Chapter 10

Hydrogen

Hydrogen and hydride ions

Isotopes of hydrogen

Dihydrogen

Polar and non-polar E-H bonds

Hydrogen Bonding

Classes of binary hydrides

Water of crystallization

- Solids that consist of molecules of a compound along with water molecules are named hydrates.
- Contain water bound to cations to anions or other electron rich atoms via hydrogen bonds.
 [M(OH₂)₆]ⁿ⁺ etc.
- Water of crystallization found in some crystals and hydrated metal halides e.g. $\text{CuSO}_{4}.5\text{H}_{2}\text{O}$
- CoCl₂(H₂O)₆ has a coordination sphere around the metal as *trans*-[CoCl₂(H₂O)₄] and two equivalents of water of crystallization that are not bound to Co.

Hydride Ion

 $H(g) + e^{-} \rightarrow H^{-}(g) \quad \Delta_{EA}H(298K) = -73 \text{ kJ mol}^{-1}$

In the solid state, all alkali metal hydrides crystallize with the NaCl structure type.

•From the crystal structure, the radius of H⁻ can be estimated by: internuclear distance = r_{cation} + r_{anion}

Three common isotopes: protium, deuterium, and tritium

	Protium	Deuterium	Tritium
$Symbols^\dagger$	¹ H or H	² H or D	³ H or T
Natural abundance	99.985%	0.0156%	<1 in 10^{17} atoms
Isotopic mass/u	1.0078	2.0141	3.0160
Nuclear spin	$\frac{1}{2}$	1	$\frac{1}{2}$

[†] Strictly, ¹H should be written as ${}_{1}^{1}$ H, ²H as ${}_{1}^{2}$ H and ³H as ${}_{1}^{3}$ H, but the less rigorous symbols are generally used.

Internuclear distance

Selected properties of H_2O and D_2O ('heavy water').

Property	H ₂ O	D_2O
Melting point/K	273.00	276.83
Boiling point/K	373.00	374.42
Temperature of maximum density / K^{\dagger}	277.0	284.2
Maximum density / $g cm^{-3}$	0.999 95	1.105 3
Relative permittivity (at 298 K)	78.39	78.06
<i>K</i> _w (at 298 K)	1×10^{-14}	$2 imes 10^{-15}$
Symmetric stretch, \overline{v}_1 (gaseous molecule)/cm ⁻¹	3657	2671

 † See Fig. 7.2. ‡ The symmetric stretching mode is illustrated (for SO_2) in Fig. 3.12.

Why is the boiling point of D_2O greater than that of H_2O ?

What about tritium? Where does it come from?

Dihydrogen

Physical property	Value
Melting point/K	13.66
Boiling point/K	20.13
Enthalpy of vaporization / kJ mol ⁻¹	0.904
Enthalpy of fusion/kJ mol ⁻¹	0.117
Density $(273 \text{ K})/\text{g} \text{ dm}^{-3}$	0.090
Bond dissociation enthalpy/kJ mol ⁻¹	435.99
Interatomic distance/pm	74.14
Standard entropy $(298 \text{ K}) / \text{J K}^{-1} \text{ mol}^{-1}$	130.7

Selected physical properties of H₂.

Dihydrogen production

 $\begin{aligned} &Zn(s) + 2HCI(aq) \rightarrow ZnCI_2(aq) + H_2(g) \\ &2AI(s) + 2NaOH(aq) + 6 H_2O(I) \rightarrow 2Na[AI(OH)_4](aq) + 3 H_2(g) \\ &CaH_2(s) + 2H_2O(I) \rightarrow Ca(OH)_2(aq) + 2H_2(g) \end{aligned}$

	Cu/ZnO catalyst		Habor Process
$CO + 2H_2$	~550 K, 50 bar	- CH ₃ OH	Habel Flucess

Reagents above are known as **synthesis gas**. and the mixture is manufactured by the **water-gas shift** reaction.

$$CH_4 + H_2O \xrightarrow[]{\text{Ni catalyst}}{-1200 \text{ K}} CO + 3H_2$$

$$CO + H_2O \xrightarrow[]{\text{iron oxide catalyst}}{-700 \text{ K}} CO_2 + H_2$$

hydrogen economy – formation of H₂ from H₂O requires a large energy input

Box 10.2 Left: Stored energy in various fuels. Right: The assembly of one cell in a polymer electrolyte membrane fuel cell.

The difference in electronegativity values between E and H means the bond may be:

- •Non-polar, or polar in either of the senses given the diagram above.
- •When E is a p-block element, B-H, C-H, Si-H bonds are essentially non-polar
- •When E is a metal (electropositive) H carries a partial negative charge.
- $\bullet When \; E \; is \; N, \; O, \; or \; F \; the \; H \; atom \; carries \; a \; partial \; positive \; charge$

Hydrogen bonding					
$\begin{bmatrix} H & H \\ 0 & H & H \\ H & H \end{bmatrix}^{+}$ $\begin{bmatrix} H_{3}O \\ H_{3}O \end{bmatrix}^{+} + H_{2}O$	$\begin{bmatrix} O & H & O \\ H & H \end{bmatrix}^{-1}$ $H_2O + [OH]^{-1}$	$\begin{bmatrix} H & H \\ H - N & H & H \\ H - N & H & H \end{bmatrix}^{+}$ $\begin{bmatrix} NH_4 \end{bmatrix}^{+} + NH_3$			

Category of hydrogen bond	Hydrogen bond (····)	Dissociation enthalpy/kJ mol ⁻¹
Symmetrical	$F \cdots H \cdots F$ in $[HF_2]^-$ (see eq. 10.26)	163
Symmetrical	O····H····O in $[H_5O_2]^+$ (see structure 10.2)	138
Symmetrical	N·····H·····N in $[N_2H_7]^+$ (see structure 10.4)	100
Symmetrical	O····H····O in $[H_3O_2]^-$ (see structure 10.3)	96
Asymmetrical	N–H·····O in $[NH_4]^+$ ·····OH ₂	80
Asymmetrical	$O-H\cdots Cl$ in $OH_2\cdots Cl^-$	56
Asymmetrical	$O-H\cdots O$ in $OH_2\cdots OH_2$	20
Asymmetrical	S–H····S in SH_2 ····S H_2	5
Asymmetrical	C–H····O in HC \equiv CH····OH ₂	9
Asymmetrical	C–H····O in CH_4 ····O H_2	1 to 3

[†] Data are taken from: T. Steiner (2002) Angew. Chem. Int. Ed., vol. 41, p. 48.

Trends in (a) melting and (b) boiling points for some *p*-block hydrides, EH_n.

 $\Delta_{vap}H$ (measured at the boiling point of the liquid) for some *p*-block hydrides, EH_{*n*}.

Trouton's Rule

An interesting and useful approximation: • The ratio of the heat of vaporization and the boiling point is (approximately) constant

 $\Delta_{\text{vap}}S = \Delta_{\text{vap}}H/bp \sim 88 \text{ J K}^{-1} \text{ mol}^{-1}$

• Boiling point of cyclohexane is 69°C. Therefore,

 $\Delta_{vap}H = (69 + 273)(88) \sim 30 \text{ kJ/mol}$

which is within 2-3% of the experimental value

• Works well for unassociated liquids and gives useful information about degree of association.

Hydrogen-bonded chains in the solidstate structure of Me₂NNO₂

1 H 2.20	
3 Li	4 Be
0.98	1.57
11	12

Pauling Electronegativity Values

5	6	7	8	9
B	C	N	0	F
2.04	2.55	3.04	3.44	3.98
13	14	15	16	17

Binary Hydrides

Four major classes: metallic, saline (salt like), molecular, covalent (with extended structures)

Metal	$\Delta_{a}H^{0}(M)$ / kJ mol ⁻¹	$\frac{IE_1(\mathbf{M})}{/\mathbf{kJmol}^{-1}}$	$\Delta_{ m lattice} H^{ m o} / { m kJmol}^{-1}$	$\Delta_{\rm f} H^{ m o}({ m MH}) / { m kJmol}^{-1}$
Li	161	521	-920	-90.5
Na	108	492	-808	-56.3
Κ	90	415	-714	-57.7
Rb	82	405	-685	-52.3
Cs	78	376	-644	-54.2

polymeric chain structure of ${\rm BeH}_2$