l(aq) \longrightarrow \text{Hg}_2 \text{C} l_2(s) + 2e^{-1}$

This electrode is also used as another standard to measure other potentials. Its standard form is also called **Standard Calomel Electrode (SCE)**.

13.5 Redox Electrode

In these electrodes two different oxidation states of the same metal are used in the same half cell. For example, Fe^{2+} and Fe^{3+} are dissolved in the same container and an inert electrode of platinum is used for the electron transfer. Following reactions can take place:

Anode: $Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$

Cathode: $Fe^{3+} + e^- \longrightarrow Fe^{2+}$

14. NERNST EQUATION

It relates electrode potential with the concentration of ions.

Thus, the reduction potential increases with the increase in the concentration of ions. For a general electrochemical reaction of the type.

 $aA + bB \xrightarrow{ne^-} cC + dD$

Nernst equation can be given as

$$\mathbf{E}_{\text{cell}} = \mathbf{E}_{\text{cell}}^{\text{o}} - \frac{\mathbf{RT}}{\mathbf{nF}} \ln \frac{\left[\mathbf{C}\right]^{\text{c}} \left[\mathbf{D}\right]^{\text{d}}}{\left[\mathbf{A}\right]^{\text{a}} \left[\mathbf{B}\right]^{\text{b}}}$$

Mahesh Tutorials Science

$$E_{cell} = E_{cell}^{o} - \frac{2303}{nF} RT \log \frac{\left[C\right]^{c} \left[D\right]^{a}}{\left[A\right]^{a} \left[B\right]^{b}}$$

Substituting the values of R and F we get

$$E_{cell} = E_{cell}^{o} - \frac{0.0591}{n} \log \frac{\left[C\right]^{c} \left[D\right]^{d}}{\left[A\right]^{a} \left[B\right]^{b}}, at 298 K$$

15. APPLICATIONS OF NERNST EQUATION

15.1 Equilibrium Constant from Nernst Equation

For a Daniel cell, at equilibrium

$$E_{cell} = 0 = E_{cell}^{\circ} - \frac{2.303 \text{ RT}}{2F} \log \frac{\left[Zn^{2+}\right]}{\left[Cu^{2+}\right]}$$

or

$$E_{cell}^{o} = \frac{2.303 \text{ RT}}{2 \text{ F}} \log \frac{\left[\text{Zn}^{2+1} \right]}{\left[\text{Cu}^{2+1} \right]}$$

 $\frac{1}{7} = K_c$ But at equilibrium,

$$E_{cell}^{o} = \frac{2.303 \, \text{RT}}{2 \text{F}} \log K_{c}$$

$$E_{cell}^{o} = \frac{2.303 \times 8.314 \times 298}{2 \times 96500} \log K_{c}$$

$$=\frac{0.0591}{2}\log K_{0}$$

In general,
$$E_{cell}^{o} = \frac{0.0591}{n} \log K$$

or,

$$\log K_{\rm C} = \frac{n E_{\rm cell}^{\rm o}}{0.0591}$$

16. CONCENTRATION CELLS

If two electrodes of the same metal are dipped separately into two solutions of the same electrolyte having different

concentrations and the solutions are connected through salt bridge, such cells are known as concentration cells. For example

$$H_2 | H^+(c_1) || H^+(c_2) | H_2$$

$$\operatorname{Cu} |\operatorname{Cu}^{+2}(\mathbf{c}_{1})| |\operatorname{Cu}^{2+}(\mathbf{c}_{2})| \operatorname{Cu}^{2+}(\mathbf{c}_{2})| \operatorname{Cu}^{2+}(\mathbf{c})| \operatorname{Cu}^{2+}(\mathbf{c}_{2})| \operatorname{Cu}^{2+}(\mathbf{c})$$

These are of two types :

16.1 Electrode concentration cells

$$H_{2}(P_{1}) | H^{+}(C) | H^{+}(C) | H_{2}(P_{2})$$
$$E_{cell} = 0 - \frac{0.059}{n} \log \frac{P_{2}}{P_{1}}$$

n

where $p_2 < p_1$ for spontaneous reaction

16.2 Electrolyte concentration cell

The EMF of concentration cell at 298 K is given by $Zn | Zn^{2+}(c_1) || Zn^{2+}(c_2) | Zn$

$$E_{cell} = \frac{0.0591}{n_1} \log \frac{c_2}{c_1},$$

where $c_2 > c_1$ for spontaneous reaction

17. CASES OF ELECTROLYSIS

17.1 Electrolysis of molten sodium chloride

 $2\text{NaCl}(l) \rightleftharpoons 2\text{Na}^+(l) + 2\text{Cl}^-(l)$

The reactions occurring at the two electrodes may be shown as follows :

At cathode :

$$2Na^+ + 2e^- \rightarrow 2Na \qquad \qquad E^0 = -2.71 V$$

At anode :

$$2Cl^- \rightarrow Cl_2 + 2e^- \qquad E^0 = -1.36V$$

Overall reaction :

$$2Na^{+}(l) + 2Cl^{-}(l)$$
 Electrolysis $2Na(l) + Cl_{2}(g)$

or 2NaCl (l) Electrolysis 2Na (l) + Cl₂ (g)

At cathode At anode

17.2 Electrolysis of an aqueous solution of sodium chloride

 $NaCl(aq) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$

(almost completely ionized)

 $H_2O(l) \rightleftharpoons H^+(aq) + OH^-(aq)$

(only slightly ionized)

At cathode :

 $2Na^+ + 2e^- \longrightarrow 2Na$ $E^0 = -2.71V$

 $2H_2O + 2e^- \longrightarrow H_2 + 2OH^- E^0 = -0.83V$

Thus H_2 gas is evolved at cathode value Na⁺ ions remain in solution.

At anode :

 $2H_2O \longrightarrow O_2 + 4H^+ + 4e^- \quad E^0 = -1.23V$ $2CI^- \longrightarrow CI_2 + 2e^- \qquad E^0 = -1.36V$

Thus, Cl_2 gas is evolved at the anode by **over voltage** concept while OH⁻ ions remain in the solution.

18. BATTERIES

When Galvanic cells are connected in series to obtain a higher voltage the arrangement is called Battery.

18.1 Primary Batteries

Primary cells are those which can be used so long the active materials are present. Once they get consumed the cell will stop functioning and cannot be re-used. Example Dry Cell or Leclanche cell and Mercury cell.

18.2 Dry cell

Anode : Zn container

Cathode : Carbon (graphite) rod surrounded by powdered MnO₂ and carbon.

Electrolyte : NH₄Cl and ZnCl₂

Reaction :

Anode : $Zn \longrightarrow Zn^{2+} + 2e^{-}$

Cathode: $MnO_2 + NH_4^+ + e^- \rightarrow MnO(OH) + NH_3$

The standard potential of this cell is 1.5 V and it falls as the cell gets discharged continuously and once used it cannot be recharged.

18.3 Mercury cells

These are used in small equipments like watches, hearing aids.

Anode: Zn – Hg Amalgam

Cathode: Paste of HgO and carbon

Electrolyte : Paste of KOH and ZnO

Anode : $Zn(Hg) + 2OH^{-} \longrightarrow ZnO(s) + H_{,}O + 2e^{-}$

Cathode : HgO (s) + H₂O + 2e⁻ \longrightarrow Hg (l) + 2OH⁻

Overall Reaction : Zn (Hg) + HgO (s) \longrightarrow ZnO (s) + Hg (l)

The cell potential is approximately 1.35V and remains constant during its life.

18.4 Secondary Batteries

Secondary cells are those which can be recharged again and again for multiple uses. e.g. lead storage battery and Ni - Cd battery.

18.5 Lead Storage Battery

Anode: Lead (Pb)

Cathode: Grid of lead packed with lead oxide (PbO₂)

Electrolyte : 38% solution of H₂SO₄

Discharging Reactions

Anode: $Pb(s) + SO_4^{2-}(aq) \longrightarrow PbSO_4(s) + 2e^{-}$

Cathode: PbO₂(s) + 4H⁺(aq) + SO₄²⁻(aq) + 2e⁻ \longrightarrow

 $PbSO_4(s) + 2H_2O(l)$

Overall Reaction : $Pb(s) + PbO_{2}(s) + 2H_{2}SO_{4}(aq) \longrightarrow$

 $2PbSO_4(s) + 2H_2O(l)$

To recharge the cell, it is connected with a cell of higher potential and this cell behaves as an electrolytic cell and the reactions are reversed. Pb(s) and $PbO_2(s)$ are regenerated at the respective electrodes. These cells deliver an almost consistent voltage.

Recharging Reaction : $2PbSO_4(s) + 2H_5O(l) \longrightarrow Pb(s) +$

 $PbO_{3}(s) + 2H_{2}SO_{4}(aq)$

19. FUEL CELLS

A fuel cell differs from an ordinary battery in the sense that the reactants are not contained inside the cell but are

externally supplied from an external reservoir. Fuel cell is used in space vehicles and in this cell the two gases are supplied from external storages. In this cell carbon rods are used as electrodes with KOH as the electrolyte.

Cathode: $O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-(aq)$

Anode: $2H_2(g) + 4OH^-(aq) \longrightarrow 4H_2O(l) + 4e^-$

overall Reaction : $2H_2(g) + O_2(g) \longrightarrow 2H_2O(l)$

20. CORROSION

It involves a redox reaction and formation of an electrochemical cell on the surface of iron or any other metal.

At one location oxidation of iron takes place (anode) and at another location reduction of oxygen to form water takes place (cathode). First Fe gets oxidised to Fe^{2+} and then in the presence of oxygen it forms Fe^{3+} which then reacts with water to form rust which is represented by Fe_2O_3 .xH₂O.

Anode : $2\text{Fe}(s) \rightarrow 2 \text{Fe}^{2+} + 4e^- \text{E}^\circ = +0.44 \text{ V}$

Cathode : $O_2(g) + 4H^+ + 4e^- \rightarrow 2H_2O(l) E^\circ = 1.23 V$

Overall R × **N** :

 $2\text{Fe}(s) + O_2(q) + 4\text{H}^+ \rightarrow 2\text{Fe}^{2+} + 2\text{H}_2\text{O} \text{ E}^{\circ}_{cell} = 1.67 \text{ M}$

Rusting of iron can be avoided by painting it or by coating it with some other metals like Zinc. The latter process is known as **Galvanisation**. As the tendency of Zn to get oxidised is more than iron it gets oxidised in preference and iron is protected. This method of protecting one metal by the other is also called **Cathodic Protection**.

21. CONDUCTANCE (G)

It is the reciprocal of resistance and may be defined as the ease with which the electric current flows through a conductor.

$$G = \frac{1}{R}$$

SI unit is Siemen (S).

$$1 \text{ S} = 1 \text{ ohm}^{-1} \text{ (mho)}$$

22. CONDUCTIVITY (κ)

It is the reciprocal of resistivity (ρ).

$$\kappa = \frac{1}{\rho} = \frac{1}{R} \times \frac{\ell}{A} = G \times \frac{\ell}{A}$$

Now if $\ell = 1 \text{ cm and } A = 1 \text{ cm}^2$, then $\kappa = G$.

Hence, conductivity of an electrolytic solution may be defined as the conductance of a solution of 1 cm length with area of cross-section equal to 1 cm^2 .

23. FACTORS AFFECTING ELECTROLY CONDUCTANCE

23.1 Electrolyte

An electrolyte is a substance that dissociates in solution to produce ions and hence conducts electricity in dissolved or molten state.

Examples : HCl, NaOH, KCl (Strong electrolytes).

CH₃-COOH, NH₄OH (Weak electrolytes).

The conductance of electricity by ions present in the solutions is called electrolytic or ionic conductance. The following factors govern the flow of electricity through a solution of electrolyte.

- (i) Nature of electrolyte or interionic attractions : Lesser the solute-solute interactions, greater will be the freedom of movement of ions and higher will be the conductance.
- (ii) Solvation of Ions : Larger the magnitude of solute-solvent interactions, greater is the extent of solvation and lower will be the electrical conductance.
- (iii) The nature of solvent and its viscosity : Larger the solventsolvent interactions, larger will be viscosity and more will be the resistance offered by the solvent to flow of ions and hence lesser will be the electrical conductance.
- (iv) Temperature : As the temperature of electrolytic solution rises solute-solute, solute-solvent and solvent-solvent interactions decreases, this results in the increase of electrolytic conductance.

24. MEASUREMENT OF CONDUCTANCE

As we know, $\kappa = \frac{1}{R} \times \frac{\ell}{A}$ The value of κ could be known, if we measure *l*, A and R. The value of the resistance of the solution R between two parallel electrodes is determined by using **'Wheatstones' bridge method** (Fig.)

It consists of two fixed resistance R_3 and R_4 , a variable resistance R_1 and the conductivity cell having the unknown resistance R_2 . The bridge is balanced when no current passes through the detector. Under these conditions,

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$
 or $R_2 = \frac{R_1 R_4}{R_3}$

25. MOLAR CONDUCTIVITY (Λ_m)

It may be defined as the conducting power of all the ions produced by dissolving one mole of an electrolyte placed between two large electrodes at one centimeter apart.

Mathematically,

$$\Lambda_{\rm m} = \kappa \times V, \quad \Lambda_{\rm m} = \frac{\kappa \times 1000}{C}$$

where, V is the volume of solution in cm^3 containing 1 mole of electrolyte and C is the molar concentration.

Units:
$$\Lambda_{\rm m} = \frac{\kappa \times 1000}{\rm C} = \frac{\rm S \ cm^{-1}}{\rm mol \ cm^{-3}}$$

= ohm⁻¹ cm² mol⁻¹ or S cm² mol⁻¹

26. EQUIVALENT CONDUCTIVITY (Λ_{ea})

It is conducting power of one equivalent of electrolyte placed between two large electrodes at one centimeter apart.

Mathematically:

$$\Lambda_{eq} = \kappa \times v =$$
$$\Lambda_{eq} = \frac{\kappa \times 1000}{N}$$

Where, v is the volume of solution in cm³ containing 1 equivalent of electrolyte and N is normality.

Units :

$$\Lambda_{eq} = \frac{\kappa \times 1000}{N}$$
$$= \frac{S \text{ cm}^{-1}}{\text{equivalent cm}^{-3}} = \frac{O \text{hm}^{-1} \text{ cm}^{2} \text{ equivalent}^{-1}}{S \text{ cm}^{2} \text{ equivalent}^{-1}}$$

27. VARIATION OF CONDUCTIVITY AND MOLAR CONDUCTIVITY WITH DILUTION

Conductivity decreases with decrease in concentration, this is because the number of ions per unit volume that carry the current in the solution decreases on dilution.

Molar conductivity $(\Lambda_m = \kappa \times V)$ increases with decrease in concentration. This is because the total volume V of solution containing one mole of electrolyte also increases.

218

It has been found that the decrease in κ on dilution of a solution is more than compensated by increases in its volume.

Graphic representation of the variation of Λ_m vs \sqrt{c}

28. LIMITING MOLAR CONDUCTIVITY (Λ_m)

The value of molar conductivity when the concentration approaches zero is known as limiting molar conductivity or molar conductivity at infinite dilution. It is possible to determine the molar conductivity at infinite dilution (Λ_m^o) in case of strong electrolyte by extrapolation of curve of $\Lambda_m vs\sqrt{c}$. On contrary, the value of molar conductivity of weak electrolyte at infinite dilution cannot be determined by extapolation of the curve as the curve becomes almost parallel to y-axis when concentration approaches to zero.

The mathematical relationship between Λ_m and Λ_m^o for strong electrolyte was developed by Debye, Huckel and Onsagar. In simplified form the equation can be given as

$$\Lambda_{\rm m} = \Lambda_{\rm m}^{\infty} - b \ {\rm c}^{1/2}$$

where Λ_m^{∞} is the molar conductivity at infinite dilution and b is a constant which depends on the nature of the solvent and temperature.

29. KOHLRAUSCH'S LAW

It states that the limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte. In general, if an electrolyte on dissociation gives v_+ cations and v_- anions then its limiting molar conductivity is given by

$$\Lambda_m^\infty = v_{_+}\lambda_{_+}^o + v_{_-}\lambda_{_-}^o$$

Here, λ^{o}_{+} and λ^{o}_{-} are the limiting molar conductivities of cations and anions respectively.

30. APPLICATIONS OF KOHLRAUSCH'S LAW

30.1 (i) Calculation of molar conductivities of weak electrolyte at infinite dilution

For example, molar conductivity of acetic acid at infinite dilution can be obtained from the knowledge of molar conductivities at infinite dilution of strong electrolyte like HCl, CH₃COONa and NaCl as illustrated below.

$$\Lambda^{o}_{m(CH_{3}-COOH)} = \lambda^{o}_{CH_{3}-COO} + \lambda^{o}_{H^{+}}$$

$$= \left[\lambda^{o}_{CH_{3}-COO^{-}} + \lambda^{o}_{Na^{+}}\right] + \left[\lambda^{o}_{H^{+}} + \lambda_{CI^{-}}\right] - \left[\lambda^{o}_{Na^{+}} + \lambda^{o}_{CI^{-}}\right]$$

i.e. $\Lambda^{\circ}_{m(CH_3-COOH)} = \Lambda^{\circ}_{m(CH_3-COONa)} + \Lambda^{\circ}_{m(HCl)} - \Lambda^{\circ}_{m(NaCl)}$

30.2 (ii) Determination of Degree of Dissociation of Weak Electrolytes

Degree of dissociation $(\alpha) = \frac{\Lambda_m^c}{\Lambda_m^o}$

30.3 (iii) Determination of Dissociation Constant (K) of Weak Electrolytes:

$$K = \frac{c\alpha^2}{1-\alpha}$$

also
$$\alpha = -\frac{1}{2}$$

...

$$\mathbf{K} = \frac{\mathbf{c} \left(\Lambda_{\mathrm{m}}^{\mathrm{c}} / \Lambda_{\mathrm{m}}^{\infty} \right)^{2}}{1 - \Lambda_{\mathrm{m}}^{\mathrm{c}} / \Lambda_{\mathrm{m}}^{\infty}} = \frac{\mathbf{C} \left(\Lambda_{\mathrm{m}}^{\mathrm{c}} \right)^{2}}{\Lambda_{\mathrm{m}}^{\infty} \left(\Lambda_{\mathrm{m}}^{\infty} - \Lambda_{\mathrm{m}}^{\mathrm{c}} \right)}$$

31. USE OF \triangle G IN RELATING EMF VALUES OF HALF CELL REACTIONS

When we have two half cell reactions such that on adding them we obtain another half cell reaction then their emfs cannot be added directly. But in any case thermodynamic functions like ΔG can be added and emf values can be related through them. Consider the following three half cell reactions:

$$Fe^{2+} + 2e^- \rightarrow Fe = E_1$$

- Lakshya Educare

$$Fe^{3^{+}} + 3e^{-} \rightarrow Fe \qquad E_{2}$$

$$Fe^{3^{+}} + e^{-} \rightarrow Fe^{2^{+}} \qquad E_{3}$$

We can easily observe that the third reaction can be obtained by subtracting the first reaction from the second. But the same relation does not apply on the emf values. That is, $E_3 \neq E_2 - E_1$. But the ΔG values can be related according to the reactions. That is,

$$\Delta G_3 = \Delta G_2 - \Delta G_1$$

- $n_3 F E_3 = -n_2 F E_2 + n_1 F E_1$
- $E_3 = -3E_2 + 2E_1$
 $\Rightarrow E_3 = 3E_2 - 2E_1$

NOTE

We should always remember that emf values are additive only when two half cell reactions are added to give a complete balanced cell reaction. In any other case we will be using ΔG values to obtain relations between emf values.

32. FORMULAE

1. $R = \rho \left(\frac{\ell}{A}\right) = \rho \times \text{ Cell constant}$

where, R = Resistance

A = Area of cross-section of the electrodes. ρ = Resistivity

2. $\kappa = \frac{1}{R} \times \text{ cell constant}$

where, κ = Conductivity or specific conductance

$$\Lambda_{\rm m} = \frac{\kappa \times 1000}{\rm M}$$

where, $\Lambda_m = Molar$ conductivity

M = Molarity of the solution.

4.
$$\Lambda_{m}^{\infty} (\mathbf{A}_{x} \mathbf{B}_{y}) = x \Lambda_{m}^{\infty} (\mathbf{A}^{y+}) + y \Lambda_{m}^{\infty} (\mathbf{B}^{x-})$$

where, $\Lambda_m^{\infty} =$ Molar conductivity at infinite dilution x and y are the number of cations and anions produced by one formula unit of the electrolyte on complete dissociation.

$$\alpha = \frac{\Lambda_m^c}{\Lambda_m^\infty}$$

5.

where, $\alpha = Degree of dissociation$

 Λ_m^c = Molar conductivity at a given concentration

6. For a weak binary electrolyte AB

$$\mathbf{K} = \frac{\mathbf{c}\alpha^{2}}{1-\alpha} = \frac{\mathbf{c}\left(\Lambda_{m}^{c}\right)^{2}}{\Lambda_{m}^{\infty}\left(\Lambda_{m}^{\infty} - \Lambda_{m}^{c}\right)}$$

where, K = Dissociation constant

$$\begin{split} E^{o}_{cell} &= E^{o}_{cathode} + E^{o}_{anode} \\ &= E^{o} \operatorname{Right} + E^{o} \operatorname{left} \end{split}$$

$$aA + bB \xrightarrow{ne} cC + dD$$

$$E_{cell} = E_{cell}^{o} - \frac{RT}{nF} \ln \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$$

$$E_{cell} = E_{cell}^{o} - \frac{2.303 RT}{nF} \log \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$$

$$E_{cell} = E_{cell}^{o} - \frac{0.059}{n} \log \frac{[A]^{a} [B]^{b}}{[C]^{c} [D]^{d}} \quad \text{at 298 K}$$

8.
$$\log K_{c} = \frac{n}{0.0591} E_{cell}^{o}$$

where, $K_c = Equilibrium constant.$

9.
$$\Delta_r G^\circ = -nFE^\circ_{cell}$$
 (Creterion of spontaneity)

 $\Delta_r G^\circ = -2.303 RT \log K_c$

where, $\Delta_r G^o$ = Standard Gibbs energy of the reaction.

$$10. \qquad Q = I \times t$$

where Q = Quantity of charge in coulombs I = Current in amperes

t = Time in seconds

$$11. m = Z \times I \times t$$

where m = mass of the substance liberated at the electrodes

Z = Electrochemical equivalent.

where E = Equivalent weight = E/96500

STANDARD REDUCTION POTENTIALS AT 298 K. IN ELECTROCHEMICAL ORDER

$H_4 XeO_6 + 2H^+ + 2e^- \rightarrow XeO_3 + 3H_2O$	+3.0	$Hg_2SO_4 + 2e^- \rightarrow 2Hg + SO_4^{2-}$	+0.62
$F_2 + 2e^- \rightarrow 2F^-$	+2.87	$MnO^{2-} + 2H O + 2e^{-} \rightarrow MnO + 4OH^{-}$	+0.60
$O_3 + 2H^+ + 2e^- \rightarrow O_2 + H_2O$	+2.07	$\operatorname{MilO}_4 + 2\operatorname{II}_2 + 2\operatorname{e} \rightarrow \operatorname{MilO}_2 + 4\operatorname{OH}$	+ 0.00
$\mathrm{S_2O_8^{2-}+2e^-} \rightarrow 2\mathrm{SO_4^{2-}}$	+2.05	$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	+0.56
$Ag^{2+} + e^- \rightarrow Ag^+$	+1.98	$I_2 + 2e^- \rightarrow 2I^-$	+0.54
$\mathrm{Co}^{3+} + \mathrm{e}^- \rightarrow \mathrm{Co}^{2+}$	+1.81	$Cu^+ + e^- \rightarrow Cu$	+0.52
$\mathrm{H_2O_2} + 2\mathrm{H^+} + 2\mathrm{e^-} \rightarrow 2\mathrm{H_2O}$	+1.78	$I_3^- + 2e^- \rightarrow 3I^-$	+0.53
$Au^+ + e^- \rightarrow Au$	+1.69	$NiOOH + H_2O + e^- \rightarrow Ni(OH)_2 + OH^-$	+0.49
$Pb^{4+} + 2e^- \rightarrow Pb^{2+}$	+1.67	$\Delta \alpha (r - 1)^2 = 2 \Delta \alpha + (r - 1)^2$	+0.45
$2\text{HClO} + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{Cl}_2 + 2\text{H}_2\text{O}$	+1.63	$Ag_2CIO_4 + 2e \rightarrow 2Ag + CIO_4$	+ 0.43
$Ce^{4+} + e^- \rightarrow Ce^{3+}$	+1.61	$O_2 + 2H_2O + 4e \rightarrow 4OH$	+0.40
$2HBrO + 2H^{+} + 2e^{-} \rightarrow Br_{2} + 2H_{2}O$	+1.60	$\text{ClO}_4^- + \text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{ClO}_3^- + 2\text{OH}^-$	+0.36
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	+1.51	$[\operatorname{Fe}(\operatorname{CN})_6]^{3-} + e^- \to [\operatorname{Fe}(\operatorname{CN})_6]^{4-}$	+0.36
$Mn^{3+} + e^- \rightarrow Mn^{2+}$	+1.51	$Cu^{2+} + 2e^- \rightarrow Cu$	+0.34
$Au^{3+} + 3e^- \rightarrow Au$	+1.40	$\mathrm{Hg}_{2}\mathrm{Cl}_{2} + 2\mathrm{e}^{-} \rightarrow 2\mathrm{Hg} + 2\mathrm{Cl}^{-}$	+0.27
$Cl_{a} + 2e^{-} \rightarrow 2Cl^{-}$	+1.36	$AgCl + e^- \rightarrow Ag + Cl^-$	+0.22
$Cr O^{2^{-}} + 14H^{+} + 62^{-} \rightarrow 2Cr^{3^{+}} + 7H O$	+133	$Bi + 3e^- \rightarrow Bi$	+0.20
$C_{2}O_{7} + 14\Pi + 6e \rightarrow 2CI + 7\Pi_{2}O$	+ 1.33	$Cu^{2+} + e^- \rightarrow Cu^+$	+0.16
$O_3 + H_2O + 2e \rightarrow O_2 + 2OH$	+1.24	$\operatorname{Sn}^{4+} + 2e^{-} \rightarrow \operatorname{Sn}^{2+}$	+0.15
$O_2 + 4H^2 4e^- \rightarrow 2H_2O^-$	+1.23	$AgBr + e^- \rightarrow Ag + Br^-$	+0.07
$\text{ClO}_4^- + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{ClO}_3^- + \text{H}_2\text{O}$	+1.23	$\mathrm{Ti}^{4+} + \mathrm{e}^{-} \rightarrow \mathrm{Ti}^{3+}$	0.00
$\mathrm{MNO}_2 + 4\mathrm{H}^+ + 2\mathrm{e}^- \rightarrow \mathrm{Mn}^{2+} + 2\mathrm{H}_2\mathrm{O}$	+1.23	$2\mathrm{H}^{+} + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$	0, by definition
$Br_2 + 2e^- \rightarrow 2Br^-$	+1.09	$Fe^{3+} + 3e^- \rightarrow Fe$	-0.04
$Pu^{4+} + e^- \rightarrow Pu^{3+}$	+0.97	$O_2 H_2 O + 2e^- \rightarrow HO_2^- + OH^-$	-0.08
$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	+0.96	$Pb^{2+} + 2e^- \rightarrow Pb$	-0.13
$2 \text{Hg}^{2+} + 2 \text{e}^- \rightarrow \text{Hg}^{2+}_2$	+0.92	$In^+ + e^- \rightarrow In$	-0.14
$ClO^- + H_2O + 2e^- \rightarrow Cl^- + 2OH^-$	+0.89	$\operatorname{Sn}^{2+} + 2e^- \to \operatorname{Sn}$	-0.14
$\mathrm{Hg}^{2+} + 2e^- \rightarrow \mathrm{Hg}$	+0.86	$AgI + e^- \rightarrow Ag + I^-$	-0.15
$NO^{-} + 2U^{+} + 2^{-} \rightarrow NO^{-} + U^{-}O^{-}$	± 0.80	$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23
$NO_3 + 2\Pi + e \rightarrow NO_2 + \Pi_2O$	10.00	$\mathrm{Co}^{2^+} + 2\mathrm{e}^- \rightarrow \mathrm{Co}$	-0.28
$Ag' + e \rightarrow Ag$	+0.80	$In^{3+} + 3e^- \rightarrow In$	-0.34
$\mathrm{Hg}_{2}^{2+} + 2\mathrm{e}^{-} \rightarrow 2\mathrm{Hg}$	+0.79	$Tl^+ e^- \rightarrow Tl$	-0.34
$\mathrm{Fe}^{3+} + \mathrm{e}^- \rightarrow \mathrm{Fe}^{2+}$	+0.77	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.36
$BrO^- + H_2O + 2e^- \rightarrow Br^- + 2OH^-$	+0.76		

$Ag^+ + e^- \rightarrow Ag$	+0.80	$Ca^{2+}+2e^{-}\rightarrow Ca$	-2.87
$Ag^{2+} + e^{-} \rightarrow Ag^{+}$	+ 1.98	$Cd(OH)_2 + 2e^- \rightarrow Cd + 2OH^-$	-0.81
$AgBr + e^- \rightarrow Ag + Br^-$	+0.0713	$Cd^{2+} + 2e^{-} \rightarrow Cd$	-0.40
$AgCl + e^{-} \rightarrow Ag + Cl^{-}$	+0.22	$Ce^{3+} + 3e^- \rightarrow Ce$	-2.48
$Ag_2CrO_4 + 2e^- \rightarrow 2Ag + CrO_4^{2-}$	+0.45	$Ce^{4+} + e^- \rightarrow Ce^{3+}$	+1.61
$AgF + e^- \rightarrow Ag + F^-$	+0.78	$Cl_2 + 2e^- \rightarrow 2Cl^-$	+1.36
$AgI + e^- \rightarrow Ag + I^-$	-0.15	$\text{ClO}^- + \text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{Cl}^- + 2\text{OH}^-$	+0.89
$Al^{3+} + 3e^- \rightarrow Al$	-1.66	$\text{ClO}_4^- + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{ClO}_3^- + \text{H}_2\text{O}$	+1.23
$Au^+ + e^- \rightarrow Au$	+1.69	$ClO_4^- + H_2O_2^- \rightarrow ClO_2^- + 2OH^-$	+0.36
$Au^{3+} + 3e^{-} \rightarrow Au$	+1.40	$Co^{2^+} + 2e^- \rightarrow Co$	_0.28
$Ba^{2+} + 2e^- \rightarrow Ba$	+2.91	$Co^{3^+} + e^- \rightarrow Co^{2^+}$	+1.81
$\mathrm{Be}^{2+} + 2e^- \rightarrow \mathrm{Be}$	-1.85	$Cr^{2+} + 2e^{-} - \lambda Cr$	_0.01
$Bi^{3+} + 3e^- \rightarrow Bi$	+0.20		-0.91
$Br_2 + 2e^- \rightarrow 2Br^-$	+1.09	$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	+1.33
$BrO^- + H_{a}O + 2e^- \rightarrow Br^- + 2OH^-$	+0.76	$Cr^{3+} + 3e^{-} \rightarrow Cr$	-0.74
2		$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.41

REDUCTION POTENTIALS IN ALPHABETICAL ORDER

$Ti^{3+} + e^- \rightarrow Ti^{2+}$	-0.37	$V^{2+} + 2e^- \rightarrow V$	-1.19
$Cd^{2+} + 2e^{-} \rightarrow Cd$	-0.40	$Ti^{2+} + 2e^- \rightarrow Ti$	-1.63
$In^{2+} + e^{-} \rightarrow In^{+}$	-0.40	$Al^{3+} + 3e^- \rightarrow Al$	-1.66
$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.41	$\mathrm{U}^{3+} + 3\mathrm{e}^{-} \rightarrow \mathrm{U}$	-1.79
$Fe^{2+} + 2e^{-} \rightarrow Fe$	-0.44	$\mathrm{Sc}^{3+} + 3\mathrm{e}^- \rightarrow \mathrm{Sc}$	-2.09
$In^{3+} + 2e^- \rightarrow In^+$	-0.44	$Mg^{2+} + 2e^- \rightarrow Mg$	-2.36
$S + 2e^- \rightarrow S^{2-}$	-0.48	$Ce^{3+} + 3e^- \rightarrow Ce$	-2.48
$In^{3+} + e^- \rightarrow In^{2+}$	-0.49	$La^{3+} + 3e^{-} \rightarrow La$	-2.52
$U^{4+} + e^- \rightarrow U^{3+}$	-0.61	$Na^+ + e^- \rightarrow Na$	-2.71
$Cr^{3+} + 3e^{-} \rightarrow Cr$	-0.74	$Ca^{2+} + 2e^{-} \rightarrow Ca$	-2.87
$Zn^{2+} + 2e^{-} \rightarrow Zn$	-0.76	$\mathrm{Sr}^{2+} + 2\mathrm{e}^{-} \rightarrow \mathrm{Sr}$	-2.89
$Cd(OH)_{a} + 2e^{-} \rightarrow Cd + 2OH^{-}$	-0.81	$Ba^{2+} + 2e^{-} \rightarrow Ba$	-2.91
$2H_0O + 2e^- \rightarrow H_0 + 2OH^-$	-0.83	$Ra^{2+} + 2e^- \rightarrow Ra$	-2.92
$\operatorname{Cr}^{2^+} + 2e^- \rightarrow \operatorname{Cr}^2$	-0.91	$Cs^+ + e^- \rightarrow Cs$	-2.92
$Mn^{2+} + 2e^{-} \rightarrow Mn$	-1.18	$Rb^+ + e^- \rightarrow Rb$	-2.93
		$K^+ + e^- \rightarrow K$	-2.93
		$Li^+ + e^- \rightarrow Li$	-3.05

$Cs^+e^- \rightarrow Cs$	-2.92	$MnO_4^- + 2H_2O + 2e^- \rightarrow MnO_2 + 4OH^-$	+0.60
$Cu^+ + e^- \rightarrow Cu$	+0.52	$Na^+ + e^- \rightarrow Na$	-2.71
$Cu^{2+} + 2e^{-} \rightarrow Cu$	+0.34	$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23
$Cu^{2+} + e^- \rightarrow Cu^+$	+0.16	$NiOOH + H_2O + e^- \rightarrow Ni(OH)_2 + OH^-$	+0.49
$F_2 + 2e^- \rightarrow 2F^-$	+2.87	$NO_{-}^{-} + 2H^{+} + e^{-} \rightarrow NO_{-} + H_{-}O_{-}$	-0.80
$Fe^{2+} + 2e^{-} \rightarrow Fe$	-0.44	1003 + 211 + 0 7 1002 + 1120	0.00
$Fe^{3+} + 3e^- \rightarrow Fe$	-0.04	$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	+0.96
$Fe^{3+} + e^- \rightarrow Fe^{2+}$	+0.77	$NO_3^- + H_2O + 2e^- \rightarrow NO_2^- + 2OH^-$	+0.10
$[\operatorname{Fe}(\operatorname{CN})_6]^{3-} + e^- \to [\operatorname{Fe}(\operatorname{CN})_6]^{4-}$	+0.36	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	+0.40
$2\mathrm{H}^{+} + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$	0, by definition	$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	+1.23
$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83	$0 + e^{-} \rightarrow 0^{-}$	-0.56
$2HBrO + 2H^{+} + 2e^{-} \rightarrow Br_{2} + 2H_{2}O$	+1.60	$O_2 + C \rightarrow O_2$	-0.50
$2\text{HClO} + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{Cl}_2 + 2\text{H}_2\text{O}$	+1.63	$O_2 + H_2O + 2e^- \rightarrow HO_2^- + OH^-$	-0.08
$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	+1.78	$O_3 + 2H^+ + 2e^- \rightarrow O_2 + H_2O$	+2.07
$H_4XeO_6 + 2H^+ + 2e^- \rightarrow XeO_3 + 3H_2O$	+3.0	$O_3 + H_2O + 2e^- \rightarrow O_2 + 2OH^-$	+1.24
$Hg_2^{2+} + 2e^- \rightarrow 2Hg$	+0.79	$Pb^{2+} + 2e^- \rightarrow Pb$	-0.13
Hg.Cl. + 2e ⁻ \rightarrow 2Hg + 2Cl ⁻	+0.27	$Pb^{4+} + 2e^- \rightarrow Pb^{2+}$	+1.67
$Hg^{2+} + 2e^{-} \rightarrow Hg$	+0.86	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.36
$211a^{2+} + 2a^{-} + 11a^{2+}$	+ 0.02	$Pt^{2+} + 2e^- \rightarrow Pt$	+1.20
$2 \text{Hg} + 2 \text{e} \rightarrow \text{Hg}_2$	+0.92	$Pu^{4+} + e^- \rightarrow Pu^{3+}$	+0.97
$\mathrm{Hg}_{2}\mathrm{SO}_{4} + 2\mathrm{e} \rightarrow 2\mathrm{Hg} + \mathrm{SO}_{4}^{2-}$	+0.62	$Ra^{2+} + 2e^{-} \rightarrow Ra$	-2.92
$I_2 + 2e^- \rightarrow 2I^-$	+0.54	$Rb^+ + e^- \rightarrow Rb$	-2.93
$I_3^- + 2e^- \rightarrow 3I^-$	+0.53	$S + 2e^- \rightarrow S^{2-}$	-0.48
$In^+ + e^- \rightarrow In$	-0.14	$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+2.05
$In^{2+} + e^- \rightarrow In^+$	-0.40	$SC^{3+} + 3e^- \rightarrow Sc$	-2.09
$\mathrm{In}^{3+} + 2\mathrm{e}^{-} \rightarrow \mathrm{In}^{+}$	-0.44	$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-} \rightarrow \mathrm{Sn}$	-0.14
$In^{3+} + 3e^- \rightarrow In$	-0.34	$\mathrm{Sn}^{4+} + 2\mathrm{e}^- \rightarrow \mathrm{Sn}^{2+}$	+0.15
$In^{3+} + e^- \rightarrow In^{2+}$	-0.49	$\mathrm{Sr}^{2+} + 2\mathrm{e}^{-} \rightarrow \mathrm{Sr}$	-2.89
$K^+ + e^- \rightarrow K$	-2.93	$Ti^{2+} + 2e^- \rightarrow Ti$	-1.63
$La^{3+} + 3e^- \rightarrow La$	-2.52	$Ti^{3+} + e^- \rightarrow Ti^{2+}$	-0.37
$Li+e^- \rightarrow Li$	-3.05	$\mathrm{Ti}^{4+} + \mathrm{e}^{-} \rightarrow \mathrm{Ti}^{3+}$	0.00
$Mg^{2+} + 2e^- \rightarrow Mg$	-2.36	$Tl^+ + e^- \rightarrow Tl$	-0.34
$Mn^{2+} + 2e^- \rightarrow M_n$	-1.18	$U^{3+} + 3e^- \rightarrow U$	-1.79
$Mn^{3+} + e^- \rightarrow Mn^{2+}$	+1.51	$U^{4+} + e^- \rightarrow U^{3+}$	-0.61
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	+1.23	$V^{2+} + 2e^- \rightarrow V$	-1.19
2.		$V^{3+} + e^- \rightarrow V^{2+}$	-0.26
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	+1.51	$Zn^{2+} + 2e \rightarrow Zn$	-0.76
$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	+0.56		

ELECTROCHEMIS 224

SOLVED EXAMPLES

Example – 1

Give the relationship between equivalent and molar conductance ?

000

Sol.
$$\Lambda_{\rm m} = \kappa \times \frac{1000}{\rm Molarity}$$
 and $\Lambda_{\rm eq} = \kappa \times \frac{1000}{\rm Normality}$

$$\therefore \qquad \frac{\Lambda_{\rm m}}{\Lambda_{\rm m}} = \frac{\rm Normality}{\rm Molarity}$$

Example-2

Can nickel spatula be used to stir a copper sulphate solution ? Support your answer with a reason

$$E^{o}_{Ni^{2+}/Ni} = -0.25 \text{ V}, E^{o}_{Cu^{2+}/Cu} = +0.34 \text{ V}.$$

Sol.

 $E_{cell}^{o} = E_{cathode}^{o} - E_{anode}^{o}$

$$E_{cell}^{o} = E_{Cu^{2+}/Cu}^{o} - E_{Ni^{2+}/Ni}^{o} = +0.34 \text{ V} - (-0.25) = +0.59 \text{ V}$$

As E_{cell}^{o} is +ve, $\Delta G = -ve$, because $\Delta G = -nE^{o}F$, i.e,

reaction will take place. Therefore, we cannot stir a copper sulphate solution with nickel spatula.

Example-3

State two advantages of H₂-O₂ fuel cell over ordinary cell.

The two advantages of H₂—O₂ fuel cell over ordinary Sol. cell are :

(i) They do not cause any pollution.

(ii) They have high efficiency of 60-70%.

Example-4

What is galvanisation ?

Sol. The process of coating zinc over iron is called galvanisation.

Example-5

Which type of a metal can be used in cathodic protection of iron against rusting ?

A metal which is more electropositive than iron such as Sol. Al, Zn, Mg can be used in cathode protection of iron against rusting.

Example-6

Write the chemical equations for all the steps involved in the rusting of iron, Give any one method to prevent rusting of iron.

Sol. **Anode:** $Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}, E^{o}_{Fa^{2+}/Fa} = -0.44 V$

Cathode : $O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O_2$,

$$E^{o}_{H^{+}/O_{2}/H_{2}O} = 1.23 V$$

Overall reaction

Fe(s)
$$\longrightarrow$$
 Fe²⁺ (aq) + 2e⁻] × 2

 $O_2(g) + 4H^+ + 4e^- \longrightarrow 2H_2O$

 $2Fe + O_2 + 4H^+(aq) \longrightarrow 2Fe^{2+} + 2H_2O_{cell} = 1.67V$

Further
$$4Fe^{2+}(aq) + O_2(g) + 4H_2O(l)$$
 ——

 $2Fe_{2}O_{3} + 8H^{+}(aq)$

$$Fe_{2}O_{3} + xH_{2}O \longrightarrow$$

Fe₂O₂.xH₂O

Hydrated ferric oxide (Rust)

Galvanisation is used to prevent rusting of iron.

Example-7

The following chemical reaction is occurring in an electrochemical cell.

 $Mg(s) + 2 Ag^+(0.0001 M) \longrightarrow Mg^{2+}(0.10M) + 2Ag(s)$

The E° electrode values are

$$Mg^{2+}/Mg = -2.36 V$$

 $Ag^{+}/Ag = 0.81 V$

For this cell calculate/write

(a) (i) E° value for the electrode $2Ag^{+}/2Ag$.

(ii) Standard cell potential E^o_{cell}.

Cell potential (E)_{cell} (b)

(i) Symbolic representation of the above cell. (c)

(ii) Will the above cell reaction be spontaneous ?

(a) (i) $E^{o}_{Ag^{+}/Ag} = 0.81 V$ Sol.

Mahesh Tutorials Science

(b) At anode : Mg \longrightarrow Mg²⁺ + 2e⁻

A cathode : $Ag^+ + e^- \longrightarrow Ag] \times 2$

 $Mg + 2Ag^{+} \longrightarrow Mg^{2+} + 2Ag$

$$\begin{split} \mathrm{E}_{\mathrm{cell}} &= \mathrm{E}_{\mathrm{cell}}^{\mathrm{o}} - \frac{0.059}{\mathrm{n}} \log \frac{\left[\mathrm{Mg}^{2^{+}}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}} \\ &= 3.17 - \frac{0.059}{2} \log \frac{0.1}{\left(10^{-4}\right)^{2}} \\ &= 3.17 - 0.0295 \log 10^{7} \\ &= 3.17 - 0.0295 \times 7 = 3.17 - 0.21 \\ \mathrm{E}_{\mathrm{cell}} &= 2.96 \,\mathrm{V} \\ \end{split}$$
(c) (i) Mg | Mg^{2^{+}} (0.1 \mathrm{M}) || Ag^{+} (0.0001 \mathrm{M}) | Ag

(ii) Yes, as the cell potential is positive.

Example-8

- (a) Current of 1.50 A was passed through an electrolytic cell containing AgNO₃ solution with inert electrodes. The weight of Ag deposited was 1.50g. How long did the current flow ?
- (b) Write the reactions taking place at the anode and cathode in the above cell if inert electrodes are used.
- (c) Give reactions taking place at the two electrodes if these are made up of Ag.
- Sol. (a) According to Faraday's first law, charge required to deposit 1.50 g.

Ag =
$$\frac{96500}{108} \times 1.50 = 1331.70$$
 coulombs

Time taken
$$=\frac{1331.70}{1.50} = 893.5 \,\mathrm{s}$$

(b) Inert electrodes

Anode:
$$2H_2O(\ell) \longrightarrow O_2(g) + 4H^+(aq) + 4e^-$$

Cathode :
$$Ag^+(aq) + e^- \longrightarrow Ag(s)$$

(c) Ag electrodes

Anode : $Ag(s) \longrightarrow Ag^+(aq) + e^-$

Cathode : $Ag^+(aq) + e^- \longrightarrow Ag(s)$

Example-9

Explain Kohlrausch's law of independent migration of ions. Mention one application of Kohlrausch's law.

Sol. Kohlrausch's law of independent migration of ions: The molar conductivity of an electrolyte at infinite dilution is the sum of the individual contributions of the anion and cation of the electrolyte.

$$\Lambda^0 = \mathbf{v}_+ \ \lambda^0_+ + \mathbf{v}_- \ \lambda^0_-$$

where, λ^0_+ and λ^0_- are the limiting molar

conductivities of the cation and anion respectively and v_+ and v_- are the number of cations and anions formed from a formula unit of the electrolyte. For example, one formula unit of $Al_2(SO_4)_3$ gives two Al^{3+} ions and three sulphate ions. Therefore,

$$\Lambda^{o}_{m(Al_{2}(SO_{4})_{3}} = 2\lambda^{o}_{Al^{3+}} + 3\lambda^{o}_{SO_{4}^{2}}$$

Application : It can be used to determine molar conductivity of weak electrolytes at infinite dilution :

Consider acetic acid as the example of a weak electrolyte.

$$\begin{split} \Lambda^{o}_{m(CH_{3}COON_{a})} &= \lambda^{o}_{CH_{3}COO^{-}} + \lambda^{o}_{Na^{+}} \\ \Lambda^{o}_{m(HCI)} &= \lambda^{o}_{H^{*}} + \lambda^{o}_{CI^{-}} \\ \Lambda^{o}_{m(NaCI)} &= \lambda^{o}_{Na^{+}} + \lambda^{o}_{CI^{-}} \end{split}$$

From (i) + (ii) – (iii) we get

$$\begin{split} \lambda^{\circ}_{\mathrm{CH}_{3}\mathrm{COO}^{-}} + \lambda^{\circ}_{\mathrm{Na}^{+}} + \lambda^{\circ}_{\mathrm{H}^{+}} + \lambda^{\circ}_{\mathrm{CI}^{-}} - \lambda^{\circ}_{\mathrm{Na}^{+}} - \lambda^{\circ}_{\mathrm{CI}^{-}} \\ &= \lambda^{\circ}_{\mathrm{CH}_{3}\mathrm{COO}^{-}} + \lambda^{\circ}_{\mathrm{H}^{+}} = \Lambda^{\circ}_{\mathrm{CH}_{3}\mathrm{COOH}} \end{split}$$

Example-10

The electrical resistance of a column of 0.05 mol L⁻¹ NaOH solution of diameter 1 cm and length 50 cm is 5.55×10^3 ohm. Calculate its resistivity, conductivity and molar conductivity.

Sol. $A = \pi r^2 = 3.14 \times 0.5^2 \text{ cm}^2 = 0.785 \text{ cm}^2 = 0.785 \times 10^{-4} \text{ m}^2,$ l = 50 cm = 0.5 m

$R = \frac{\rho \ell}{A}$ or $\rho = \frac{RA}{\ell} = \frac{5.55 \times 10^{3} \Omega \times 0.785}{50 \text{ cm}} =$

$$= 87.135 \,\Omega \,\mathrm{cm}$$

Conductivity =
$$\kappa = \frac{1}{\rho} = \left(\frac{1}{87.135}\right) \text{S cm}^{-1} = 0.01148 \text{ S cm}^{-1}$$

Molar conductivity, $\Lambda_{\rm m} = \frac{\kappa \times 1000}{c}$

$$=\frac{0.01148 \text{ S cm}^{-1} \times 1000 \text{ cm}^{3} \text{ L}^{-1}}{0.05 \text{ mol } \text{L}^{-1}} = 229.6 \text{ S cm}^{2} \text{ mol}^{-1}$$

Example-11

-

The measured resistance of a conductance cell containing 7.5×10^{-3} M solution of KCl at 25°C was 1005 ohms. Calculate (a) specific conductance (b) molar conductance of the solution. Cell constant = 1.25 cm⁻¹.

Sol. Specific conductance
$$(\kappa) = \frac{1}{R} \times \text{cell constant}$$

 $=\frac{1}{1005\Omega}\times1.25 \text{ cm}^{-1}=0.001244\Omega^{-1} \text{ cm}^{-1}$

Molar conductance $(\Lambda_m) = \frac{\kappa \times 1000}{Molarity}$

$$= \frac{0.001244 \,\Omega^{-1} \,\mathrm{cm}^{-1} \times 1000 \,\mathrm{cm}^{3} \,\mathrm{L}^{-1}}{7.5 \times 10^{-3} \,\mathrm{mol} \,\mathrm{L}^{-1}}$$
$$= 165.87 \,\Omega^{-1} \,\mathrm{cm}^{2} \,\mathrm{mol}^{-1}.$$

Example-12

 Λ_m for NaCl, HCl and NaAc are 126.4, 425.9 and 91.0 S cm² mol⁻¹ respectively. Calculate Λ_m^0 for HAc.

Sol.
$$\Lambda^{0}_{\mathrm{m}(\mathrm{HAc})} = \lambda^{\circ}_{\mathrm{H}^{+}} + \lambda^{\circ}_{\mathrm{Ac}} = \lambda^{\circ}_{\mathrm{H}^{+}} + \lambda^{\circ}_{\mathrm{CI}^{-}} + \lambda^{\circ}_{\mathrm{Ac}^{-}} + \lambda^{\circ}_{\mathrm{Na}^{+}} - \lambda^{\circ}_{\mathrm{CI}^{-}} - \lambda^{\circ}_{\mathrm{Na}^{+}}$$

$$= \Lambda^{o}_{m(HCl)} + \Lambda^{o}_{m(NaAc)} - \Lambda^{o}_{m(NaCl)}$$

$$=(425.9+91.0-126.4)$$
 S cm² mol⁻¹

 $= 390.5 \text{ S cm}^2 \text{ mol}^{-1}.$

ELECTROCHEMISTRY

Example-13

The conductivity of 0.0011028 mol L⁻¹ acetic acid is $4.95 \times 10^{-5} \text{ S cm}^{-1}$. Calculate its dissociation constant if Λ_m° for acetic acid is 390.5 S cm² mol⁻¹.

Sol.
$$\Lambda_{\rm m} = \frac{\kappa}{\rm c} = \frac{4.95 \times 10^{-5} \, {\rm S \, cm^{-1}}}{0.001028 \, {\rm mol} \, {\rm L}^{-1}} \times \frac{1000 \, {\rm cm}^3}{\rm L}$$

$$= 44.88 \text{ S cm}^2 \text{ mol}^{-1}$$

$$\alpha = \frac{\Lambda_{\rm m}}{\Lambda_{\rm m}^{\rm o}} = \frac{44.88 \, {\rm S} \, {\rm cm}^2 \, {\rm mol}^{-1}}{390.5 \, {\rm S} \, {\rm cm}^2 \, {\rm mol}^{-1}} = 0.115$$

$$K = \frac{c\alpha^2}{(1-\alpha)} = \frac{0.001028 \text{ mol } L^{-1} \times (0.115)^2}{0.115}$$

$$= 1.65 \times 10^{-5} \text{ mol } L^{-1}$$

Example-14

A cell is prepared by dipping copper rod in 1 M copper sulphate solution and zinc rod in 1 M zinc sulphate solution. The standard reduction potentials of copper and zinc are 0.34 V and -0.76 V respectively.

(i) What will be the cell reaction?

(ii) What will be the standard electromotive force (EMF) of the cell ?

(iii) Which electrode will be positive ?

(iv) How will the cell be represented?

Sol. (i) The cell reaction can be

or

$$Zn + Cu^{2+} \longrightarrow Zn^{2+} + Cu$$

 $Cu + Zn^{2+} \longrightarrow Cu^{2+} + Zn$

The EMF comes out to be positive for the 1st reaction. Hence, the cell reaction is

$$Zn + Cu^{2+} \longrightarrow Zn^{2+} + Cu$$

(ii)
$$E_{cell}^{o} = E_{cathode}^{o} + E_{anode}^{o} = E_{Cu^{2+}/Cu}^{o} + E_{Zn/Zn^{+2}}^{o}$$

$$= 0.34 + 0.76 = 1.10$$
 V

(iii) reduction takes place on copper electrode. Hence it is positive

(iv) $Zn | Zn^{2+}(1 M) || Cu^{2+}(1 M) || Cu$

Mahesh Tutorials Science

Example-15

Represent the cell in which the following reaction takes place

$$Mg(s) + 2Ag^{+}(0.0001 \text{ M}) \rightarrow Mg^{2+}(0.130 \text{ M}) + 2 \text{ Ag } 9 \text{ (s)}$$

Calculate its $E_{(cell)}$ if $E_{(cell)}^{\circ} = 3.17 \text{ V}.$

Sol. The cell can be written as Mg | Mg²⁺ (0.130 M) || Ag⁺ (0.0001 M) |Ag

$$E_{(cell)} = E_{(cell)}^{\circ} - \frac{RT}{nF} In \frac{\left[Mg^{2^{+}}\right]}{\left[Ag^{+}\right]^{2}} = E_{(cell)}^{\circ} - \frac{2.303 RT}{2F} log \frac{\left[Mg^{2^{+}}\right]}{\left[Ag^{+}\right]}$$

$$= 3.17 \,\mathrm{V} - \frac{0.059 \,\mathrm{V}}{2} \log \frac{0.130}{(0.0001)^2}$$

$$= 3.17 \text{ V} - 0.21 \text{ V} = 2.96 \text{ V}$$

Example-16

A zinc rod is dipped in 0.1 M solution of $ZnSO_4$. The salt is 95% dissociated at this dilution at 298 K. Calculate the electrode potential $(E^{\circ}_{Zn^{2+}/Zn} = -0.76 V)$.

Sol. The electrode reaction written as reduction reaction is

 $Zn^{2+} + 2e^{-} \rightarrow Zn (n=2)$

Applying Nernst equation, we get

$$E_{Zn^{2+}/Zn} = E^{o}_{Zn^{2+}/Zn} - \frac{0.0591}{2} log \frac{1}{\left[Zn^{2+}\right]}$$

As 0.1 M ZnSO_4 solution is 95% dissociated, this means that in the solution,

$$\begin{bmatrix} Zn^{2+} \end{bmatrix} = \frac{95}{100} \times 0.1M = 0.095M$$

$$\therefore \qquad E_{Zn^{2+}/Zn} = -0.76 - \frac{0.0591}{2} \log \frac{1}{0.095}$$

$$= -0.76 - 0.02955 (\log 1000 - \log 95)$$

$$= -0.76 - 0.02955 (3 - 1.9777)$$

$$= -0.76 - 0.03021$$

$$= -0.79021 V$$

Example-17

Calculate the potential (emf) of the cell

 $Cd | Cd^{2+}(0.10 M) || H^{+}(0.20 M) |Pt, H_{2}(0.5 atm)$

(Given E° for $Cd^{2+} / Cd = -0.403$ V, R = 8.14 JK⁻¹ mol⁻¹, F = 96,500 C mol⁻¹).

Sol. The cell reaction is

$$Cd + 2H^{+}(0.20 \text{ M}) \rightarrow Cd^{2+}(0.10 \text{ M}) + H_{2}(0.5 \text{ atm})$$

$$E_{cell}^{o} = E_{H^+/1/2H_2}^{o} - E_{Cd^{2+}/Cd}^{o} = 0 - (-0.403) = 0.403 V$$

Applying Nernst equation to the cell reaction,

$$E_{cell} = E_{cell}^{o} - \frac{2.303 \text{ RT}}{nF} \log \frac{\left\lfloor Cd^{2+} \right\rfloor \times P_{H_2}}{\left[H^+\right]^2}$$
$$= 0.403 - \frac{2.303 \times 8.314 \times 298}{2 \times 96,500} \log \frac{0.1 \times 0.5}{\left(0.2\right)^2}$$
$$= 0.403 - 0.003 = 0.400 \text{ V}$$

Example-18

Calculate the equilibrium constant of the reaction

$$Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s) E^{o}_{cell} = 0.46 V$$

Sol.
$$E_{cell}^{o} = \frac{0.059 \text{ V}}{2} \log K_{c} = 0.46 \text{ V}$$

or
$$\log K_c = \frac{0.46 \text{ V} \times 2}{0.059 \text{ V}} = 15.6 \implies K_c = \text{Antilog } 15.6$$

 $K_c = 3.92 \times 10^{15}$

Example-19

Calculate the standard free energy change and maximum work obtainable for the reaction occurring in the cell : (Daniell cell).

Zn (s) | Zn²⁺ (1 M) || Cu²⁺ (1 M) | Cu (s)
[Given
$$E^{o}_{Zn^{2+}/Zn} = -0.76 V, E^{o}_{Cu^{2+}/Cu}$$

$$= +0.34 \text{ V}, \text{ F} = 96,500 \text{ C mol}^{-1}$$
]

Also calculate the equilibrium constant for the reaction.

Sol. (i)
$$E_{cell}^{o} = E_{Cu^{2+}/Cu}^{o} + E_{Zn/Zn^{+2}}^{o} = 0.34 + 0.76$$

= 1.10 V

- Lakshya Educare

The reaction taking place in the Daniell cell is

$$Zn(s) + Cu^{2+}(aq) \Longrightarrow Cu(s) + Zn^{2+}(aq)$$

For this reaction, n = 2

$$\Delta G^{\circ} = -nFE_{cell}^{\circ}$$

$$= -2 \times 96500 \text{ C mol}^{-1} \times 1.10 \text{ V}$$

 $= -212300 \text{ CV mol}^{-1}$

$$= -212300 \text{ J} \text{ mol}^{-1} (1 \text{ CV} = 1 \text{ J})$$

$$= -212.300 \text{ kJ mol}^{-1}$$

Thus, the maximum work that can be obtained from the Daniel cell = 212.3 kJ.

(ii)
$$\Delta G^{\circ} = -RT \ln K_{c} = -2.303 RT \log K_{c}$$

 $\therefore -212300 = -2.303 \times 8.14 \times 298 \times \log K_{c}$
or $\log K_{c} = \frac{212300}{2.303 \times 8.314 \times 298} = 37.2704$
 $\therefore K_{c} = Antilog 37.2074 = 1.6 \times 10^{37}$

Example-20

Calculate the equilibrium constant, K_c for the reaction. $3Sn^{4+} + 2Cr \rightarrow 3Sn^{2+} + 2Cr^{3+}$ Given $E^o = 0.885$ V.

Sol.
$$E_{cell}^{o} = \frac{0.059}{n} \log K_{c}, n = 6$$

$$0.885 = \frac{0.059}{6} \log K_c$$

$$\log K_{c} = \frac{6 \times 0.885}{0.059}$$

 $K_c = Antilog 90 = 1 \times 10^{90}$

Example-21

Chromium metal can be plated out from an acidic solution containing CrO_3 according to the following equation: $\text{CrO}_3(\text{aq}) + 6\text{H}^+(\text{aq}) + 6\text{e}^- \rightarrow \text{Cr}(\text{s}) + 3\text{H}_2\text{O}$

Calculate (i) how many grams of chromium will be plated out by 24,000 coulombs and (ii) how long will it take to plate out 1.5 g of chromium by using 12.5 amp current? (At. mass of Cr = 52).

Sol. (i)
$$6 \times 96$$
, 500 coulomb deposit Cr = 1 mole = 52 g

:. 24,000 coulomb deposit
$$Cr = \frac{52 \times 24000}{6 \times 965000}g = 2.1554g$$

(ii) 52 g of Cr is deposited by electricity = 6×96500 C

$$\therefore 1.5 \text{ g require electricity} = \frac{6 \times 96500}{52} \times 1.5 \text{ C} = 16071 \text{ C}$$

: Time for which the current is required to be passed

$$=\frac{16071.9}{12.5 \text{ A}}=1336 \text{ s.}$$

Example-22

(a) Calculate the equilibrium constant for the reaction

$$Cd^{2+} (aq) + Zn(s) \longrightarrow Zn^{2+} (aq) + Cd(s)$$

If $E^{o}_{Cd^{2+}/Cd} = -0.403 V$
 $E^{o}_{Zn^{2+}/Zn} = -0.763 V$

- (b) When a current of 0.75A is passed through a CuSO₄ solution for 25 min, 0.369 g of copper is deposited at the cathode. Calculate the atomic mass of copper.
- (c) Tarnished silver contains Ag₂S. Can this tarnish be removed by placing tarnished silver ware in an aluminium pan containing an inert electrolytic solution such as NaCl. The standard electrode potential for half reaction:

$$Ag_{2}S(s) + 2e^{-} \longrightarrow 2Ag(s) + S^{2-}is - 0.71V$$

and for $Al^{3+} + 3e^{-} \longrightarrow 2Al(s)$ is -1.66 V

Sol. (a) $E_{cell}^{o} = E_{c}^{o} + E_{a}^{o} = -0.403 + 0.763 = 0.360 V$

As
$$\log \operatorname{Kc} = \left(\frac{\operatorname{nE}_{\operatorname{cell}}^{\circ}}{0.059}\right) = \left(\frac{2 \times 0.360}{0.059}\right)$$
$$= \left(\frac{0.720}{0.059}\right) = 12.20$$

$$K_c = antilog (12.20) = 1.585 \times 10^{12}$$

(b)
$$M = Z I t$$

$$0.369 = \frac{x}{2 \times 96500} \times 0.75 \times 25 \times 60$$

(x = molar mass of copper)

$$x = 63.3 \text{ g/mol}$$

(c) E_{cell}^{o} for reaction of tarnished silver ware with aluminium pan is (-0.71 V) + 1.66 V i.e., +0.95 VTarnished silver ware, therefore, can be cleaned by placing it in an aluminium pan as E_{cell}^{o} is positive.

Example-23

(a) Calculate the standard free energy change for the following reaction at 25° C.

 $\operatorname{Au}(s) + \operatorname{Ca}^{2+}(\operatorname{aq}, 1M) \longrightarrow \operatorname{Au}^{3+}(\operatorname{aq}, 1M) + \operatorname{Ca}(s)$

 $E^{o}_{Au^{3+}/Au} = +1.50 V, E^{o}_{Ca^{2+}/Ca} = -2.87 V$

Predict whether the reaction will be spontaneous or not at 25°C. Which of the above two half cells will act as an oxidizing agent and which one will be a reducing agent?

(b) The conductivity of 0.001 M acetic acid is 4×10^{-5} S/cm. Calculate the dissociation constant of acetic acid, if Λ_m^o for acetic acid is 390. 5 S cm²/mol.

Sol. (a) $E_{cell}^{\circ} = (-2.87 \text{ V}) - (1.50 \text{ V}) = -4.37 \text{ V}$

 $\Delta G^{\circ}_{cell} = -6 \times 96500 \times -4.37 \text{ V} = +2530.230 \text{ kJ/mol}$

Since $\Delta_r G^{\circ}$ is positive, reaction is non-spontaneous.

Au³⁺/Au half cell will be a reducing agent, Ca^{2+}/Ca half cell will be an oxidising agent.

(b) $\Lambda_m^c = K \times \frac{1000}{\text{molarity}}$

K = Specific conductance

$$=\frac{4\times10^{-5}\,\mathrm{S}\,/\,\mathrm{cm}\times1000}{0.001}=40\,\mathrm{S}\,\,\mathrm{cm}^2\,\,\mathrm{mol}^{-1}$$

$$\alpha = \frac{\Lambda_{\rm m}}{\Lambda_{\rm m}^{\rm o}} = \frac{40}{390.5} = 0.103$$

$$K_{c} = \frac{C\alpha^{2}}{1-\alpha} = \frac{0.001 \times (0.103)^{2}}{1-0.103} = 1.19 \times 10^{-5}$$

Example-24

(a) Depict the galvanic cell in which the following reaction takes place :

 $Zn(s) + 2Ag^{+}(aq) \longrightarrow Zn^{2+}(aq) + 2Ag(s)$

Also indicate that in this cell

- (i) which electrode is negatively charged.
- (ii) what are the carrier of the current in the cell.
- (iii) what is the individual reaction at each electrode.
- (b) Write the Nernst equation and determine the e.m.f. of the following cell at 298 K:

 $Mg(s)|Mg^{2+}(0.001 M)||Cu^{2+}(0.0001 M)|Cu(s)|$

(Given: $E_{Mg^{2+}/Mg}^{\circ} = -2.375 \text{ V}, E_{Cu^{2+}/Cu}^{\circ} = +0.34 \text{ V}$)

Sol. (a)
$$Zn | Zn^{2+} (conc.) || Ag^{+} (conc) | Ag$$

(i) Zn electrode is negatively charged.

(ii) Current carriers of cell are

- electrons in external wire
- Zn^{2+} ions in anodic half cell.
- Ag⁺ ions in cathodic half cell.
- Ions of salt bridge, i.e., K⁺ and Cl⁻.
- (iii) At anode $Zn \longrightarrow Zn^{2+} + 2e^{-}$

At cathode $2Ag^+ + e^- \longrightarrow 2Ag$

(b) Mg \longrightarrow Mg²⁺ + 2e⁻

$$Cu^{2+} + 2e^{-} \longrightarrow Cu$$

 $Mg + Cu^{2+} \longrightarrow Cu + Mg^{2+}$

Nernst equation

$$E_{cell} = E_{cell}^{o} - \frac{0.059}{n} \log \frac{\lfloor Mg^{2+} \rfloor}{\lceil Cu^{2+} \rceil}$$

$$E_{cell} = \left(E^{\circ}_{Cu^{2+}/Cu} + E^{\circ}_{Mg/Mg^{+2}}\right) - \frac{0.059}{2}\log\frac{\lfloor Mg^{2+} \rfloor}{\lceil Cu^{2+} \rceil}$$

- Lakshya Educare

$$= 0.34 + (2.375) - \frac{0.059}{2} \log \frac{10^{-3}}{10^{-4}}$$
$$= 0.34 + 2.375 - 0.0295 \log 10$$
$$E_{cell} = 2.6855 V$$
$$E_{cell} = 2.685 V$$

Example-25

- (a) Define molar conductivity of a substance and describe how weak and strong electrolytes' molar conductivity changes with concentration of solute. How is such change explained ?
- (b) A voltaic cell is set up at 25 °C with the following half cells:

Ag^+ (0.001 M) |Ag and Cu^{2+} (0.10 M) | Cu

What would be the voltage of this cell?

 $(E^{o}_{cell} = 0.46 \text{ V})$

Sol. Molar Conductivity (Λ_m) : It may be defined as the conductance of a solution containing 1 mole of electrolyte such that the entire solution is placed in between two electrodes one centimetre apart.

$$\Lambda_{m} = k \times 1$$

or

$$\Lambda_{\rm m} = \frac{\rm k \times 1000}{\rm M}$$

Molar conductivity increases with decrease in concentration or increase in dilution as number of ions as well as mobility of ions increased with dilution. For strong electrolytes, the number of ions do not increase appreciably on dilution and only mobility or ions increases due to decrease in interionic attractions.

Therefore, Λ_m increases a little as shown in graph by a straight line.

For weak electrolytes, the number of ions as well as mobility of ions increases on dilution which results in a very large increase in molar conducvity especially near infinite dilutuion as shown by curve in the figure.

At anode : $Cu(s) \longrightarrow Cu^{2+}(aq) + 2\overline{e}$

At cathode : $2Ag^+(aq) + 2\overline{e} \longrightarrow 2Ag(s)$

$$Cu(s)+2Ag^{+}(aq)\longrightarrow Cu^{2+}(aq)+2Ag(s)$$

Here,
$$E_{cell} = E_{cell}^{\circ} - \frac{0.0591}{n} \log \frac{\left[Cu^{2+}\right]}{\left[Ag^{+}\right]^{2}}$$

Here, $E_{cell}^{\circ} = 0.46$ V, $n = 2$
 $[Ag^{+}] = 0.001M = 1 \times 10^{-3}$ M, $[Cu^{2+}] = 0.1$ M
 $E_{cell} = 0.46 - \frac{0.0591}{2} \log \frac{0.1}{\left(10^{-3}\right)^{2}}$
 $E_{cell} = 0.46 - \frac{0.0591}{2} \log 10^{5} = 0.46 - \frac{0.0591}{2} \times 5 \log 10$

$$E_{cell} = 0.46 - 0.0591 \times 2.5 \times 1 = 0.46 - 0.14775 = 0.31225V$$

 $E_{cell} = 0.312 V$

Example-26

- (a) State the relationship amongst cell constant of cell, resistance of the solution in the cell and conductivity of the solution. How is molar conductivity of a solute related to conductivity of its solution ?
- (b) A voltaic cell is set up at 25°C with the following halfcells:

Al $|Ag^{3+}(0.001 \text{ M})$ and Ni $|Ni^{2+}(0.50 \text{ M})|$ Calculate the cell voltage

$$E^{\circ}_{Ni^{+2}|Ni} = -0.25 \text{ V}, E^{\circ}_{Al^{3+}|Al} = -1.66 \text{ V}$$

Sol. (a) $\kappa = \frac{1}{R} \times \left(\frac{l}{A}\right)$

where, $\kappa = \text{Conductivity}$ $\frac{1}{A} = \text{Cell constant}$ R = Resistance $\Lambda_{m} = \frac{\kappa \times 1000}{M}$ where, $\Lambda_{m} = \text{Molar conductivity}$ $\kappa = \text{Conductivity}$ M = Molarity of Solution(b) At anode : Al(s) $\longrightarrow \text{Al}^{3+}(aq) + 3\overline{e}] \times 2$ At cathode : Ni²⁺(aq) + 2e⁻ $\longrightarrow \text{Ni}(s)$]×3 $2\text{Al (s) + 3Ni²⁺ (aq) } \longrightarrow 2\text{Al}^{3+}(aq) + \text{Ni}(s)$ $E_{cell} = E_{cell}^{0} - \frac{0.0591}{n} \log \frac{\left[\text{Al}^{3+}\right]^{2}}{\left[\text{Ni}^{2+}\right]^{3}}$

Here, n = 6, [Al³⁺] = 0.001 M = 1 × 10⁻³ M, [Ni²⁺] = 0.5M

 $E_{cell}^{o} = 1.41 V$

 $E_{cell}^{o} = 1.41V - \frac{0.0591}{6} \log \frac{(10^{-3})^2}{(0.5)^3} = 1.41 - \frac{0.0591}{6} \log \frac{10^{-6}}{0.125}$

 $= 1.41 - \frac{0.0591}{6} \log \left(10^{-6} \times 8 \right) = 1.41 - \frac{0.0591}{6} \left(\log 10^{-6} + \log 2^3 \right)$

 $= 1.41 - \frac{0.0591}{6} \left(-6 \log 10 + 3 \log 2 \right) = 1.41 - \frac{0.0591}{6} \left(-6 + 3 \times 0.3010 \right)$

$$= 1.41 - \frac{0.0591}{6} \left(-5.097\right) = 1.41 + \frac{0.3012}{6}$$

=
$$1.41 + 0.0502 = 1.4602V$$

E_{cell} = $1.46 V$

Example-27

- (a) What type of a cell is the lead storage battery ? Write the anode and the cathode reactions and the overall reaction occurring in a lead storage battery while operating.
- (b) A voltaic cell is set up at 25°C with the half-cells Al | Al³⁺ (0.001 M) and Ni | Ni²⁺ (0.50 M). Write the equation for the reaction that occurs when the cell genrates an electric current and determine the cell potential.

(Given : $E^{\circ}_{Ni^{2+}|Ni} = -0.25 V$, $E^{\circ}_{Ai^{3+}|Ai} = -1.66 V$).

The cell reactions when the battery is in use are given below

At anode: $Pb(s) + SO_4^{2-}(aq) \longrightarrow PbSO_4(s) + 2e^{-1}$

At cathode:
$$PbO_{2}(s) + SO_{4}^{2-}(aq) + 4H^{+}(aq) + 2e^{-}$$

$$\longrightarrow PbSO_4(s) + 2H_2O(\ell)$$

Overall cell reaction: $Pb(s) + 2H_2SO_4(aq) \longrightarrow$

$$PbSO_4(s) + 2H_2O(\ell)$$

(b) $2Al(s) + 3Ni^{+2}(aq) \rightarrow 3Ni(s) + 2Al^{+3}(aq)$

$$E_{cell}^{o} = 1.41 V$$

$$E_{cell} = 1.41 - \frac{0.0591}{6} \log \left[\frac{(10^{-3})^2}{(0.5)^3} \right]$$

=1.46 V

Example-28

- (a) Express the relationship amongst cell constant, resistance of the solution in the cell and conductivity of the solution. How is molar conductivity of a solute related to conductivity of its solution.
- (b) Calculate the equilibrium constant for the reaction.

$$\operatorname{Fe}(s) + \operatorname{Cd}^{2+}(aq) \rightleftharpoons \operatorname{Fe}^{2+}(aq) + \operatorname{Cd}(s)$$

(Given :
$$E^{\circ}_{Cd^{2+}|Cd} = -0.40 V$$
, $E^{\circ}_{Fe^{2+}|Fe} - 0.44 V$).

Sol. (a) Conductivity
$$(\kappa) = \frac{1}{\text{Resistance } (R)} \times \text{Cell constant}(G)$$

 $\Lambda_{m} = \frac{\kappa \times 1000}{M}, \text{ where, } \Lambda_{m} = \text{Molar conductivity}$ (b) Fe(s) + Cd²⁺ (aq) \Longrightarrow Fe²⁺ (aq) + Cd(s) $\log k_{c} = n \frac{E_{cell}^{o}}{0.059}$ Here, n=2 $E_{cell}^{o} = E_{cathode}^{o} + E_{anode}^{o}$ $= E_{Cd^{2+}/Cd}^{o} + E_{Fe/Fe^{+2}}^{o}$ = -0.4 + 0.44 $E_{cell}^{o} = 0.04 \text{ V}$ $\log k_{c} = \frac{2 \times 0.04}{0.059} = \frac{0.08}{0.059}$ $\log k_{c} = 1.3536$ $k_{c} = \text{Antilog } 1.3536$ $k_{c} = 22.57$

Example-29

- (a) Define the term molar conductivity. How is it related to conductivity of the related solution?
- (b) One half-cell in a voltaic cell is constructed from a silver wire dipped in silver nitrate solution of unknown concentration. Its other half-cell consists of zinc electrode dipping in 1.0 M solution of $Zn(NO_3)_2$. A voltage of 1.48 V is measured for this cell. Use this information to calculate the concentration of silver nitrate solution used.

$$(E_{Zn^{2+}/Zn}^{o} = -0.76 \text{ V}, E_{Ag^{2+}/Ag}^{o} = +0.80 \text{ V})$$

Sol.

(a) Molar conductivity (Λ_m) : It may be defined as the conductivity of one molar electrolytic solution placed between two electrodes one centimetre apart and have enough area of cross section to hold entire volume.

$$\Lambda_{\rm m} = \frac{1}{2}$$

where, $\kappa =$ Conductivity

 $c = Concentration of solution in mol L^{-1}$

(b) At anode :
$$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$$

At cathode :
$$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s) > 2$$

 $Zn(s) + 2Ag^{+}(aq) \longrightarrow Zn^{2+} + 2Ag(s)$
 $E_{cell} = E_{cell}^{\circ} - \frac{0.0591}{n} \log \frac{[Zn^{2+}]}{[Ag^{+}]^{2}}$
Here, $n = 2$, $[Zn^{2+}] = 1$ M
 $E_{cell}^{\circ} = E_{Ag^{+}/Ag}^{\circ} + E_{Zn/Zn^{+2}}^{\circ} = 0.80V + 0.76V$
 $E_{cell}^{\circ} = 1.56 V$
 $1.48 = 1.56 - \frac{0.0591}{2} \log \frac{1}{[Ag^{+}]^{2}}$
 $-0.08 = -\frac{0.0591}{2} \log \frac{1}{[Ag^{+}]^{2}}$
 $\log \frac{1}{[Ag^{+}]^{2}} = \frac{0.16}{0.0591} = 2.7072 = 2.7072$
 $\log 1 - \log [Ag^{+}]^{2} = 2.7072$
 $\log [Ag^{+}] = 2.7072$
 $\log [Ag^{+}] = -1.3536 = \overline{2}.6464$
 $[Ag^{+}] = Anti \log (\overline{2}.6464) = 4.43 \times 10^{-2}M$
 $[Ag^{+}] = 0.044 M$

Example-30

- (a) Corrosion is essentially an electrochemical phenomenon. Explain the reactions occurring during corrosion of iron kept in an open atmosphere.
- (b) Calculate the equilibrium constant for the equilibrium reaction.

$$\operatorname{Fe}(s) + \operatorname{Cd}^{2+}(\operatorname{aq}) \longrightarrow \operatorname{Fe}^{2+}(\operatorname{aq}) + \operatorname{Cd}(s)$$

(Given :
$$E^{o}_{Cd^{2+}/Cd} = -0.40 V$$
, $E^{o}_{Fe^{2+}/Fe} = -0.44 V$)

Sol. (a) At anode : Oxidation of Fe atoms takes place

$$Fe \longrightarrow Fe^{2+} + 2e^{-} \quad E^{\circ}_{Fe^{2+}/Fe} = -0.44 V$$

At cathode : Reduction of oxygenin the presence of H^+ ions. The H^+ ions are produced by either H_2O or H_2CO_3 (formed by dissolution of CO_2 in moisture)

Mahesh Tutorials Science -

$$2H^{+}(aq) + 2e^{-} \longrightarrow 2H$$
$$2H + \frac{1}{2}O_{2}(g) \longrightarrow H_{2}O$$

Net reaction at cathodic area

$$2\mathrm{H}^{+}(\mathrm{aq}) + \frac{1}{2}\mathrm{O}_{2} + 2\mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}\mathrm{O}$$

 $E^{o}_{H^{+}/O_{2}/H_{2}O} = 1.23 V$

The overall reaction

$$Fe(s) + 2H^{+}(aq) + \frac{1}{2}O_{2}(g) \longrightarrow Fe^{2+}(aq) + H_{2}O(\ell)$$
$$E^{o}_{cell} = 1.67 V$$

The ferrous ions are further oxidised by atmospheric oxygen to ferric ions which come out as rust in the form of hydrated ferric oxide (Fe₂O₃. xH_2O).

(b)
$$\operatorname{Fe}(s) + \operatorname{Cd}^{2+}(aq) \Longrightarrow \operatorname{Fe}^{2+}(aq) + \operatorname{Cd}(s)$$

$$\log k_{c} = n \frac{E^{\circ} cell}{0.059}$$

Here, n = 2

$$E^{o}_{cell} = E^{o}_{cathode} - E^{o}_{anode}$$

$$= E^{o}_{Cd^{2+}/Cd} - E^{o}_{Fe^{2+}/Fe} = -40 - (-0.44)$$

 $E_{cell}^{o} = 0.04V$

 $\log k_{c} = \frac{2 \times 0.04}{0.059} = \frac{0.08}{0.059}$

 $\log k_{c} = 1.3536$

 $k_{c} = Antilog 1.3536$ k = 22.57

$$k_{c} = 22.57$$

Example-31

Two half cell reactions of an electrochemical cell are given below :

$$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2-}$$

 $(aq) + 4H_2O(\ell), E^\circ = 1.51V$

 $Sn^{2+}(aq) \rightarrow Sn^{4+}(aq) + 2e^{-}, E^{\circ} = +0.15 V$

Construct the redox equation from the two half cell reactions and predict if this reaction favours formation of reactants or product shown in the quation

Sol. At cathode : $MnO_4^-(aq) + 8H^+ + 5e^- \longrightarrow Mn^{2+}$

$$(aq) + 4H_2O(\ell) \ge 2$$
 $E^\circ = +1.15V$

At anode: $\text{Sn}^{2+} \longrightarrow \text{Sn}^{4+} (aq) + 2e^{-}] \times 5 E^{\circ} = + 0.15 V$

Overall reaction :

$$2MnO_{4}^{-}(aq) + 5Sn^{2+}(aq) + 16H^{+}(aq) \longrightarrow 2Mn^{2+}$$

$$(aq) + 5Sn^{4}(aq) + 8H_{2}O(\ell)$$

$$\begin{split} E^{\circ}_{Sn^{4+}/Sn^{2+}} &= -E^{\circ}_{Sn^{2+}/Sn^{4+}} = -0.15V \\ E^{\circ}_{cell} &= E^{\circ}_{cathode} - E^{\circ}_{anode} = E^{\circ}_{MnO^{-}_{4}/Mn^{2+}} - E^{\circ}_{Sn^{4+}/Sn^{2+}} \\ &= 1.51 - (-0.15) \\ E^{\circ}_{cell} &= 1.66 V \end{split}$$

As E_{cell}^{o} is +ve therefore the reaction will take place in forward direction, i.e., favours the formation of products.

Example-32

- (a) Account for the following
 - (i) Alkaline medium inhibits the rusting of iron
 - (ii) Iron does not rust even if the zinc coating is broken in a galvanized iron pipe.

(b)
$$Cu^{2+} + 2e^{-} \rightarrow Cu$$
; $E^{\circ} = +0.34 V$

 $Ag^+ + e^- \rightarrow Ag; E^\circ = +0.80 V$

(i) Construct a galvanic cell using the above data.

(ii) For what concentration of Ag^+ ions will the emf of the cell be zero at 25°C, if the concentration of Cu^{2+} is 0.01 M? [log 3.919 = 0.593]

Sol. (a) (i) The alkalinity of the solution prevents the availability of H⁺ ions.

(ii) Zinc is more electropositive than iron. Therefore, zinc coating acts anode and the exposed iron portions act as cathode. If zinc coating is broken, zinc undergoes corrosion, protecting iron from rusting. No attack occurs on iron till all the zinc is corroded.

(b) At anode
$$Cu \rightarrow Cu^{2+} + 2e^{-}$$

At cathode $[Ag^+ + e^- \rightarrow Ag] \times 2$

$$Cu + 2 Ag^+ \rightarrow Cu^{2+} + 2Ag$$

Cell representation

$$Cu \,|\, Cu^{2\scriptscriptstyle +} \, (conc.) \,\|\, Ag^{\scriptscriptstyle +} \, (conc.) \,|\, Ag$$

$$E_{cell} = E_{cell}^{o} - \frac{0.059}{n} \log \frac{\left[Cu^{+2}\right]}{\left[Ag^{+}\right]^{2}}$$

$$O = (0.80 - 0.34) - \frac{0.059}{2} \log \left[\frac{0.01}{x^2} \right]$$

$$15.59 = \log\left(\frac{100}{x^2}\right)$$

$$x = 1.597 \times 10^{-9} M$$

$$[Ag^+] = 1.597 \times 10^{-9}M$$

Example-33

- (a) State advantages of H_2 - O_2 fuel cell over ordinary cell.
- (b) Silver is electrodeposited on a metallic vessel of total surface area 500 cm² by passing a current of 0.5 amp for two hours. Calculate the thickness of silver deposited.

[Given: Density of silver = 10.5 g cm^{-3} , Atomic mass of silver = 108 amu, F = $9,500 \text{ C mol}^{-1}$]

Sol. (a) Advantages Fuels Cells:

- 1. It is a pollution-free device since no harmful products are formed.
- 2. This is very efficient cell. Its efficiency is about 75% which is considerably higher than conventional cells.

- 3. These cells are light in weight as compared to electrical generators to produce corresponding quantity of power.
- 4. It is a continuous source of energy if the supply of gases is maintained.

(b) Mass of silver deposited

m = z1t.

$$= \frac{108}{96500} \times 0.5 \times 2 \times 3600$$
m = 4.029 g

$$d = \frac{m}{v} \Rightarrow v = \frac{m}{d}$$

$$V = \frac{4.029}{10.5} = 0.3837 \text{ cm}^{3}$$

Let the thickness of silver deposited be x cm.

$$\therefore \qquad V = A \times x$$

$$\implies \qquad x = \frac{V}{A}$$

$$x = \frac{0.3837}{500}$$

$$\therefore \qquad x = 7.67 \times 10^{-4} \text{ cm.}$$

Example-34

(a) Give reasons for the following:

- (i) Rusting of iron is quicker in saline water than in ordinary water.
- (ii) Resistance of a conductivity cell filled with 0.1 M KCl solution is 100 ohm.If the resistance of the same cell when filled with 0.02 M KCl solution is 520 ohms, calculate the conductivity and molar conductivity of 0.02 M KCl solution.

(Conductivity of 0.1 M KCl solution is 1.29 Sm^{-1}).

- **Sol.** (a) (i) It is because in saline water, there is more H⁺ ions. Greater the number of H⁺ ions, quicker the rusting.
 - (ii) Due to higher reduction potential of hydrogen we get hydrogen at cathode.

(b)
$$\kappa = \frac{1}{R} \times \text{ cell constant}$$

 $\Rightarrow \text{ cell constant} = \kappa \times R$

 $= 1.29 \text{ Sm}^{-1} \times 100 \text{ ohm}$

 $= 129 \text{ m}^{-1} = 1.29 \text{ cm}^{-1}$

For second solution

$$\kappa = \frac{1}{R} \times \text{ cell constant}$$

$$\kappa = \frac{1}{520} \times 1.29 = 2.48 \times 10^{-3} \text{ S cm}^{-1}$$

$$\Lambda_{m} = \frac{\kappa \times 1000}{M}$$

$$= \frac{2.48 \times 10^{-3} \times 1000}{0.02} = \frac{248}{2}$$

$$\Lambda_{m} = 124 \text{ S cm}^{2} \text{ mol}^{-1}$$

Example-35

(a) Explain why electrolysis of aqueous solution of NaCl gives H₂ at cathode and Cl₂ at anode. Write overall reaction.

($E^{o}_{Na^{+}/Na}$ = -2.71 V; $E^{o}_{\rm H_{2}O/H_{2}}$ = -0.83 V, $E^{o}_{\rm Cl_{2}/2Cl^{-}}$ =

+1.36 V;
$$E_{H^++O_2/H_2O}^{o}$$
 =1.23 V)

(b) Calculate the emf of the cell of $Zn / Zn^{2+}(0.1 \text{ M}) \parallel Cd^{2+}(0.01 \text{ M}) / Cd$ at 298 K,

[Given
$$E^o_{Zn^{2+}/Zn} = -0.76 V$$
 and $E^o_{Cd^{2+}/Cd} = -0.40 V$]

Sol. (a) Because of higher reduction potential of water, water is reduced in preference to sodium at therefore instea of deposition of sodium metal, hydrogen is discharged at cathode.

 $H_{2}O(\ell) + 2e^{-} \longrightarrow H_{2}(g) + 2OH^{-}$ $2CI^{-} \longrightarrow CI_{2}(g)$

$$\mathrm{H_{2}O}(\ell) + 2\mathrm{Cl^{-}} \longrightarrow \mathrm{H_{2}}(g) + \mathrm{Cl_{2}}(g) + 2\mathrm{OH^{-}}$$

At anode Cl_2 gas is liberated because of overpotential of oxygen.

(b)
$$Zn \longrightarrow Zn^{2+} + 2e^{-}$$
 Half cell reactions

 $Zn + Cd^{2+} \rightarrow Zn^{2+} + Cd$ } cell reaction

$$E_{cell}^{o} = E_{cathode}^{o} + E_{anode}^{o}$$
$$= 0.76 - 0.40 = 0.36 V$$
$$E = E_{cell}^{o} - \frac{0.0591}{n} \log Q$$
$$= 0.36 - \frac{0.0591}{2} \log \left[\frac{Zn^{+2}}{Cd^{+2}} \right]$$
$$= 0.36 - \frac{0.0591}{2} \log \left[\frac{0.1}{0.01} \right] = 0.33 V$$

Example-36

Three iron sheets have been coated separately with three metals A, B and C whose standards reduction potentials are given below.

metal A B C iron

Identify in which case rusting will take place faster when coating is damaged.

Sol. As iron (-0.44V) has lower standard reduction potential than C (-0.20V) only therefore when coating is broken, rusting will take place faster.

Mahesh Tutorials Science -

Mahesh Tutorials Science -

ELECTROCHEMISTRY

EXERCISE - 1 : BASIC OBJECTIVE QUESTIONS

Basics of electrochemical Cell

- 1. Which of the following has been universally accepted as a reference electrode at all temperatures and has been assigned a value of zero volt ?
 - (a) platinum electrode (b) copper electrode
 - (c) graphite electrode (d) standard hydrogen electrode
- 2. The reaction $1/2H_2(g) + AgCl(s) = H^+(aq) + Cl^-(aq) + Ag(s)$ occurs in the galvanic cell :
 - $(a) Ag |AgCl(s)| KCl(sol.) ||AgNO_3) (sol.) |Ag$
 - (b) Pt | H₂(g) | HCl(sol. ||AgNO₃ (sol) |Ag
 - $(c) Pt \,|\, H_2(g) \,|\, HCl \,(sol.) \,\|\, AgCl(s) \,|\, Ag$
 - (d) $Pt | H_2(g) | KCl (sol.) || AgCl(s) | Ag$
- **3.** The equation representing the process by which standard reduction potential of zinc can be defined is :

(a)
$$Zn^{2^+}(s) + 2e^- \longrightarrow Zn$$

(b) $Zn(g) \longrightarrow Zn^{2^+}(g) + 2e^-$
(c) $Zn^{2^+}(g) + 2e^- \longrightarrow Zn$
(d) $Zn^{2^+}(aq.) + 2e^- \longrightarrow Zn$

4. Which of the following statement is wrong about galvanic cell?

(s)

- (a) cathode is positive charged
- (b) anode is negatively charged
- (c) reduction takes place at the anode
- (d) reduction takes place at the cathode
- 5. Which are used as secondary reference electrodes ?
 - (a) Calomel electrode (b) Ag/AgCl electrode
 - (c) $Hg/Hg_2Cl_2 KCl$ electrode
 - (d) All of the above

Applications of Electrochemical Series

6. The standard electrode potentials (reduction) of Pt/Fe³⁺, Fe²⁺ and Pt/Sn⁴⁺, Sn²⁺ are + 0.77 V and 0.15 V respectively at 25°C. The standard EMF of the reaction $Sn^{4+} + 2Fe^{2+} \longrightarrow Sn^{2+} + 2Fe^{3+}$ is (a) -0.62 V (b) -0.92 V

(c) + 0.31 V	(d) + 0.85 V

- 7. Adding powdered Pb and Fe to a solution containing 1.0 M is each of Pb^{2+} and Fe^{2+} ions would result into the formation of $(E^{\circ} Pb^{+2}/Pb = -0.13V, E^{\circ} Fe^{+2}/Fe = -0.44V)$ (a) More of Pb and Fe^{2+} ions (b) More of Fe and Pb^{2+} ions (d) More of Fe^{2+} and Pb^{2+} ions (c) More of Fe and Pb 8. Strongest reducing agent is : (a) K (b) Mg (c)Al (d) I 9. Zn can not displace following ions from their aqueous solution : (b) Cu^{2+} (a) Ag^+ (c) Fe^{2+} $(d) Na^+$ Which of the following displacement does not occur : 10. (a) $Zn + 2H^+ \rightarrow Zn^{2+} + H_2 \uparrow$ (b) $Fe + 2Ag^+ \rightarrow Fe^{2+} + Ag \downarrow$ (c) $Cu + Fe^{2+} \rightarrow Cu^{2+} + Fe \downarrow$ (d) $Zn + Pb^{2+} \rightarrow Zn^{2+} + Pb \downarrow$ 11. The oxidation potential of Zn, Cu, Ag, H, and Ni are 0.76, -0.34, -0.80, 0, 0.55 volt respectively. Which of the following reaction will provide maximum voltage? (a) $Zn + Cu^{2+} \longrightarrow Cu + Zn^{2+}$ (b) $Zn + 2Ag^+ \longrightarrow 2Ag + Zn^{2+}$ (c) $H_2 + Cu^{2+} \longrightarrow 2H^+ + Cu$ (d) $H_2 + Ni^{2+} \longrightarrow 2H^+ + Ni$
- 12. The position of some metals in the electrochemical series in decreasing electropositive character is given as Mg > Al > Zn > Cu > Ag. What will happen if a copper spoon is used to stir a solution of aluminium nitrate ?
 - (a) The spoon will get coated with aluminium
 - (b) An alloy of copper and aluminium is formed
 - (c) The solution becomes blue
 - (d) There is no reaction

ELECTROCHEMIS 286

13. The standard reduction electrode potential values of the element A, B and C are + 0.68, -2.50, and -0.50 V respectively. The order of their reducing power is :

(a)A>B>C	(b)A>C>B
(c) $C > B > A$	(d) $B > C > A$

14. A metal having negative reduction potential when dipped in the solution of its own ions, has a tendency :

(a) to pass into the solution

(b) to be deposited from the solution

(c) to become electrically positive

(d) to remain neutral

15. E° for the half cell reactions are as,

(a) $Zn = Zn^{2+} + 2e$; $E^{\circ} = +0.76$ V

(b)
$$Fe = Fe^{2^+} + 2e$$
; $E^\circ = +0.41 V$

The E° for half cell reaction,

$Fe^{2+} + Zn \longrightarrow Z$	$2n^{2+}$ + Fe is :
(a)-0.35 V	(b)+0.35 V
(c) + 1.17 V	(d)-0.17 V

16. An aqueous solution containing 1 M each of Au³⁺, Cu²⁺, Ag⁺, Li⁺ is being electrolysed by using inert electrodes. The value of standard potentials are :

 $E^{\circ}_{_{Ag^{+}/Ag}} = 0.80 \text{ V}, \ E^{\circ}_{_{Cu^{+}/Cu}} = 0.34 \text{ V} \text{ and } E^{\circ}_{_{Au^{3+}/Au}} = 1.50 \text{ V},$ $E^{\circ}_{_{Li^{+}/Li}} = -3.03 \text{ V}$

with increasing voltage, the sequence of deposition of metals on the cathode will be :

(a) Li, Cu, Ag, Au	(b) Cu, Ag, Au
(c) Au, Ag, Cu	(d) Au, Ag, Cu, Li

17. The standard electrode potential for the reaction

 $Ag^+(aq) + e^- \longrightarrow Ag(s)$

 $\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \longrightarrow \operatorname{Sn}(s)$

at 25 °C are 0.80 volt and -0.14 volt, respectively. The emf of the cell.

 $Sn | Sn^{2+}(1 M) | | Ag^{+}(1M) | Ag is$

(a) 0.66 volt	(b) 0.80 volt
(c) 1.08 volt	(d) 0.94 volt

Relationship between emf and gibb's free energy change

18. The standard free energy change for the following reaction is - 210 kJ. What is the standard cell potential ?

$2H_2O_2(aq) \longrightarrow 2$	$2H_2O(l) + O_2(g)$
(a)+0.752	(b)+1.09
(c) + 0.420	(d) + 0.640

- **19.** Calculate the standard free energy change for the reaction,
 $2 \operatorname{Ag} + 2\operatorname{H}^+ \rightarrow \operatorname{H}_2 + 2 \operatorname{Ag}^+$,
 E° for $\operatorname{Ag}^+ + e^- \rightarrow \operatorname{Ag}$ is 0.80 V
(a) + 154.4 kJ(b) + 308.8 kJ
(c) -154.4 kJ(d) -308.8 kJ**20.** The standard EMF of Daniell cell is 1.10 volt. The maximum
electrical work obtained from the Daniell cell is
(a) 212.3 kJ
(b) 175.4 kJ
(c) 106.15 kJ(d) 53.07 kJ
- 21. What is the free energy change for the half reaction $Li^+ + e^- \rightarrow Li?$

Given $E^{\circ}_{Li^+/Li} = -3.0V$, F = 96500 C mol⁻¹ and T = 298 K.

(a) 289.5 kJ mol ^{-1}	(b) -298.5 kJ mol ⁻¹
(c) $32.166 \mathrm{CV}^{-1} \mathrm{mol}^{-1}$	(d) $-289500 \text{CV} \text{mol}^{-1}$

22. The emf of Daniell cell is 1.1 volt. If the value of Faraday is 96500 coulombs per mole, the change in free energy in kJ is (a) 212.30 (b) -212.30 (c) 106.15 (d) -106.15

Nernst Equation

23. Which of the following represents the potential of silver wire dipped in to 0.1 M AgNO₃ solution at 25°C?

(a) E°_{red}	(b) $(E_{red}^{\circ} + 0.059)$
(c) $(E^{\circ}_{\alpha} - 0.059)$	$(d)(E^{\circ}_{rad} - 0.059)$

24. Consider the cell $\frac{H_2(Pt)}{1 \text{ atm}} \begin{vmatrix} H_3O^+(aq) \\ PH=5.5 \end{vmatrix} \begin{vmatrix} Ag^+ \\ xM \end{vmatrix}$ Ag. The measured

EMF of the cell is 1.023 V. What is the value of x?

$$E^{0}_{Ag^{+},Ag} = +0.799 V [T=25^{\circ}C]$$

(a) $2 \times 10^{-2} M$ (b) $2 \times 10^{-3} M$

(c)
$$1.5 \times 10^{-3}$$
 M (d) 1.5×10^{-2} M

- Lakshya Educare

25. The emf of the cell

The emf of this cell will be increased by :

(a) Increase the concentration of $Cu^{^{++}}$ ions

(b) Decreasing the concentration of Ti^+

(c) Increasing the concentration of both

(d) (a) and (b) both

26. Co $|Co^{2+}(C_2)||Co^{2+}(C_1)|$ Co for this cell, ΔG is negative if:

(a) $C_2 > C_1$	(b) $C_1 > C_2$
(c) $C_1 = C_2$	(d) unpredictable

27. What will be the emf for the given cell ?

 $Pt | H_{2}(g, P_{1}) | H^{+}(aq) || H_{2}(g, P_{2}) | Pt$

(a)
$$\frac{RT}{F} \ln \frac{P_1}{P_2}$$
 (b) $\frac{RT}{2F} \ln \frac{P_1}{P_2}$
(c) $\frac{RT}{2F} \ln \frac{P_2}{P_1}$ (d) None of these

28. If the pressure of hydrogen gas is increased from 1 atm. to 100 atm., keeping the hydrogen ion concentration constant at 1 M, the voltage of the hydrogen half-cell is at 25°C will be

(a) 0.059 V	(b)-0.059 V	
(c) 0.295 V	(d) 0.118 V.	

29. The EMF of the cell

 $Mg \mid Mg^{^{2+}}\left(0.01\ M\right) \mid \left|Sn^{^{2+}}\left(0.1M\right)\right|$ Sn at 298 K is (Given

 $E^{\circ}_{Mg^{2+},Mg} = -2.34 \text{ V}, E^{\circ}_{Sn^{2+},Sn} = -0.14 \text{ V}$) (a) 2.17 V (b) 2.23 V

	· · /
(c) 2.51 V	(d) 2.45 V

30. The potential of the cell containing two hydrogen electrodes as represented below

Pt, $H_2(g) | H^+(10^{-6} M) | |H^+(10^{-4} M)| H_2(g)$, Pt at 298 K is (a) -0.118 V (b) -0.0591 V (c) 0.118 V (d) 0.0591 V

31. The emf of the cell $H_2(1 \text{ atm}) Pt | H^+(a = x) | | H^+(a = 1) | H_2(1 \text{ atm}) Pt at 25°C is 0.59 V. The pH of the solution is$

)4

(c) 7 (d) 10

32. The hydrogen electrode is dipped in a solution of pH = 3 at 25°C. The potential of the cell would be (the value of 2.303 RT/F is 0.059 V)

(a) 0.177 V	(b) 0.087 V	
(c)-0.177 V	(d) 0.059 V	

Relating half cell potential using dG

33. When two half-cells of electrode potential of E_1 and E_2 are combined to form a cell of electrode potential E_3 , then (when n_1 , n_2 and n_3 are no. of electrons exchanged in first, second and combined half-cells) :

(a)
$$E_3 = E_2 - E_1$$
 (b) $E_3 = \frac{E_1 n_1 + E_2 n_2}{n_2}$

(c)
$$E_3 = \frac{E_1 n_1 - E_2 n_2}{n_3^2}$$
 (d) $E_3 = E_1 + E_2$

34. If $E^{\circ}_{Au^{+}/Au}$ is 1.69 V and $E^{\circ}_{Au^{3+}/Au}$ is 1.40 V, then $E^{\circ}_{Au^{+}/Au^{3+}}$

(a) 0.19 V	(b) 2.945 V
(c) 1.255 V	(d) None of these

Electroytic cell

35. Which reaction occur at cathode during electrolysis is fused lead bromide ?

(a) Pb \longrightarrow Pb²⁺ + 2e⁻ (b) Br + e⁻ \longrightarrow Br⁻

(c) $Br^- \longrightarrow Br + e^-$ (d) $Pb^{2+} + 2e^- \longrightarrow Pb$

36. By the electrolysis of aqueous solution of $CuSO_4$, the products obtained at both the electrodes are

(a) O_2 at anode and H_2 at cathode

(b) H_2 at anode and Cu at cathode

(c) O_2 at anode and Cu at cathode

(d) $H_2S_2O_8$ at anode and O_2 at cathode

- **37.** During the electrolysis of fused NaCl, the reaction that occurs at the anode is :
 - (a) Chloride ions are oxidized
 - (b) Chloride ions are reduced
 - (c) Sodium ions are oxidized
 - (d) Sodium ions are reduced

38.	In electroplating the article to be electroplated is made :		46.	When the same electric current is passed through the	
	(a) cathode	(b) anode		solution of different elecrolytes in series the amounts of	
	(c) either cathode or anode			elements deposited on th	e electrodes are in the ratio of their:
	(d) simply suspended in the electrolytic bath.			(a) atomic number	(b) atomic masses
39.	On electrolysing a solution of dilute $\rm H_2SO_4$ between platinum			(c) specific gravities	(d) equivalent masses
	(a) SO ₂ (b) SO ₂		47.	13.5 g of Al get deposited the solution of $AlCl_3$. The	d when electricity is passed through ne number of faradays used are :
	$(c) O_2$	(d) H ₂ .		(a) 0.50	(b) 1.00
40.	A spoon to be electroplat	ed with gold should be :		(c) 1.50	(d) 2.00
	(a) cathode (b) anode		48.	The ratio of weights of hydrogen and magnesium deposited	
	(c) electrolyte	(d) none of these		by the same amount of electricity from aqueous H_2SO_4 and fused $MgSO_4$ are :	
Fara	aday's Laws			(a) 1 : 8	(b) 1 : 12
41.	Three faradays of electric	ity was passed through an aqueous		(c) 1 : 16	(d) None of these
	solution of iron (II) bromide. The mass of iron metal (at. mass 56) deposited at the cathode is -		49.	A current of 2 ampere was passed through solutions of CuSO and AgNO in series 0.635 g of copper was deposited	
	(a) 56 g	(b) 84 g		Then the weight of silve	r deposited will be :
	(c) 112 g	(d) 168 g		(a) 0.59 g	(b) 3.24 g
42.	The electric charge for electrode deposition of one gram			(c) 1.08 g	(d) 2.16 g
	(a) one amp/sec	(b) 96,500 C/sec	50.	An ion is reduced to the electrons. The number of	e element when it absorbs 6×10^{20} of equivalents of the ion is :
	(c) one amp/hour	(d) 96,500 C		(a) 0.10	(b) 0.01
43.	Number of electrons inv 63.5 g of Cu from a soluti	olved in the electrodeposition of on of $CuSO_4$ is :	51.	(c) 0.001	(d) 0.0001
	(a) 6.022×10^{23}	(b) 3.011×10^{23}		Electrolysis can be use current of 0.550 A depos	d to determine atomic masses. A sits 0.55 g of a certain metal in 100
	(c) 12.044×10^{23}	(d) 6.022×10^{22}		(.) 100	tomic mass of the metal if $n = 3$.
44.	When one coulomb of electricity is passed through an electrolytic solution the mass deposited on the electrode is			(a) 100	(D) 45.0 (J) 144 75
				(c) 48.25	(d) 144.75
	equal to : (a) equivalent weight	(b) molecular weight	52.	How many minutes will r a $Cr_2(SO_4)_3$ solution using weight : $Cr = 52.0$	ng a current of 1.50 A? (Atomic
	(c) electrochemical equiv	alent		(a) 254	(b) 20
	(d) one gram			(a) 254	(d) 50 (d) 102
45.	W g of copper deposited in a copper voltameter when an		52	(c) 152	(d) 103
	electric current of 2 ampere is passed for 2 hours. If one ampere of electric current is passed for 4 hours in the same voltameter copper deposited will be		55.	for 40 min produces 0.838 g of tungsten. What is the charge of tungsten in the material ? (Atomic weight : $W = 184$)	
	(a) W (b) $W/2$			(a) 6	(b) 2
	(a) W/A	(d) 2W		(c) 4	(d) 1
	(c) w/4 (u) 2 w				

54. When molten lithium chloride (LiCl) is electrolyzed, lithium metal is formed at the cathode. If current efficiency is 75% then how many grams of lithium are liberated when 1930 C of charge pass through the cell : (Atomic weight : Li = 7)

(a) 0.105	(b) 0.120	
(c) 0.28	(d) 0.240	

55. The weight ratio of Al and Ag deposited using the same quantity of current is :

(a) 9 : 108	(b) 2 : 12
(c) 108:9	(d) 3 : 8

56. The weight of silver (eq. wt. = 108) displaced by that quantity of current which displaced 5600 mL of hydrogen at STP is :

(a) 54 g	(b) 108 g
(c) 5.4 g	(d) None of these

57. A current of 9.65 ampere is passed through the aqueous solution NaCl using suitable electrodes for 1000 s. The amount of NaOH formed during electrolysis is

(a) 2.0 g	(b) 4.0 g
(c) 6.0 g	(d) 8.0 g

58. How many electrons are delivered at the cathode during electrolysis by a current of 1A in 60 seconds ?

(a) 3.74×10^{20}	(b) 6.0×10^{23}
(c) 7.48×10^{21}	(d) 6.0×10^{20}

59. The moles of electrons required to deposit 1 gm equivalent aluminium (at. wt. = 27) from a solution of aluminium chloride will be

(a) 3	(b) 1
(c) 4	(d) 2

60. Time required to deposit one millimole of aluminium metal by the passage of 9.65 amperes through aqueous solution of aluminium ion is :

(a) 30 s	(b) 10 s

61. How many coulomb of electricity are consumed when 100 mA current is passed through a solution of AgNO₃ for 30 minute during an electrolysis experiment.

(a) 108	(b) 18000

(c) 180	(d) 3000
---------	----------

62. A current of 9.65 amp. flowing for 10 minute deposits 3.0 g of a metal. The equivalent wt. of the metal is :

(a) 10	(b) 30
(c) 50	(d) 96.5

63. 108 g fairly concentrate solution of $AgNO_3$ is electrolyzed using 0.1 F of electricity. The weight or resulting solution is:

(a) 94 g	(b) 11.6 g
(c) 96.4 g	(d) None

Batteries, Fuel Cells and Corrosion

64. When a lead storage battery is discharged

(a) $PbSO_4$ is formed	(b) Pb is formed
(c) SO_2 is consumed	(d) H_2SO_4 is formed

65. A fuel cell is :

(a) The voltaic cells in which continuous supply of fuels are send at anode to give oxidation

(b) The votalic cell in which fuels such as : CH_4 , H_2 , CO are used up at anode

(c) It involves the reactions of $H_2 - O_2$ fuel cell such as :

Anode: $2H_2 + 4OH^- \longrightarrow 4H_2O(l) + 4e$

Cathode: $O_2 + 2H_2O(l) + 4e \longrightarrow 4OH^2$

(d) All of the above

- 66. Reaction that takes place at anode in dry cell is (a) $Zn^{2+} + 2e^- \rightarrow Zn(s)$ (b) $Zn(s) \rightarrow Zn^{2+} + 2e^-$ (c) $Mn^{2+} + 2e^- \rightarrow Mn(s)$ (d) $Mn(s) \rightarrow Mn^+ + e^- + 1.5$ V.
- 67. As lead storage battery is charged
 - (a) lead dioxide dissolves
 - (b) sulphuric acid is regenerated
 - (c) lead electrode becomes coated with lead sulphate
 - (d) the concentration of sulphuric acid decreases.

Conductance of Solutions

68. The specific conductance of a N/10 KCl at 25° C is 0.0112 ohm⁻¹ cm⁻¹. The resistance of cell containing solution at the same temperature was found to be 55 ohms. The cell constant will be

(a) $6.16 \mathrm{cm}^{-1}$	(b) $0.616 \mathrm{cm}^{-1}$
(c) $0.0616 \mathrm{cm}^{-1}$	(d) $616 \mathrm{cm}^{-1}$

69.	The specific conductance of a salt of 0.01 M concentration
	is 1.061×10^{-4} , molar conductance of the same solution will
	be :

(a) 1.061×10^{-4}	(b) 1.061
(c) 10.61	(d) 106.1

70. Which of the following solutions of NaCl will have the highest specific conductance ?

(a) 0.001 N	(b) 0.1 N
(c) 0.01 N	(d) 1.0 N

71. The molar conductance at infinite dilution of AgNO₃, AgCl and NaCl are 116.5, 121.6 and 110.3 respectively. The molar conductances of NaNO₃ is :

(a) 111.4	(b) 105.2
(c) 130.6	(d) 150.2

72. If x specific resistance (in S^{-1} cm) of the electrolyte solution and y is the molarity of the solution, then \wedge_m (in S cm² mol⁻¹) is given by :

(a) $\frac{1000 \mathrm{x}}{\mathrm{y}}$	(b) $\frac{1000 \mathrm{x}}{\mathrm{y}}$
(c) $\frac{1000}{xy}$	(d) $\frac{xy}{1000}$

73. Resistance of 0.1 M KCl solution in a conductance cell is 300 ohm and conductivity is 0.013 Scm⁻¹. The value of cell constant is :

(a) $3.9 \mathrm{cm}^{-1}$	(b) $39 \mathrm{m}^{-1}$
(c) $3.9 \mathrm{m}^{-1}$	(d) None of these

74. The specific conductance of a saturated solution of silver bromide is k S cm⁻¹. The limiting ionic conductivity of Ag⁺ and Br⁻¹ ions are x and y, respectively. The solubility of silver bromide in gL^{-1} is : (molar mass of AgBr = 188)

(a)
$$\frac{k \times 1000}{x - y}$$
 (b) $\frac{k}{x + y} \times 188$
(c) $\frac{k \times 1000 \times 188}{x + y}$ (d) $\frac{x + y}{k} \times \frac{1000}{188}$

ELECTROCHEMISTRY

- The conductivity of 0.1 N NaOH solution is 0.022 S cm^{-1} . 75. When equal volume of 0.1 N HCl solution is added, the conductivity of resultant solution is decreases to 0.0055 S cm^{-1} . The equivalent conductivity in S cm^2 equivalent⁻¹ of NaCl solution is (a) 0.0055 (b) 0.11 (c)110 (d) none 76. The specific conductivity of a saturated solution of AgCl is 3.40×10^{-6} ohm⁻¹ cm⁻¹ at 25 °C. If $\lambda_{Ao^+} = 62.3$ ohm⁻¹ cm² mol⁻¹ & $\lambda_{c1} = 67.7 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$, the solubility of AgCl at 25°C is : (a) 2.6×10^{-5} M (b) 4.5×10^{-3} M (c) 3.6×10^{-5} M (d) 3.6×10^{-3} M 77. Molar conductance of 0.1 M acetic acid is $7 \text{ ohm}^{-1} \text{ cm}^{2} \text{ mol}^{-1}$. If the molar cond. of acetic acid at infinite dilution is 380.8 $ohm^{-1} cm^2 mol^{-1}$, the value of dissociation constant will be (a) $226 \times 10^{-5} \,\mathrm{mol} \,\mathrm{dm}^{-3}$ (b) $1.66 \times 10^{-3} \,\mathrm{mol} \,\mathrm{dm}^{-1}$ (c) $1.66 \times 10^{-2} \,\mathrm{mol} \,\mathrm{dm}^{-3}$ (d) 3.442×10^{-5} mol dm⁻³ 78. At infinite dilution, the eq. conductances of CH₃COONa, HCl and CH₂COOH are 91, 426 and 391 mho cm² respectively
 - **78.** At infinite dilution, the eq. conductances of CH_3COONa , HCl and CH_3COOH are 91, 426 and 391 mho cm² respectively at 25°C, The eq. conductance of NaCl at infinite dilution will be :

(a) 126	(b) 209
(c) 391	(d) 908

79. The equivalent conductivity of 0.1 N CH₃COOH at 25°C is 80 and at infinite dilution 400. The degree of dissociation of CH₂COOH is

(a) 1	(b) 0.2
(c) 0.1	(d) 0.5

241

Mahesh Tutorials Science -

When electricity is passed 2.7 g Al is deposited on electrode. Calculate the weight of Cu deposited on

Two different electrolytic cells filled with molten $Cu(NO_3)_2$ and molten Al(NO₃)₂ respectively are connected in series.

(a) 190.5 g	(b) 9.525 g
(c) 63.5 g	(d) 31.75 g

cathode. [Cu = 63.5; Al = 27.0 g mol^{-1}]

(TOPIC-1)

ELECTROLYTES AND ELECTROLYTIC CONDUCTANCE

A current is passed through two cells connected in series. The first cell contains $X(NO_3)_3$ (aq) and the second cell contains Y $(NO_3)_2$ (aq). The relative atomic mases of X

and Y are in the ratio 1:2. What is the ratio of liberated

(b) 1:2

(d) 3:1

2010

2011

1.

2.

- 3. An increase in equivalent conductance of a strong electrolyte with dilution is mainly due to [CBSE AIPMT]
 - (a) increase in number of ions.
 - (b) increase in ionic mobility of ions.
 - (c) 100% ionisation of electrolyte at normal dilution.
 - (d) increase in both i.e., number of ions and ionic mobility of ions.
- 4. The compound exhibiting maximum value of equivalent conductance in a fused state is` [AMU]

(b) CaCl ₂

(c) $MgCl_2$	(d) BeC
· · · ·	

5. At 18°C, the conductance of H⁺ and CH₃COO⁻ at infinite dilution are 315 and 35 mho cm² eq⁻¹ respectively. The equivalent conductivity of CH₃COOH at infinite dilution is mho cm² eq⁻¹. [AFMC] (a) 350 (b) 280

(c) 30	(d) 315

How many coulombs are required to depo	osit 50g of
aluminium when the electrode reaction is	[RPMT]

 $Al^{3+} + 3e^{-} \rightarrow Al$

	(c) 96500 C	(d) 38600 C	
7.	The resistance of 1 N solution of acetic acid is 250Ω , when measured in a cell having a cell constant of 1.15 cm ⁻¹ . The equivalent conductance (in ohm ⁻¹ cm ² equiv ⁻¹) of 1 N acetic acid is [Guj.CET]		
	(a) 2.3	(b) 4.6	
	(c) 9.2	(d) 18.4	
~			

8. The conductivity of 0.20 M KCl solution at 298 K is 0.0248 S cm⁻¹. What will be its molar conductivity?

[Haryana PMT]

(a) $124 \mathrm{S}\mathrm{cm}^2$	(b) 124 cm^{-1}
(c) 124 ohm ⁻¹ cm ² equiv ⁻¹	(d) 124 S cm ² mol ⁻¹

When same quantity of electricity is passed for half an hour, an amount of Cu and Cr deposited are respectively 0.375 g and 0.30 g. Ratio of electrochemical equivalent of Cu and Cr is [OJEE]

(a) 0.8	(b) 1.25
(c) 2.5	(d) 1.62

10. In electrolysis of dil. H_2SO_4 using platinum electrodes **[BVP]**

(a) H_2 is evolved at cathode.

(b) SO_2 is produced at anode.

(c) O_2 is obtained at cathode.

(d) SO_2 is produced at cathode.

2009

11. Al_2O_3 is reduced by electrolysis at low potentials and high current. If 4.0×10^4 amperes of current is passed through molten Al_2O_3 for 6 h, what mass of aluminium is produced? (Assume 100% current efficiency, at. wt. of Al=27) [CBSE AIPMT]

(a) 9.0×10^3 g	(b) 8.1×10 ⁴ g
(c) 2.4×10^3 g	(d) 1.3×10 ⁴ g

ELECTROCHEMIS 2R2

(b) 536.111C

E4 ECTROCHEMISTRY

mass of X to that of Y?

(a) 3:2

(c) 1:3

6.

[Kerala CEE]

[Guj.CET]

(a) 536111 C

EXERCISE - 2 : PREVIOUS YEAR COMPETITION QUESTIONS

		М		18
12.	The equivalent conducta	ance of $\frac{10}{32}$ solution	of a weak	
	monobasic acid is 8.0 mh 400 mho cm ² .The dissolu	no cm ² and at infinite ution constant of thi [CBS	dilution is s acid is E AIPMT]	
	(a) 1.25×10 ⁻⁵	(b) 1.25×10 ⁻⁶		
	(c) 6.25×10 ⁻⁴	(d) 1.25×10 ⁻⁴		10
13.	Assertion On dilution, t conductivity of solution	he equivalent as we increases.	ll as molar	17.
	Reason With dilution, the particles per cm ³ increase	he number of currentes.	nt carrying [AIIMS]	
	(a) Both Assertion and I correct explanation of	Reason are true and of the Assertion.	Reason is	20.
	(b) Both Assertion and I not the correct expla	Reason are true and nation of the Assert	Reason is ion.	
	(c) Assertion is true but	Reason is false.		
	(d) Both Assertion and I	Reason are false.		
14.	An aqueous solution cor purity was subjected to e electrolys is, the solutio NaOH. The volume of neutralise NaOH obtained	ntaining 6.5 g of Na electrolysis. After the n was evaporated to 1 M acetic acid r ed above is	Cl of 90% e complete o get solid equired to [KCET]	20
	(a) 2000 cm ³	(b) 100 cm ³		20
	(c) 200cm^3	(d) $1000 \mathrm{cm}^3$		21.
15.	In the electrolysis of act obtained 1.12 cc of hyd condition. The current to	idulated water, it is lrogen per second to b be passed is	desired to under STP [KCET]	
	(a) 9.65 A	(b) 19.3 A		
	(c) 0.965 A	(d) 1.93 A		
16.	The one which decreases	s with dilution is	[KCET]	
	(a) conductance			
	(b) specific conductance	;		
	(c) equivalent conductar	nce		
	(d) molar conductance			
17.	At 25°C, the molar conducts the strong electrolytes 248×10^{-4} , 126×10^{-4} and 2	uctances at infinite on NaOH, NaCl and 80×10 ⁻⁴ S.m ² .mol ⁻¹ r	lilution for $BaCl_2$ are espectively	
	$\lambda_m^0 Ba(OH)_2$ in S.m ² .mol ⁻	^{.1}	EAMCET]	
	(a) 52.4×10 ⁻⁴	(b) 524×10 ⁻⁴		
	(c) 402×10 ⁻⁴	(d) 262×10 ⁻⁴		

4.5 g of aluminium (at. mass 27 from a molten electrolyte contain quantity of electric charge. T	u) is deposited ning Al ³⁺ ions l he volume of	at cathode by a certain hydrogen
quantity of electric charge will	be	[Manipal]
(a) 44.8 L	(b) 11.2 L	
(c) 22.4 L	(d) 5.6 L	
How many coulombs of electri	city are requi	red for the

How many coulombs of electricity are required for the reduction of 1 mole of MnO_4^- to Mn^{2+} ? [Manipal]

(a) 96500 C	(b) 9.65×10 ⁶ C		
(c) 4.83×10^5 C	(d) 1.93×10 ⁵ C		

20. The correct expression in SI system relating the equivalent conductance (Λ_c), specific conductance (κ) and equivalent concentration (C) is

(where, C is the number of gram equivalents in one litre of the solution). [J&KCET]

(a)
$$\Lambda_{\rm C} = \frac{\kappa}{\rm C}$$
 (b) $\Lambda_{\rm C} = \frac{\kappa \times 1000}{\rm C}$

(c)
$$\Lambda_{\rm C} = \frac{\kappa \times 10^{-3}}{\rm C}$$
 (d) $\Lambda_{\rm C} = \frac{\kappa \times 10^{-6}}{\rm C}$

2008

21. Kohlraush's law states that at

[CBSEAIPMT]

- (a) finite dilution, each ion makes definite contribution to the equivalent conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte.
- (b) infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte depending on the nature of the other ion of the electrolyte.
- (c) infinite dilution, each ion makes definite contribution to conductance of an electrolyte whatever be the nature of the other ion of the electrolyte.
- (d) infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte.

244

ELECTROCHEMISTRY

22.	What is the time (in sec) resilver present in 125 mL of 1	equired for depositing all the MAgNO ₃ solution by passing		(a) Both Assertion and Re correct explanation of	ason are true and Reason is the Assertion.
	(a) 10 (a) 10 (c) $241.25 \text{ A}?$	(b) 50		(b) Both Assertion and Re not the correct explana	ason are true and Reason is tion of the Assertion.
	(c) 1000	(d) 100		(c) Assertion is true but Re	eason is false.
23.	Which of the following do	es not conduct electricity?		(d) Both Assertion and Rea	ason are false.
		[AFMC]	30.	The resistance of N/10	solution is found to be
	(a) Fused NaCl	(b) Solid NaCl		$2.5 \times 10^3 \Omega$. The equivalent	conductance of the solution
	(c) Brine solution	(d) Copper		is (cell constant=1.25 cm ⁻¹)	[Kerala CEE]
24.	Which of the following e least specific conductance	lectrolytic solutions has the ? [KCET]		(a) $2.5 \Omega^{-1} \text{ cm}^{-2} \text{ equiv}^{-1}$ (c) $2.5 \Omega^{-1} \text{ cm}^{-2} \text{ equiv}^{-1}$	(b) $5.0 \ \Omega^{-1} \text{ cm}^{-2} \text{ equiv}^{-1}$ (d) $50 \ \Omega^{-1} \text{ cm}^{-2} \text{ equiv}^{-1}$
	(a) 0.02 N	(b) 0.2 N	31.	When 3.86 A current is pa	assed through an electrolyte
	(c) 2 N	(d) 0.002 N		for 50 min, 2.4 g of a diva	lent metal is deposited. The
25.	A direct current deposits 54	g of silver (atomic mass=108)		(a) 24	(b) 12
	(atomic mass = 27) would l	be deposited from aluminium		(a) 24	(0) 12 (d) 40
	chloride solution by the sa	me amount of electricity?	22	U and the second states of solair	(d) 40
	(a) 4.5 g	[Kerala CEE] (b) 5.4 g	52.	solution of $CaCl_2$ by a current	nt of 25 mA flowing for 60 s?
	(c) 54 g	(d) 2.7 g		(a) 4.69×10^{18}	(b) 4.68×10^{15}
26.	What will be the proportion	of moles of metal (Cu:Ni:Ag)		(a) 4.08×10^{12}	$(0) 4.08 \times 10^{10}$
at cathode according to the second law of Fara	e second law of Faraday?	araday?	(C) 4.08×10 ⁻²	$(0)4.08 \times 10^{2}$	
	() 1 2 1		33.	The specific conductance (κ) of an electrolyte of 0.1 N
	(a) $1:2:1$	(0) 2 : 2 : 1		by the following formula	[J&KCET]
2007	(c) 1 . 2 . 2	(d) 1.1.2		(a) $\Lambda = \kappa$	(b) $\Lambda = 10\kappa$
27	Which of the following is	not a non-electrolyte ?		(c) $\Lambda = 100\kappa$	(d) $\Lambda = 10000 \kappa$
27.	which of the following is	[AFMC]	34.	Pure water does not condu	ct electricity because it is
	(a) Acetic acid	(b) Glucose			[J&KCET]
	(c) Ethanol	(d) Urea		(a) basic	(b) almost not ionised
28.	A current of 96.5 A is passe electrodes in 500 mL sol molarity of solution after e	ed for 18 min between nickel ution of 2M $Ni(NO_3)_2$. The electrolysis would be[AIIMS]	2006	(c) decomposed easily	(d) acidic
	(a) 0.46 M	(b) 0.92 M	35.	In the electrolysis of wate	er, one faraday of electrical
	(c) 0.625 M	(d) 1.25 M		(a) and male of any and	[ΑΙΫΙΟ]
29.	Assertion According to 1	Kohlrausch's law the molar		(a) one mole of oxygen	
	conductivity of a strong ele	ectrolyte at infinite dilution is		(b) one gram atom of oxyge	en
	Reason The current carried	by cation and anion is always		(c) 8 g of oxygen	
	equal.	[AIIMS]		(d) 22.4 L of oxygen	
			1		

Mahesh Tutorials Science -

36.	If the aqueous solution of electrolysed for 1 h with 10 A c	the following salts are surrent, which solution will		slolution was (molar mass of C =96500 C/mol)	Cu=63.5, Faraday constant [AMU]
	deposit the maximum mass of The stormic weights are $E_{2}^{2/3}$	The metal at the cathode? $=56$ $7r^{2+}=65$ $4r^{+}=108$		(a) 0.2 N	(b) 0.01N
	Hf ³⁺ =178 and W ³⁺ =184	=56, Zn ² =65, Ag [*] =108, [Kerala CEE]		(c) 0.1 N	(d) 0.02 N
	(a) ZnSO ₄	(b) FeCl ₃	43.	An electric current is passed	through silver voltameter
	(c) HfCl ₄	(d) AgNO ₃		silver voltameter weighed 0.10	08g more at the end of the
37.	The ionic conductance of Ba ²	⁺ and Cl ⁻ are respectively		electrolysis. The volume of or	kygen evolved at STP is
	127 and 76 Ω^{-1} cm ² eq ⁻¹ at infin	ite dilution. The equivalent		$(a) 56 \text{ am}^3$	(b) 550 cm ³
	conductance (in Ω^{-1} cm ²) of Babe	[MHTCET]		(a) 56 cm^3	(d) 11.2 cm^3
	(a) 139.5	(b) 203			(u) 11.2 cm
	(c) 279	(d) 101.5		TOPIC 2	
38.	The charge required to libera an element is	te one gram equivalent of [BCECE]		ELECTROCHEMICAL SERIE POTENTIAL A	ES, ELECTRODE
	(a) 96500 F	(b) 1F	2011		
	(c) 1C	(d) None of these	44.	If the E^{o}_{cell} for a given reaction	has a negative value, then
2005 39.	A current of strength 2.5 A w	as passed through CuSO		which of the following gives for the values of ΔG° and K_{eq}	the correct relationships ? [CBSEAIPMT]
59.	solution for 6 min 26 s. The amount of copper deposited			(a) $\Delta G^{\circ} > 0; K_{eq} < 1$	(b) $\Delta G^{\circ} > 0; K_{eq} > 1$
	is (Atomic weight of Cu=63.5,	IF= 96500 C) [Punjab PMET]		(c) $\Delta G^{\circ} < 0; K_{eq} > 1$	(d) $\Delta G^{\circ} < 0; K_{eq} < 1$
	(a) 0.3175 g	(b) 3.175 g	45.	The electrode potentials for	Cq
	(c) 0.635 g	(d) 6.35 g		$Cu^{2+}(aq) + e^{-} \rightarrow Cu^{+}(aq)$ an	d $Cu^+(aa) \pm e^- \rightarrow Cu(s)$
40.	What is the electrochemical equ	uvalent (in g-C ⁻¹) of silver?		are $+0.15$ V and $+0.50$ V re	espectively. The value of $a = a = b = a = b$
	(Ag=108, F=Faraday)	[EAMCET]		E°, will be	ICBSEAIPMT
	(a) 108 F	(b) $\frac{108}{100}$		Cu ²⁺ /Cu	(,
	(a) 100 I	(^b) F		(a) 0.150 V	(b) 0.500 V
	F	1		(c) 0.325 V	(d) 0.650 V
2004	(c) $\frac{108}{108}$	(d) $\frac{108F}{108F}$	46.	Standard electrode potential of are -1.2 V, $+0.5$ V and -3.0 V m power of these metals will be	f three metals X, Y and Z respectively. The reducing [CBSEAIPMT]
41.	At 25°C the specific conductiv	rity of a normal solution of		(a) X>Y>Z	(b) Y>Z>X
	KCl is 0.002765 mho. The resident cell constant is	stance of cell is 400Ω. The [Punjab PMET]		(c) Y>X>Z	(d) Z>X>Y
	(a) 0.815	(b) 1.016	47.	Standard electrode potential fo	$r \operatorname{Sn}^{4+}/\operatorname{Sn}^{2+}$ couple is +0.15
2003	(c) 1.106	(d) 2.016		V and that for the Cr ³⁺ /Cr cou couples in their standard state cell. The cell potential will be	ple is -0.74 V. These two e are connected to make a [CBSE AIPMT]
42.	On passing electric current of	one ampere for 16 min and		(a)+1 83 V	(b)+1 19V
	5 s through one litre solution solution was deposited at cath	n of $CuCl_2$, all copper of ode. The strength of $CuCl_2$		(c) +0.89 V	(d) +0.18 V

– Lakshya Educare

48.	Given the following reactions	involving, A, B	, C and D		(a) 12.5
	(i) $C + B^+ \rightarrow C^+ + B$				(c) 37.9
	(ii) $A^+ + D \rightarrow No$ reaction			53.	If the half cell reacti
	(ii) $C^+ + A \rightarrow No$ reaction				(i) $\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow$
					•••• 1 •
	$(1V) D+B^+ \rightarrow D^+ + B$				(ii) $2H^+(aq) + \frac{-}{2}O_2$ (
	The correct arrangement of A decreasing ability as reducing	A, B, C, D in ord g agent	er of their [DPMT]		The E° for the reacti
	(a) D > B > C > A	(b) $A > C > D$	> B		$Fe(s) + 2H^{+} + \frac{1}{2}O_{2}$
	(c) $C > A > B > D$	(d) C > A > D	>B		2 2
49.	The standard emf of a galvani electrons in its redox reaction	c cell involving is 0.59 V. The ec	2 moles of quilibrium		(a)+1.67 V (c)+0.79 V
	constant for the redox reactio	n of the cell is	[KCET]	54.	Given for Sn ⁴⁺ /Sn ²⁺ ,
	(a) 10^{20}	(b) 10^5			V and for Au ³⁺ /Au, s
	(c) 10	(d) 10^{10}			
50.	E_1, E_2 and E_3 are the emfs of the cells respectively	ne following thre	e galvanic		$3\mathrm{Sn}^{2+} + 2\mathrm{Au}^{3+} \to 3\mathrm{I}$
					the value of $E^{\rm o}_{\rm cell}$ is
	(1) $\operatorname{Zn}(s) \operatorname{Zn}^{2+}(0.1M) \operatorname{Cu}^{2+}$	(IM) Cu(s)			(a)+1.35
	(ii) $Zn(s) Zn^{2+}(1M) Cu^{2+}(1M) Cu^{2+$	lM) Cu(s)			(c)-1.35
	(iii) $Zn(s) Zn^{2+}(1M) Cu^{2+}$	(0.1M) Cu(s)		55.	The $E^{o}_{M^{3+}/M^{2+}}$ values
	Which one of the following is	s true?	[KCET]		+1.57, +0.77, and +1
	(a) $E_2 > E_1 > E_3$	(b) $E_1 > E_2 > E_3$			is easiest?
	(c) $E_3 > E_1 > E_2$	(d) $E_3 > E_2 > E_1$			(a) Cr
2010					(c)Fe
51.	For the reduction of silver ion	ns with copper r	netals, the $V_{at} 25^{\circ}C$	56.	At 25°C temperatu electrochemical cell
	The value of standard Gibbs en $C \mod^{-1}$)	ergy, ∆G° will be [CBS]	(F=96500 EAIPMT]		$Mg(s) Mg^{2+}(aq) x$
	(a)-98.0kJ	(b)-89.0 kJ			$E^{\circ}Mg/Mg^{2+}(aq) =$
	(c)-89.0 J	(d)-44.5 kJ			
52.	The logarithm of the equilib	orium constant o	of the cell		(a) $x=0.01M$
	reaction corresponding to the	$\operatorname{cell} X(s) X^{2+}(aq) $	$ Y^{+}(aq) $		(C) x~0.011
	Y(s) with standard cell poten	tial, $E_{Cell}^{\circ} = 1.12$	V is given		
	by		[AMU]		

ll reactions are given as

 $2e^- \rightarrow Fe(s); \quad E^\circ = -0.44V$

(ii)
$$2H^+(aq) + \frac{1}{2}O_2(g) + 2e^- \rightarrow H_2O(\ell)$$
 $E^\circ = +1.23V$

e reaction

Fe(s) + 2H⁺ +
$$\frac{1}{2}$$
O₂ → Fe²⁺(aq) + H₂O(ℓ) [AMU]
(a) +1.67 V (b) -1.67 V

(c)
$$+0.79$$
 V (d) -0.79 V

⁴⁺/Sn²⁺, standard reduction potential is 0.15 ³⁺/Au, standard reduction potential is 1.5 V. on,

 $3^{3+} \rightarrow 3\mathrm{Sn}^{4+} + 2\mathrm{Au}$

the value of $E_{\mbox{\scriptsize cell}}^{\mbox{\scriptsize o}}$ is	[MHT CET]
(a)+1.35	(b)+2.55	
(c)-1.35	(d)-2.55	

values for Cr, Mn, Fe and Co are -0.41, and +1.97 V respectively. For which one of the change in oxidation state from +2 to +3[Manipal]

(a) Cr	(b) Mn
c) Fe	(d) Co

perature, the cell potential of a given cal cell is 1.92 V. Find the value of x.

 $(aq) \times M || Fe^{2+}(aq) 0.01M | Fe(s)$

$$E^{o}Mg/Mg^{2+}(aq) = 2.37V; E^{o}Fe/Fe^{2+}(aq) = 0.45 V$$

[Guj. CET]

(a) x=0.01M	(b) x<0.01 M
(c) x>0.01M	(d) x cannot be predicted

Mahesh Tutorials Science -

57.	The potential of a hydrogen e	lectrode at pH=10 is		(a) Zn reduces Fe ²⁺	(b) Zn reduces Mg ²⁺
		[WB JEE]		(c) Mg oxidises Fe	(d) Zn oxidises Fe
	(a) 0.59 V	(b) 0.00V	64.	The standard elecrode poten	tial for the half cell reactions
	(c) -0.59V	(d)-0.059V		are	
2009				$\operatorname{Zn}^{2+} + 2e^{-} \rightarrow \operatorname{Zn}; E^{\circ} = -$	-0.76V
58.	Given : (i) $Cu^{2+} + 2e^{-} \rightarrow Cu$;	E°=0.337 V		$\mathrm{Fe}^{2+} + 2e^- \rightarrow \mathrm{Fe}; \qquad \mathrm{E}^\circ = -$	-0.44V
	(ii) $\operatorname{Cu}^{2^+} + e^- \rightarrow \operatorname{Cu}^+$;	E°=0.153V		The emf of the cell reaction	
	Electrode potential, E° for the will be	e reaction, $Cu^+ + e^- \rightarrow Cu$,		$Fe^{2+} + Zn \rightarrow Zn^{2+} + Fe$	[KCET]
	will be	[CBSEAIPMT,AMU]		(a)-1.20 V	(b)+1.20 V
	(a) 0.52 V	(b) 0.90 V		(c) + 0.32 V	(d)-0.32 V
	(c) 0.30 V	(d) 0.38 V	65.	A solution of nickel sulphate	in which nickel rod is dipped
59.	Given , $Pb^{2+}/Pb=-0.126$ V; Zu emf of the following cell Zn Z	$n^{2+}/Zn = -0.763$ V Find the $n^{2+}(0.1 \text{ M}) \ Pb^{2+}(1M) \ Pb.$		is diluted 10 times. The redu K	action potential of Ni at 298 [Kerala CEE]
		[AFMC]		(a) decreases by 60mV	(b) decrease by 30 mV
	(a)-0.637	(b)+0.637		(c) decreases by 30 V	(d) increases by 30 mV
	(c)>0.637	(d)+0.889	66.	The standard reduction	potentials for Cu^{2+}/Cu ;
60.	The reduction potential at couples is	pH=14 for the Cu ²⁺ /Cu		Zn ²⁺ /Zn; Li ⁺ /Li; Ag ⁺ /Ag and -3.05 V, +0.80 V and 0.00 strongest reducing agent an	H^+/H_2 are +0.34 V, -0.762 V, V respectively. Choose the nong the following
	[Given, $E_{Cu^{2+}/Cu}^{o} = 0.34V; K_{sp}[C]$	$u(OH)_2 = 1 \times 10^{-19}$]			[Kerala CEE]
	[Given, $E_{Cu^{2+}/Cu}^{o} = 0.34V$; $K_{sp}[C$	^b u(OH) ₂ =1×10 ⁻¹⁹] [AIIMS]		(a) Zn	[Kerala CEE]
	[Given, $E_{Cu^{2+}/Cu}^{o} = 0.34V$; K_{sp} [C (a) 0.34 V	$(OH)_2 = 1 \times 10^{-19}$ [AIIMS] (b)-0.34V		(a) Zn (c) Ag	[Kerala CEE] (b) H ₂ (d) Li
	[Given, $E_{Cu^{2+}/Cu}^{o} = 0.34V$; K_{sp} [C (a) 0.34 V (c) 0.22 V	$(OH)_2 = 1 \times 10^{-19}$ [AIIMS] (b)-0.34V (d)-0.22V	67.	(a) Zn (c) Ag The standard emf of a cell in	[Kerala CEE] (b) H ₂ (d) Li wolving one electron charge
61.	[Given, $E_{Cu^{2+}/Cu}^{\circ} = 0.34V$; $K_{sp}[C$ (a) 0.34 V (c) 0.22 V A gas X at 1 atm is bubbled thr a mixture of 1MY ⁻ and 1 MZ potential of Z > Y > X, then	[AIIMS] (b)-0.34V (d)-0.22V ough a solution containing at 25°C. If the reduction [AIIMS]	67.	 (a) Zn (c) Ag The standard emf of a cell in is found to be 0.591 V at 25° of the reaction is (1F=96500 free contents) 	[Kerala CEE] (b) H ₂ (d) Li wolving one electron charge C. The equilibrium constant C mol ⁻¹ , R=8.314 JK ⁻¹ mol ⁻¹) [Manipal]
61.	[Given, $E_{Cu^{2+}/Cu}^{\circ} = 0.34V$; $K_{sp}[C$ (a) 0.34 V (c) 0.22 V A gas X at 1 atm is bubbled thr a mixture of 1MY ⁻ and 1 MZ potential of $Z > Y > X$, then (a) Y will oxidise X but not Z.	[AIIMS] (b)-0.34V (d)-0.22V ough a solution containing at 25°C. If the reduction [AIIMS]	67.	 (a) Zn (c) Ag The standard emf of a cell in is found to be 0.591 V at 25° of the reaction is (1F=96500 f) (a) 1.0×10¹ 	[Kerala CEE] (b) H_2 (d) Li wolving one electron charge C. The equilibrium constant C mol ⁻¹ , R=8.314 JK ⁻¹ mol ⁻¹) [Manipal] (b) 1.0×10^{30}
61.	[Given, $E_{Cu^{2+}/Cu}^{\circ} = 0.34V$; $K_{sp}[C$ (a) 0.34 V (c) 0.22 V A gas X at 1 atm is bubbled thr a mixture of 1MY ⁻ and 1 MZ potential of $Z > Y > X$, then (a) Y will oxidise X but not Z. (b) Y will oxidise both X and Z	[AIIMS] (b)-0.34V (d)-0.22V ough a solution containing $at 25^{\circ}C$. If the reduction [AIIMS] Z.	67.	(a) Zn (c) Ag The standard emf of a cell in is found to be 0.591 V at 25° of the reaction is (1F=96500 f (a) 1.0×10^{1} (c) 1.0×10^{10}	[Kerala CEE] (b) H_2 (d) Li wolving one electron charge C. The equilibrium constant C mol ⁻¹ , R=8.314 JK ⁻¹ mol ⁻¹) [Manipal] (b) 1.0×10^{30} (d) 1.0×10^{5}
61.	[Given, $E_{Cu^{2+}/Cu}^{\circ} = 0.34V$; $K_{sp}[C$ (a) 0.34 V (c) 0.22 V A gas X at 1 atm is bubbled thr a mixture of 1MY ⁻ and 1 MZ potential of Z > Y > X, then (a) Y will oxidise X but not Z. (b) Y will oxidise both X and Z (c) Y will oxidise Z but not X.	[AIIMS] (b) -0.34V (d) -0.22V ough a solution containing a at 25°C. If the reduction [AIIMS] Z.	67.	(a) Zn (c) Ag The standard emf of a cell in is found to be 0.591 V at 25° of the reaction is $(1\text{F}=96500 \text{ G})$ (a) 1.0×10^{1} (c) 1.0×10^{10}	[Kerala CEE] (b) H_2 (d) Li volving one electron charge C. The equilibrium constant C mol ⁻¹ , R=8.314 JK ⁻¹ mol ⁻¹) [Manipal] (b) 1.0×10^{30} (d) 1.0×10^5
61.	[Given, $E_{Cu^{2+}/Cu}^{\circ} = 0.34V$; $K_{sp}[C$ (a) 0.34 V (c) 0.22 V A gas X at 1 atm is bubbled thr a mixture of 1MY ⁻ and 1 MZ potential of $Z > Y > X$, then (a) Y will oxidise X but not Z. (b) Y will oxidise both X and Z (c) Y will oxidise Z but not X. (d) Y will reduce both X and Z	[AIIMS] (b) -0.34V (d) -0.22V rough a solution containing a at 25°C. If the reduction [AIIMS] Z.	67. 2008 68.	 (a) Zn (c) Ag The standard emf of a cell in is found to be 0.591 V at 25° of the reaction is (1F=96500 f) (a) 1.0×10¹ (c) 1.0×10¹⁰ On the basis of the following 	[Kerala CEE] (b) H_2 (d) Li volving one electron charge C. The equilibrium constant C mol ⁻¹ , R=8.314 JK ⁻¹ mol ⁻¹) [Manipal] (b) 1.0×10^{30} (d) 1.0×10^5
61 . 62 .	[Given, $E_{Cu^{2+}/Cu}^{\circ} = 0.34V$; K_{sp} [C (a) 0.34V (c) 0.22 V A gas X at 1 atm is bubbled thr a mixture of 1MY ⁻ and 1 MZ potential of Z > Y > X, then (a) Y will oxidise X but not Z. (b) Y will oxidise both X and Z (c) Y will oxidise Z but not X. (d) Y will reduce both X and Z The potential of standard hy This implies that	[AIIMS] [AIIMS] (b)-0.34V (d)-0.22V rough a solution containing $at 25^{\circ}C$. If the reduction [AIIMS] Z. Z. [AIIMS]	67. 2008 68.	 (a) Zn (c) Ag The standard emf of a cell in is found to be 0.591 V at 25° of the reaction is (1F=96500 f) (a) 1.0×10¹ (c) 1.0×10¹⁰ On the basis of the following agent is 	[Kerala CEE] (b) H_2 (d) Li volving one electron charge C. The equilibrium constant C mol ⁻¹ , R=8.314 JK ⁻¹ mol ⁻¹) [Manipal] (b) 1.0×10^{30} (d) 1.0×10^{5} ang E° values, the strongest
61. 62.	[Given, $E_{Cu^{2+}/Cu}^{\circ} = 0.34V$; $K_{sp}[C$ (a) 0.34 V (c) 0.22 V A gas X at 1 atm is bubbled thr a mixture of 1MY ⁻ and 1 MZ potential of $Z > Y > X$, then (a) Y will oxidise X but not Z. (b) Y will oxidise both X and Z (c) Y will oxidise Z but not X. (d) Y will reduce both X and Z The potential of standard hy This implies that (a) $\Delta G_{f}^{\circ}(H^{+}, aq)=0$	bu(OH) ₂ =1×10 ⁻¹⁹] [AIIMS] (b)-0.34V (d)-0.22V ough a solution containing τ at 25°C. If the reduction [AIIMS] Z. Z. drogen electrode is zero. [AMU] (b) $\Delta H_f^o(H^+, aq) = 0$	67. 2008 68.	(a) Zn (c) Ag The standard emf of a cell in is found to be 0.591 V at 25° of the reaction is (1F=96500 ° (a) 1.0×10^{1} (c) 1.0×10^{10} On the basis of the following oxidising agent is $[Fe(CN)_{6}]^{4-} \rightarrow [Fe(CN)_{6}]^{3}$ $Fe^{2+} \rightarrow Fe^{3+} + e^{-1}F^{0} = -0^{10}$	[Kerala CEE] (b) H_2 (d) Li volving one electron charge C. The equilibrium constant C mol ⁻¹ , R=8.314 JK ⁻¹ mol ⁻¹) [Manipal] (b) 1.0×10^{30} (d) 1.0×10^{5} ang E° values, the strongest $^- + e^-; E^\circ = -0.35V$ TV [CRSE AIPMET]
61. 62.	[Given, $E_{Cu^{2+}/Cu}^{\circ} = 0.34V$; $K_{sp}[C$ (a) 0.34 V (c) 0.22 V A gas X at 1 atm is bubbled thr a mixture of 1MY ⁻ and 1 MZ potential of $Z > Y > X$, then (a) Y will oxidise X but not Z. (b) Y will oxidise both X and Z (c) Y will oxidise Z but not X. (d) Y will reduce both X and Z The potential of standard hy This implies that (a) $\Delta G_{f}^{\circ}(H^{+}, aq)=0$ (c) $\Delta G_{f}^{\circ}(H^{+}, aq) < 0$	bu(OH) ₂ =1×10 ⁻¹⁹] [AIIMS] (b)-0.34V (d)-0.22V ough a solution containing at 25°C. If the reduction [AIIMS] Z. Z. drogen electrode is zero. [AMU] (b) $\Delta H_f^o(H^+, aq) = 0$ (d) $\Delta G_f^o(H^+, aq) > 0$	67. 2008 68.	(a) Zn (c) Ag The standard emf of a cell in is found to be 0.591 V at 25° of the reaction is (1F=96500 f (a) 1.0×10^{1} (c) 1.0×10^{10} On the basis of the following oxidising agent is $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{3}$ $Fe^{2+} \rightarrow Fe^{3+} + e^-; E^{\circ} = -0.2$ (a) $Fe(CN)_{4-}$	[Kerala CEE] (b) H ₂ (d) Li volving one electron charge C. The equilibrium constant C mol ⁻¹ , R=8.314 JK ⁻¹ mol ⁻¹) [Manipal] (b) 1.0×10^{30} (d) 1.0×10^{5} ang E ^o values, the strongest - + e ⁻ ; E ^o = -0.35V 77V [CBSEAIPMT] (b) Eo ²⁺
61.62.63.	[Given, $E_{Cu^{2+}/Cu}^{\circ} = 0.34V$; $K_{sp}[C$ (a) 0.34 V (c) 0.22 V A gas X at 1 atm is bubbled thr a mixture of 1MY ⁻ and 1 MZ potential of Z > Y > X, then (a) Y will oxidise X but not Z. (b) Y will oxidise both X and Z (c) Y will oxidise Z but not X. (d) Y will reduce both X and Z The potential of standard hy This implies that (a) ΔG_{f}° (H ⁺ , aq)=0 (c) ΔG_{f}° (H ⁺ , aq) < 0 E° for Mg ²⁺ /Mg = -2.37 V,	bu(OH) ₂ =1×10 ⁻¹⁹] [AIIMS] (b)-0.34V (d)-0.22V ough a solution containing T at 25°C. If the reduction [AIIMS] Z. Z. drogen electrode is zero. [AMU] (b) $\Delta H_f^o(H^+, aq) = 0$ (d) $\Delta G_f^o(H^+, aq) > 0$ Zn ²⁺ /Zn = -0.76 V, and	67. 2008 68.	(a) Zn (c) Ag The standard emf of a cell in is found to be 0.591 V at 25° of the reaction is (1F=96500 ° (a) 1.0×10^{1} (c) 1.0×10^{10} On the basis of the following oxidising agent is $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^3$ $Fe^{2+} \rightarrow Fe^{3+} + e^-; E^\circ = -0.7$ (a) $[Fe(CN)_6]^{4-}$ (c) Fe^{3+}	[Kerala CEE] (b) H_2 (d) Li volving one electron charge C. The equilibrium constant C mol ⁻¹ , R=8.314 JK ⁻¹ mol ⁻¹) [Manipal] (b) 1.0×10^{30} (d) 1.0×10^{5} ang E° values, the strongest - + e ⁻ ; E° = -0.35V 77V [CBSEAIPMT] (b) Fe ²⁺ (d) IEc(CN) ¹²⁻
61.62.63.	[Given, $E_{Cu^{2+}/Cu}^{\circ} = 0.34V$; $K_{sp}[C$ (a) 0.34 V (c) 0.22 V A gas X at 1 atm is bubbled thr a mixture of 1MY ⁻ and 1 MZ potential of $Z > Y > X$, then (a) Y will oxidise X but not Z. (b) Y will oxidise both X and Z (c) Y will oxidise Z but not X. (d) Y will reduce both X and Z The potential of standard hy This implies that (a) ΔG_{f}° (H ⁺ , aq)=0 (c) ΔG_{f}° (H ⁺ , aq) < 0 E° for Mg ²⁺ /Mg = -2.37 V, Fe ²⁺ /Fe = -0.44 V. Which stat	bu(OH) ₂ =1×10 ⁻¹⁹] [AIIMS] (b)-0.34V (d)-0.22V ough a solution containing at 25°C. If the reduction [AIIMS] Z. Z. drogen electrode is zero. [AMU] (b) $\Delta H_f^o(H^+, aq) = 0$ (d) $\Delta G_f^o(H^+, aq) > 0$ Zn ²⁺ /Zn = -0.76 V, and ement is correct? [CPMT]	67. 2008 68.	(a) Zn (c) Ag The standard emf of a cell in is found to be 0.591 V at 25° of the reaction is (1F=96500 f (a) 1.0×10^{1} (c) 1.0×10^{10} On the basis of the following oxidising agent is $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{3}$ $Fe^{2+} \rightarrow Fe^{3+} + e^-; E^{\circ} = -0.2^{\circ}$ (a) $[Fe(CN)_6]^{4-}$ (c) Fe^{3+}	[Kerala CEE] (b) H_2 (d) Li volving one electron charge C. The equilibrium constant C mol ⁻¹ , R=8.314 JK ⁻¹ mol ⁻¹) [Manipal] (b) 1.0×10^{30} (d) 1.0×10^{5} ang E° values, the strongest $-^{-} + e^{-}; E^{\circ} = -0.35V$ 77V [CBSEAIPMT] (b) Fe ²⁺ (d) [Fe(CN) ₆] ³⁻

248

69.	What is the electrode potential (in volt) of the following electrode at 25°C?						
	Ni ²⁺ (0.1 M) Ni(s)						
	(Standard reduction po	tential of Ni ²⁺ /Ni is -0.25 V,					
	$\frac{2.303\text{RT}}{\text{F}} = 0.06 $ [Punjab PMET						
	(a)-0.28V	(b)-0.34 V					
	(c)-0.82 V	(d)-0.22V					
70.	Hydrogen gas is not libe is added to dil HCl	rated when the following metal [KCET]					
	(a) Ag	(b) Zn					
	(c) Mg	(d) Sn					
71.	The equilibrium constant for the following redox reaction at 298 K of 1×10^8 .						
	$2Fe^{3+}(aq)+2I^{-}(aq)$	$\Rightarrow 2Fe^{2+}(aq) + I_2(s)$					
	If the standard reduction	n potential of iodine becoming					

If the standard reduction potential of iodine becoming iodide is +0.54 V, what is the standard reduction potential of Fe³⁺/Fe²⁺? [Kerala CEE] (a) +1.006 V (b) -1.006 V (c) +0.77 V (d) -0.77 V

72. The cell potential of the following cell at 25°C (in volts) is

(pt) $H_2 |_{(0.01M)}^{H^+} ||_{(0.1M)}^{Cu^{2+}} |Cu(E_{Cu^{2+}/Cu}^o = 0.337V)$ [EAMCET] (a) 0.308 (b) 0.427

(c)-0.308	(d) 0.337

73. Cu⁺(aq) is unstable in solution and undergoes simultaneous oxidation and reduction, according to the reaction

 $2Cu^+(aq) \longrightarrow Cu^{2+}(aq) + Cu(s)$

choose the correct Eº for the above reaction if

$E_{Cu^{2+} Cu}^{\circ} = 0.34 \text{ V and } E_{Cu}^{\circ}$	$u^{2^{+} Cu^{+}} = 0.15 V$	[MHTCET]
(a)-0.38 V	(b)+0.49V	
(c)+0.38V	(d)-0.19 V	r

2007

74. Zn gives H₂ gas with H₂SO₄ and HCl but not with HNO₃ [Punjab PMET]
(a) Zn act as oxidising agent when react with HNO₃.
(b) HNO₃ is weaker acid than H₂SO₄ and HCl.
(c) in electrochemical series Zn is above hydrogen.

(d) NO_3^{-1} is reduced in preference to hydronium ion.

75. EMF of hydrogen electrode in terms of pH is (at 1 atm pressure) [MHTCET]

(a)
$$E_{H_2} = \frac{RT}{F} pH$$
 (b) $E_{H_2} = \frac{RT}{F} \frac{1}{pH}$

c)
$$E_{H_2} = \frac{2.303 RT}{F} pH$$
 (d) $E_{H_2} = -0.0591 pH$

76. The standard electrode potential of hydrogen electrode at 1 M concentration and hydrogen gas at 1 atm pressure is [J&K CET]
(a) 1 V

2006

77. A hypothetical electrochemical cell is shown below

 $A|A^{+}(xM)||B^{+}(yM)|B$

The emf measured is +0.20V. The cell reaction is [CBSEAIPMT]

(a) $A^+ + B \rightarrow A + B^+$

(b) $A^+ + e^- \rightarrow A; B^+ + e^- \rightarrow B$

(c) the cell reaction cannot be predicted

(d) $A + B^+ \rightarrow A^+ + B$

78. Assertion E° for Mn^{3+}/Mn^{2+} is more positive than Cr^{3+}/Cr^{2+} .

Reason The third ionisation energy of Mn is larger than that of Cr.

[AIIMS]

- (a) Both Assertion and Reason are true and Reason is correct explanation of the Assertion.
- (b) Both Assertion and Reason are true and Reason is not the correct explanation of the Assertion.
- (c) Assertion is true but Reason is false.
- (d) Both Assertion and Reason are false.

79.	For the electrochemical cell, N M)=0.44V and E°(X/X ⁻)=0.33V deduce that	M M ⁺ X ⁻ X, E ^o (M ⁺ / V, From this data one can [BHU]	86.	Reduction potentials of A, B, C and D are 0.8 V, 0.79 V, 0.34 V and -2.37 V respectively. Which element displaces all the other three elements? [MHTCET]			
	(a) $M + X \rightarrow M^+ + X^-$ is the sp	ontaneous reaction		(a) B	(b) A		
				(c) D	(d) C		
	(b) $M^+ + X^- \rightarrow M + X$ is the spontaneous reaction (c) $E_{mn} = 0.77V$			The standard emf of Daniell cel electrical work obtained from t	ll is 1.10 V. The maximum the cell is [Haryana PMT]		
	C cen cen			(a) 212.3 kJ	(b) 175.4 kJ		
	(d) $E_{cell} = -0.77 V$			(c) 106.15 kJ	(d) 350.8 kJ		
80.	The reduction electrode potenti M^+ ions ($F^\circ = -2.36V$) is	al, E of 0.1 M solution of	88.	For cell reaction			
	$(1) 1000 (E_{RP} - 2.50 V) 15$			$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$			
	(a)-4.82V	(b) -2.41 V		cell representation is	[BCECE]		
	(c)+2.41V	(d) None of these		(a) $7n 7n^{2+} Cu^{2+} Cu$			
81.	$E^{o} = \frac{RT}{nF} ln K_{eq}$			(b) Cu Cu ²⁺ Zn ²⁺ Zn			
	This equation is called	[MP PMT]					
	(a) Gibbs equation	(b) Nernst equation		(c) $Cu Zn^{2+} Zn Cu^{2+}$			
	(c) Gibbs-Helmholtz equation			(d) $Cu^{2+} Zn Zn^{2+} Cu$			
	(d) van der Waals' equation		89.	Alkali metals have high oxidation potential and hence,			
82.	During electrochemical proces	s [Guj.CET]		they behave as	[JCECE]		
	(a) Gibbs free energy increases	L J J		(a) oxidising agents	(b) Lewis bases		
	(b) Gibbs free energy remains	constant.		(c) reducing agents	(d) electrolytes		
	(c) no prediction can be about Gibbs free energy.			What is the potential of plati solution of 0.1 M in Sn^{2+} and 0	num wire dipped into a 0.01 M in Sn ⁴⁺ ? [JCECE]		
	(d) Gibbs free energy decrease	S.		(3) 59	(b) $E^{\circ} + 0.050$		
2005				(a) E	(0) E + 0.039		
83.	If hydrogen electrode dipped is and pH=6 and salt bridge is resulting cell is	n two solutions of pH=3 connected, the emf of [DUMET]	2004	(c) $E^{\circ} + \frac{0.059}{2}$	(d) $E^{\circ} - \frac{0.059}{2}$		
	(a) 0.177 V	(b) 0.3 V	2004				
	(c) 0.052 V	(d) 0.104 V	91.	Assertion Copper metal gets rea aqueous solution.	adily corroded in an acidic		
84.	The standard electrode potentia	l is measured by[KCET]		Reason Free energy change fo	or this process is positive.		
	(a) electrometer	(b) voltmeter			[AIIMS]		
	(c) pyrometer	(d) galvanometer		(a) Both Assertion and Reaso	n are true and Reason is		
85.	Na is used in reduction of Zn s	salt because [MHTCET]		(b) Both Assertion and Reason are true and Reason is not the correct explanation of the Assertion.			
	(a) $E_{\text{Zn(oxi)}}^{\circ} > E_{\text{Na(oxi)}}^{\circ}$	(b) $E_{Zn(red)}^{o} < E_{Na(red)}^{o}$					
	(a) $F^0 < F^0$	$(\mathbf{J}) \mathbf{D}_{\mathbf{J}} \mathbf{d}_{\mathbf{J}} (\mathbf{z}) = \mathbf{J} (\mathbf{J})$		(c) Assertion is true but Reason is false.			
	(c) $\mathbf{L}_{Zn(oxi)} \leq \mathbf{L}_{Na(oxi)}$	(u) Dom (a) and (D)		(d) Both Assertion and Reason	n are false.		

250

ELECTROCHEMISTRY

(b) decomposed

92.	Aluminium displaces hydrog silver does not. The emf of a	FL	FCTROCHE		
	Al/Al^{3+} and Ag/Ag^{+} is 2.4	6 V. The reduction potential	al		
	of silver electrode is +0.80 V	7. The reduction potential of	2011		
	aluminium electrode is (a)+1.66V	[KCET] (b)-3.26 V	98.	Which of the electrochem	
	(c) 3.26 V	(d)-1.66 V		Pt/Br (g)/	
93.	Standard electrode potentia	lofcell		$107 \text{ DI}_2(\text{g})$	
	$H_2/H^+ \parallel Ag^+ / Ag$ is (E°Ag	⁺ /Ag=0.80V) [Kerala CEE]		(a) 2Br ⁻ (ac	
	(a) 0.8 V	(b)-0.8 V		(b) $Br_2(g) +$	
	(c) - 1.2 V	(d) 1.2 V		(c) $Br_{2}(g) +$	
94.	For the following cell with	hydrogen electrode at two		() 2(0)	
	different pressures p_1 and p	2		(d) $2Br^{-}(ac)$	
	$\operatorname{Pt}(\operatorname{H}_2) \operatorname{H}^{+}(\operatorname{aq}) \operatorname{Pt}(\operatorname{H}_2) \operatorname{H}$	H ⁺ (aq)	2010		
	p_1 p_2	IMHTCETI	99.	When iron	
	DT	pwiiri CE1j		(a) reduced	
	(a) $\frac{RT}{E} \log_{e} \frac{p_{1}}{p}$	(b) $\frac{RT}{2E}\log_e \frac{p_1}{p_1}$		(c) oxidised	
	\mathbf{P}_2	p_2		(d) changed	
	(c) $\frac{\mathrm{RT}}{\mathrm{F}}\log_{\mathrm{e}}\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}$	(d) $\frac{\text{RT}}{2\text{F}}\log_{\text{e}}\frac{\text{p}_2}{\text{p}_1}$	100.	Which of electrochem	
95.	For the cell,			(a) Electron	
	$T1 T1^{+}(0.001M) Cu^{2+}(0.1) Cu^{2+}(0$)M Cu		(b) Current	
	E _{cell} at 25°C is 0.83 V. E _{cell} c	an be increased		(c) Cations	
		[Haryana PMT]		(d) Cations	
	(a) by decreasing [Cu ²⁺]	(b) by increasing [Cu ²⁺]	101.	Chemical fo	
	(c) by increasing $[Tl^+]$	(d) None of these		(a) Fe ₂ O ₂	
2003				$(u) = v_2 \circ 3$	
96.	On the basis of information	available from the reaction		(c) $\operatorname{Fe}_2\operatorname{O}_3.x$	
	$\frac{4}{-}$ Al+O ₂ $\rightarrow \frac{2}{-}$ Al ₂ O ₂ $,\Delta G =$	$= -827 \text{kJ} \text{mol}^{-1}$	102.	When lead	
	3 3 3			(a) SO_2 is ev	
	of O_2 , the minimum emf electrolysis of Al_2O_3 , is (F=9	required to carry out an 6500 C mol^{-1})		(c) Lead is f	
		[CBSE AIPMT]	103.	E^{o}_{cell} and ΔC	
	(a) $6.42 V$	(b) 8.56 V		(a) $\Delta G^{\circ} = r$	
	(c) 2.14 V	(d) 4.28 V		() -	
97.	If the standard electrode pote is 0.34 V, what is the electron of Cu^{2+} ? (T =	ential of Cu^{2+}/Cu electrode etrode potential at 0.01 M 298 K) [EAMCET]		(c) $\Delta G^{\circ} = -$	
	(a) 0.399 V	(b) 0.281 V			
	(c) 0.222 V	(d) 0.176 V			

TOPIC 3

IEMICAL CELLS, (INCLUDING FUEL **CELLS), CORROSION**

	When iron is rusted, it is	[MPPMT]
10		
	(d) $2Br^{-}(aq) + 2Cl^{-}(aq) \rightarrow Br_{2}(g) + Cl_{2}(g)$	
	(c) $\operatorname{Br}_2(g) + \operatorname{Cl}_2(g) \rightarrow 2\operatorname{Br}^-(\operatorname{aq}) + 2\operatorname{Cl}^-(\operatorname{aq})$	
	(b) $\operatorname{Br}_2(g) + 2\operatorname{Cl}^-(\operatorname{aq}) \to 2\operatorname{Br}^-(\operatorname{aq}) + \operatorname{Cl}_2(g)$	
	(a) $2Br^{-}(aq) + Cl_2(g) \rightarrow 2Cl^{-}(aq) + Br_2(g)$	
	$Pt/Br_2(g)/Br^-(aq)//Cl^-(aq)/Cl_2(g)/Pt.$	
	Which of the following reactions is correct electrochemical cell at 25°C?	for a given [Guj.CET]

ed ed in the fine powder

f the following statements is true for the emical Daniel cell? [Manipal] ons flow from copper electrode to zinc electrode

nt flows from zinc electrode to copper electrode.

ns move toward copper electrode.

ns move toward zinc electrode.

formula of rust is [OJEE] $_3.H_2O$ (b) Fe₂O₃.5H₂O

(d) None of these $_3.xH_2O$ d storage battery discharges [VMMC] evolved (b) PbSO₄is consumed s formed (d) H_2SO_4 is consumed ΔG° are related as [VMMC]

$= nFE_{cell}^{o}$ (b) $\Delta G = -nFE_{cell}^{o}$

c)
$$\Delta G^{\circ} = -nFE^{\circ}_{cell}$$
 (d) $\Delta G^{\circ} = nFE^{\circ}_{cell} = 0$

Mahesh Tutorials Science -

104.	The rusting of iron is catalysed by	110.	When lead storage battery is charge [AFMC]			
	[CG PMT, Haryana PMT]		(a) lead dioxide dissolves.			
	(a) Fe (b) O_2		(b) sulphuric acid is regenerated.			
	(c) H^+ (d) Zn		(c) the lead electrode becomes coated with lead sulphate. (d) the amount of sulphuric acid decreases			
105.	Standard solution of KNO ₃ is used to make salt bridge because [CGPMT, Haryana PMT]	111.	(d) the aniount of supprince acid decreases.Anode in the galvanic cell, is(a) negative electrode(b) positive electrode			
	(a) velocity of K^+ is greater than NO_3^- .		(c) neutral electrode (d) None of these			
	(b) velocity of NO_3^- is greater than K^+ .	2006 112.	What is the cell reaction occuring in Daniell cell (Galvanic			
	(c) velocity of K^+ and NO_3^- are same.		cell)? [J&K CET]			
	(d) KNO is highly soluble in water		(a) $Cu(s) + ZnSO_4(aq) \rightarrow CuSO_4(aq) + Zn(s)$			
2008	(u) KNO ₃ is lightly soluble in water.		(b) $Zn(s) + CuSO_4(aq) \rightarrow Cu(s) + ZnSO_4(aq)$			
106	Standard free energies of formation (in k l/mol) at 208 V		(c) Ni(s) + ZnSO ₄ (aq) \rightarrow NiSO ₄ (aq) + Zn(s)			
100.	are -237.2 , -394.4 and -8.2 for $H_2O(\ell)$, $CO_2(g)$ and		(d) $2Na(s) + CdSO_4(aq) \rightarrow Na_2SO_4(aq) + Cd(s)$			
	pentane (g), respectively. The value of E_{cell}^{cell} for the	2005				
	(a) 1.968 V (b) 2.0968 V	113.	When an acid cell is charged then [AFMC]			
	(c) 1.0968 V (d) 0.0968 V		(a) voltage of cell increases			
107.	Assertion The cell potential of mercury cell is 1.35 V.		(b) electrolyte of cell dilutes			
	which remains constant.		(c) resistance of cell increases			
	Reason In mercury cell, the electrolyte is a paste of KOH		(d) None of the above			
	and ZnO. [AIIMS]	114.	The chemical reaction,			
	(a) Both Assertion and Reason are true and Reason is correct explanation of the Assertion.		$2\text{AgCl}(s) + \text{H}_2(g) \rightarrow 2\text{HCl}(aq) + 2\text{Ag}(s)$			
	(b) Both Assertion and Reason are true and Reason is not the correct explanation of the Assertion.		taking place in a galvanic cell is represented by the notation [AIIMS]			
	(c) Assertion is true but Reason is false.		(a) $Pt(s) H_2(g), 1 bar 1M KCl(aq) AgCl(s) Ag(s)$			
	(d) Both Assertion and Reason are false.		(b) $Pt(s) \mid H(\alpha)$ 1 har $\mid 1M \mid HC \mid (2\alpha) \mid 1M \land \alpha^+(2\alpha) \mid \land \alpha(s)$			
108.	Galvanic cell is a device in which [CBSE AIPMT]		$(0) \Pi(3) \Pi_2(g), 10a \Pi \Pi \Pi \Pi \Pi (aq) \Pi \Pi Rg (aq) Rg(3)$			
	(a) chemical energy is converted into electrical energy.		(c) $Pt(s) H_2(g), 1bar 1M HCl(aq) AgCl(s) Ag(s)$			
	(b) electrical energy is converted into chemical energy.		(d) $Pt(s) H_2(g), 1 bar 1M HCl(aq) Ag(s) AgCl(s)$			
	(c) chemical energy is seen in the form of heat.	115.	Assertion Galvanised iron does not rust.			
	(d) thermal energy from an outside source is used to drive the cell reaction.		Reason Zinc has a more negative electrode potential than iron [AIIMS]			
2007	The effective of a first call is given by ICDSE AIDME		(a) Both Assertion and Reason are true and Reason is			
109.	The enciency of a fuel cent is given by [CBSEAIPM1] (a) $\frac{\Delta H}{\Delta G}$ (b) $\frac{\Delta G}{\Delta G}$		(b) Both Assertion and Reason are true and Reason is not the correct explanation of the Assertion			
	$(4) \Delta G$ $(5) \Delta S$		(c) Assertion is true but Reason is false			
	(c) $\frac{\Delta G}{\Delta S}$ (d) $\frac{\Delta S}{\Delta S}$		(d) Both Assertion and Reason are false.			
	$(U) \Delta H$ $(U) \Delta G$	2004				

252	
116.	Iron pipes, lying in acidic soil, are often attached to the blocks of magnesium for their protection from rusting because magnesium [BHU,DUMET]
	(a) is lighter than iron
	(b) is readily converted into positive ion
	(c) forms a corrosion–resistant alloy with iron
	(d) prevents air from reaching the surface of iron.
117.	Which of the following statements is true for fuel cells? [Punjab PMET]
	(a) They run till the reactant are active
	(b) They are free from pollution.
	(c) They are more efficient.
	(d) All of the above.
118.	In a hydrogen-oxygen fuel cell, combustion of hydrogen occurs to [DUMET]
	(a) generate heat.
	(b) create potential difference between the two electrodes.
	(c) produce high purity water
	(d) remove adsorbed oxygen from electrode surfaces.
2003	
119.	Which of the following reaction is used to make a fuel cell? [AIIMS]
	(a) $Cd(s) + 2Ni(OH)_3(s) \rightarrow CdO(s)$ + $2Ni(OH)_2(s) + H_2O(\ell)$
	(b) $Pb(s) + PbO_2(s) + 2H_2SO_4(aq) \rightarrow 2PbSO_4(s)$ + $2H_2O(\ell)$
	(c) $2H_2(g) + O_2(g) \rightarrow 2H_2O(\ell)$
	(d) $2Fe(s) + O_2(g) + 2H^+(aq) \rightarrow 2Fe^{2+}(aq) + 2H_2O(\ell)$

120.	Which cell convert electrical energy into chemica energy? [Punjab PMET						
	(a) Voltaic cell	(b) Electrolytic cell					
	(c) Galvanic cell	(d) Electrochemical cell					
121.	The cell reaction of the galvant	ic cell					
	$Cu(s) Cu^{2+}(aq) Hg^{2+}(aq) Hg^{2+}(aq)$	$Hg(\ell)$ is [EAMCET]					
(a) $Hg + Cu^{2+} \rightarrow Hg^{2+} + Cu$							
	(b) $\operatorname{Hg} + \operatorname{Cu}^{2+} \rightarrow \operatorname{Cu}^{+} + \operatorname{Hg}^{+}$						
	(c) $Cu + Hg \rightarrow CuHg$						
	(d) $Cu + Hg^{2+} \rightarrow Cu^{2+} + Hg$						
122.	Which one of the follow galvanisation?	ing metal is used in [RPMT]					
	(a) Cu	(b) Ag					
	(c) Zn	(d) Fe					

Mahesh Tutorials Science -

ANSWER KEY

EXERCISE - 1 : (Basic Objective Questions)

1. (d)	2. (c)	3. (d)	4. (c)	5. (d)	6. (a)	7. (a)	8. (a)	9. (d)	10. (c)
11. (b)	12. (d)	13. (d)	14. (a)	15. (b)	16. (c)	17. (d)	18. (b)	19. (a)	20. (a)
21. (a)	22. (b)	23. (d)	24. (a)	25. (d)	26. (b)	27. (b)	28. (b)	29. (b)	30. (c)
31. (d)	32. (c)	33. (b)	34. (d)	35. (d)	36. (c)	37. (a)	38. (a)	39. (c)	40. (a)
41. (b)	42. (d)	43. (c)	44. (c)	45. (a)	46. (d)	47. (c)	48. (b)	49. (d)	50. (c)
51. (c)	52. (b)	53. (a)	54. (a)	55. (a)	56. (a)	57. (b)	58. (a)	59. (b)	60. (a)
61. (c)	62. (c)	63. (d)	64. (a)	65. (d)	66. (b)	67. (b)	68. (b)	69. (c)	70. (d)
71. (b)	72. (c)	73. (a)	74. (c)	75. (c)	76. (a)	77. (d)	78. (a)	79. (b)	

EXERCISE - 2 : (Previous Year Competition Questions)

1. (c)	2. (b)	3. (b)	4. (a)	5. (a)	6. (a)	7. (b)	8. (d)	9. (b)	10. (a)
11. (b)	12. (a)	13. (c)	14. (b)	15. (a)	16. (b)	17. (b)	18. (d)	19. (c)	20. (c)
21. (d)	22. (b)	23. (b)	24. (d)	25. (a)	26. (d)	27. (a)	28. (b)	29. (c)	30. (b)
31. (d)	32. (a)	33. (d)	34. (b)	35. (c)	36. (d)	37. (b)	38. (b)	39. (a)	40. (b)
41. (c)	42. (b)	43. (c)	44. (a)	45. (c)	46. (d)	47. (c)	48. (d)	49. (a)	50. (b)
51. (b)	52. (c)	53. (a)	54. (a)	55. (a)	56. (a)	57. (c)	58. (a)	59. (c)	60. (d)
61. (a)	62. (a)	63. (a)	64. (c)	65. (b)	66. (d)	67. (c)	68. (c)	69. (a)	70. (a)
71. (c)	72. (b)	73. (c)	74. (d)	75. (d)	76. (d)	77. (d)	78. (b)	79. (b)	80. (b)
81. (b)	82. (d)	83. (a)	84. (b)	85. (c)	86. (c)	87. (a)	88. (a)	89. (c)	90. (d)
91. (c)	92. (d)	93. (a)	94. (b)	95. (b)	96. (c)	97. (b)	98. (a)	99. (c)	100. (c)
101. (c)	102. (d)	103. (c)	104. (c)	105. (c)	106. (c)	107. (b)	108. (a)	109.(c)	110. (b)
111. (a)	112. (b)	113. (a)	114. (c)	115. (a)	116. (b)	117.(d)	118. (b)	119. (c)	120. (b)
121. (d)	122. (c)								