Biological Classification

Fun!

Classification

- Arranging organisms into hierarchical groups
 - each higher taxon contains one or more lower taxa
- based on similarities
- and naming the groups

Phylogeny

- Branch of biology concerned with evolutionary origins and kinship
- Most zoologists favor classifications based on phylogeny.

Taxonomy

- Branch of biology concerned with classification.
- Groups in a classification are taxa (singular, taxon).

BINOMIAL NOMENCLATURE

A species consists of:

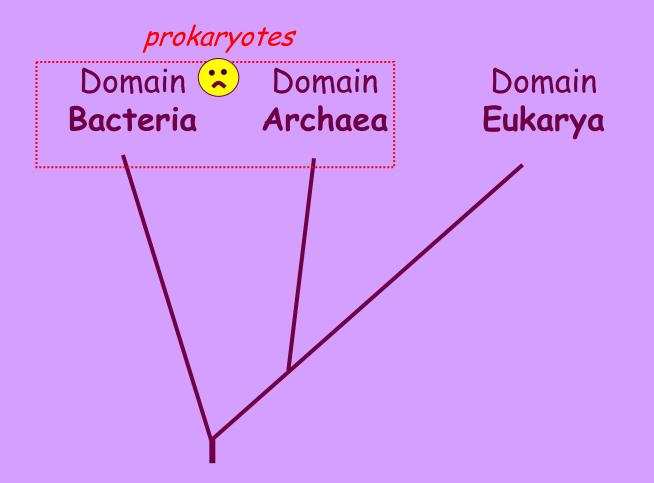
 all individuals that can interbreed under natural conditions (fish example)

Every species (30 million!) must have:

- 1. a unique genus name (e.g., <u>Homo</u>)
- 2. a specific epithet that is unique within its genus (*e.g.*, *sapiens*)

Classification of Humans Table 10.1

Kingdom Phylum Class Order Family Genus Species Animalia Chordata Mammalia Primates Hominidae <u>Homo</u> <u>Homo sapiens</u>



Phylogenetic Classification

- Each lower taxon is supposed to have evolved from its next higher taxon
- Older classifications based on superficial similarities are being revised
- New evidence comes from comparisons of DNA and RNA nucleotide sequences

$$\begin{array}{c} \dots & -G-C-A-C-G-C-A-T-A-T-G-C-C-C-A-\dots & TAXON A \\ \times & & & & \\ \dots & -G-C-A-C-A-C-A-G-A-T-G-C-C-T-A-\dots & TAXON B \\ \dots & -G-C-A-C-A-C-A-G-A-T-G-C-C-A-A-\dots & TAXON C \end{array}$$

Phylogeny of Domains

Character variation and Phylogeny

- Character similarity/difference is used to reconstruct phylogeny
- Ancestral -characters present in a common ancestor
- Derived- characters that arose later
- Outgroup shows if a character is ancestral or derived (polarity)
- Clade (branch) a series of species that share derived characters

Character variation and Phylogeny

- Example Character = Teeth
- Derived or ancestral?
- Reptiles Birds Mammals
- Present absent present
- Outgroup comparison: amphibians/fish
- Conclusion ?
- Teeth ancestral, absence of teeth is derived

Theories of taxonomy

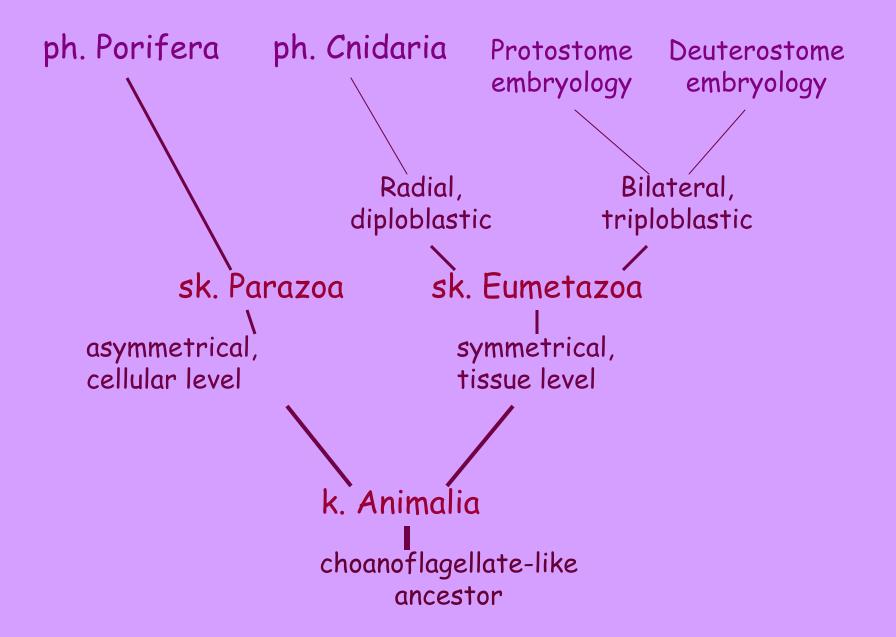
- Traditional
- Phylogenetic (cladistics)

Construction of Phylogenetic trees and cladograms

- Comparative morphology
- Comparative biochemistry
- Comparative cytology

Cladistic Reasoning Hickman p. 200-201

- logical procedure for arranging taxa of organisms into phylogenetic trees
 based on anatomy, embryology, etc.
- Asks basic question: "Of three taxa, which two are most closely related?"

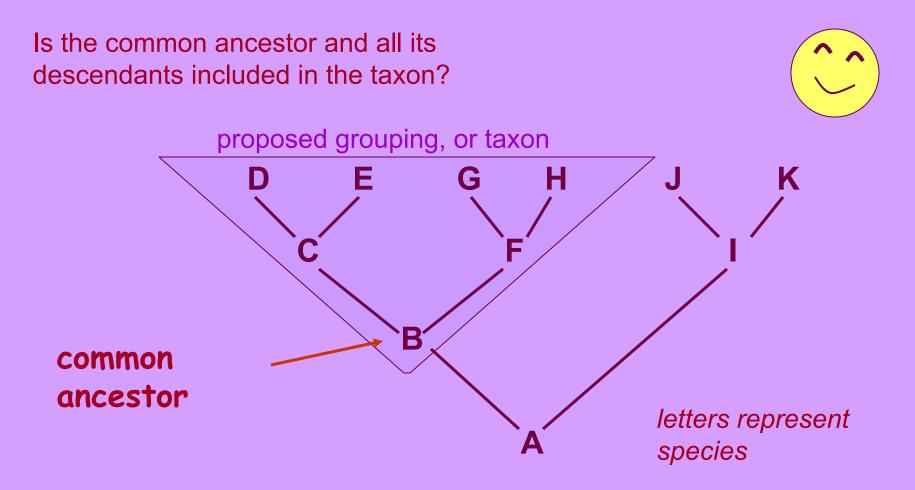

Criteria

- Proof of relatedness requires <u>shared</u>, <u>derived</u> characteristics
 - new features evolved by a recent, common ancestor
- Similarities must not be
 - retained from a much earlier <u>ancestor</u>
 - <u>convergent</u>, that is, evolved independently by the two taxa or their recent ancestors
- All forks have just two branches

Example

What is derived vs ancestral?

- Cnidaria are closer to Bilateria than to Porifera, because:
- organized tissues, symmetry, and a digestive cavity are shared, derived characters
- similarities such as multicellularity, calcium carbonate skeletons, and ingestive heterotrophy, are likely ancestral features
- hollow tubes formed by some sponges and anemones are convergences

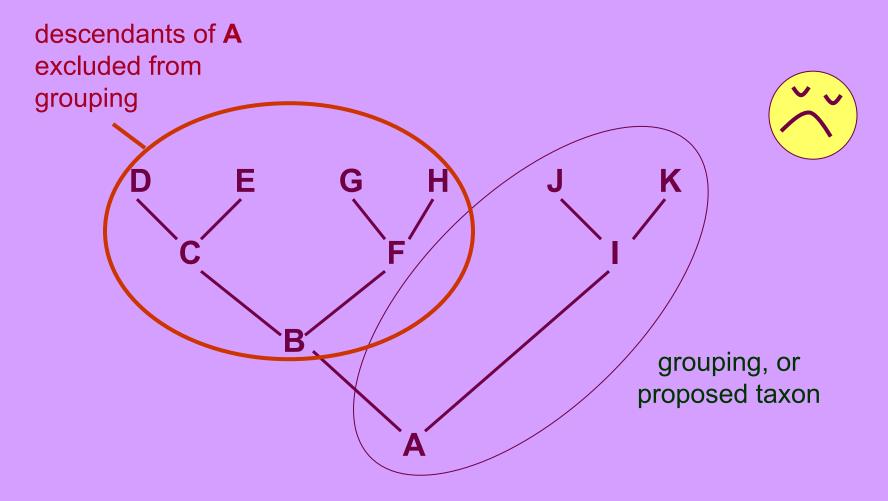


Example

Cnidaria are closer to Bilateria than to Porifera, because:


- organized tissues, symmetry, and a digestive cavity are shared, derived characters
- similarities such as multicellularity, calcium carbonate skeletons, and ingestive heterotrophy, are likely ancestral features
- hollow tubes formed by some sponges and anemones are convergences

Is a taxon monophyletic?



See Hickman 10-4

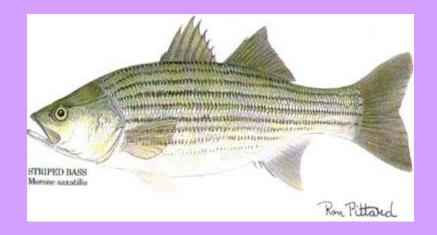
Polyphyletic Groups

Paraphyletic Groups

Example

- A taxon including all pseudocoelomates would be polyphyletic
- The most recent common ancestor of all pseudocoelomates was the original protostome animal
 - It was also the ancestor of many accelomate and eucoelomate phyla
 - And may well have been acoelomate, itself

Species concept


- Typological (morphological) (Before Darwin)
 - Discarded by evolutionists
 - Type specimen deposited in museum
- Biological species concept(Dobzhanzky and Mayr)
 - " a species is a reproductive community of populations (reproductively isolated from others) that occupies a specific niche in nature"
- Evolutionary species concept (Simpson)
 - A single lineage of ancestrodescendent populations that maintains its identity from other such lineages and has its own evolutionary tendencies and historical fate.
- Phylogenetic species
 - A monophyletic unit

Biological Species concept

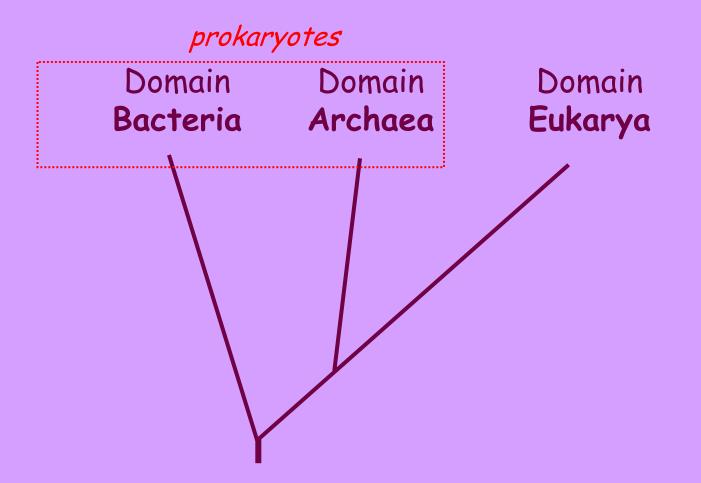
- Based on reproductive compatibility not morphology.
- "Niche" ties in ecological properties
- Breeding experiments necessary
- Molecular studies can differentiate organisms with similar morphology

A Fishy Example!

Some Representatives of the Genus Morone

Striped Bass

White Bass Ecologically Significant Fisheries and Aquaculture



White Perch

Other Terms

- Geographic Range
- Evolutionary duration
- Cosmopolitan vs. Endemic
 - Ranges can change through duration

Hickman pgs 202-204

How many kingdoms are there?

History

- Aristotle (1800's)
 Plants/Animals
- Haeckel (1866)
 - Plants/Animals/Protista
- Whittaker (1969)
 - Fungi/Plants/Animals/Protists/Monerans
- Woese, Kandler, Wheelis (1990)
 - Domain system (Archea, Bacteria, Eucarya)

Domain Eukarya - 8 Kingdoms

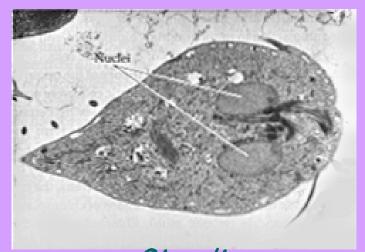
- Archezoa
- Euglenozoa
- Stramenopila
- Alveolata

- Rhodophyta
- Plantae
- Fungi
- Animalia

Eukarya Kingdom Contrasts

- Mode of nutrition
 - Photoautotrophic
 - Absorptive heterotrophic
 - Ingestive heterotrophic
 - mixotrophic
- Uni- or multi-cellular
- Special organelles or locomotion

Uni- and Multi-Cellular


- A unicellular organisms may be 1-celled
 - <u>Or</u> colonial many cells living together, <u>all</u> <u>identical</u> (except reproductive cells)
- A multicellular organism is composed of several different kinds of cells
 - besides those involved in reproduction

Archezoa

- Proper nucleus
- No mitochondria
 <u>all other eukaryotes</u>

have mitochondria

Fig. 11.14

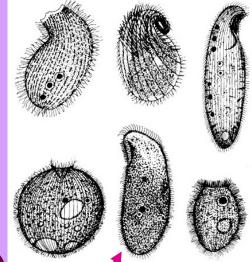
- Unicellular, ingestive and absorptive heterotrophs
- Locomotion: ameboid and flagellar

diatoms

Kingdom Stramenopila

compare Campbell Fig. 16.25 A,B

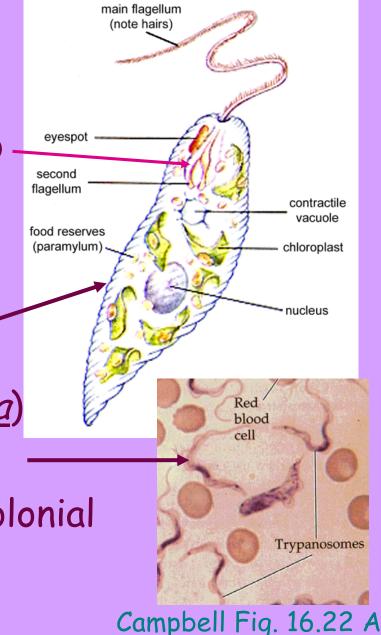
flagellum, if present, "hairy"



kelp - brown seaweed Campbell Fig. 16.26A

- photoautotrophic (diatoms, sea weeds)
- mixotrophic (golden-brown algae)
- absorptive heterotrophic (water molds)
- mostly unicellular, but kelps are multicellular

compare Campbell Fig.16.22 D


internal layers of vacuoles (alveolae)

Alveolata

- cilia, flagella, or ameboid locomotion
- ingestive heterotrophs (ciliates)
- mixotrophs (dinoflagellates)
- absorptive heterotrophs (malaria organism)

Euglenozoa

- organelles or pits close to flagellum
- nutrition varied
 - mixotrophs (*Euglena*)
 - ingestive heterotrophs
 - parasites (<u>Trypanosoma</u>)
 - some amebas
- entirely unicellular, not colonial

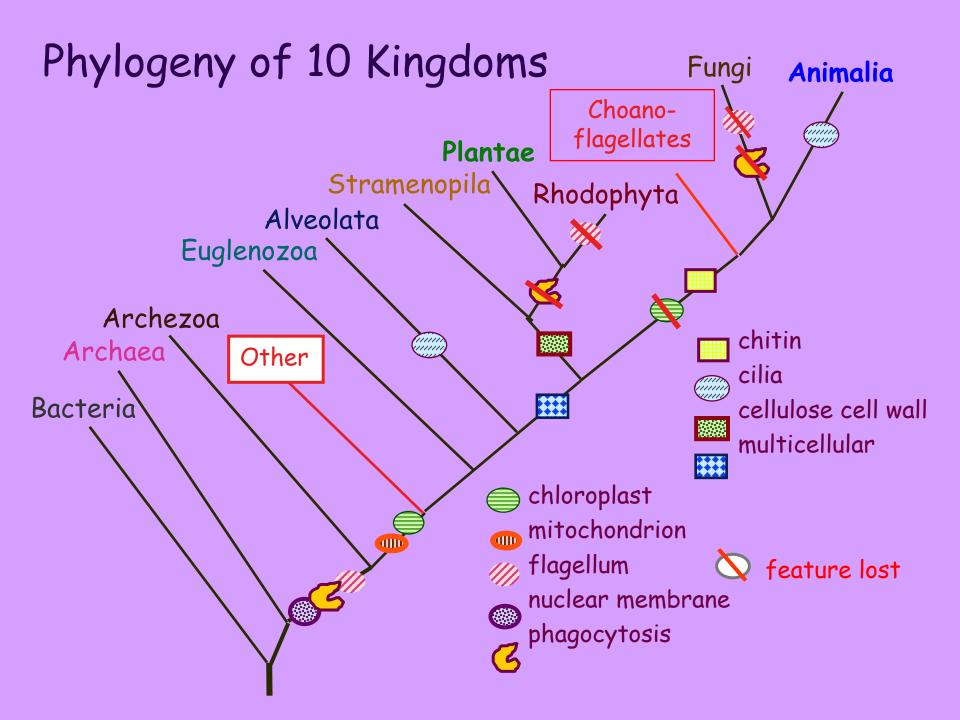
Rhodophyta

- no flagella
- photoautotrophic
- double-membraned chloroplasts
- reddish pigments

Campbell Fig. 16.26 b

Plantae

- photoautotrophic
- cellulose cell walls
- unicellular ones called green algae
- multicellular ones called plants


compare Campbell Fig. 17.3 C

Fungi

- multicellular, coenocytic, absorptive heterotrophs with chitinous cell walls
- most lack flagella

Animalia

- multicellular, ingestive heterotrophs without cell walls
- many have flagella and cilia

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Protostome and deuterostome comparison

PROTOSTOMES		DEUTEROSTOMES
Spiral cleavage	Cleavage mostly spiral	Cleavage mostly radial Radial Cleavage
Cell from which me will deriv	esoderm	Endomesoderm from pouches from primitive gut (except chordates)
Primitive Mesoder Coelom Blastopo	m In coelomate protostomes the coelom forms as a split in mesodermal bands (schizocoelous)	All coelomate, coelom from fusion of enterocoelous pouches (except chordates, which are schizocoelous) Coelom Mesoderm Primitive gut Blastopore
Anus	Mouth from, at, or near blastopore; anus a new formation	Anus from, at, or near blastopore, mouth a new formation
Annelid (earthworm)	Embryology mostly determinate (mosaic)	Embryology usually indeterminate (regulative)
Mouth	Includes phyla Platyhelminthes, Nemertea, Annelida, Mollusca, Arthropoda, minor phyla	Includes phyla Echinodermata, Hemichordata, Chaetognatha, Phoronida, Ectoprocta, Brachiopoda, Chordata