## \#423452 <br> Topic: Oxidation Number

## Passage

Assign oxidation number to the underlined elements in each of the following species.
$\mathrm{NaH}_{2}{ }^{\mathrm{P}} \mathrm{O}_{4}$

Solution
Let X be the oxidation state of P in $\mathrm{NaH}_{2} \mathrm{PO}_{4}$.
$+1+2(1)+X+4(-2)=+5$
Hence, the oxidation state of P in $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ is +5 .

## \#423454

Topic: Oxidation Number

## Passage

Assign oxidation number to the underlined elements in each of the following species.
$\mathrm{NaH}^{\mathrm{S}} \mathrm{O}_{4}$

Solution
Let X be the oxidation state of S in $\mathrm{NaHSO}_{4}$
$+1+1+X+4(2-)=0$
$x=+6$
Hence, the oxidation state of S in $\mathrm{NaHSO}_{4}$ is +6 .

## \#423455

Topic: Oxidation Number

## Passage

Assign oxidation number to the underlined elements in each of the following species.
$\mathrm{H}_{4}{ }_{-2} \mathrm{O}_{7}$

Solution
Let X be the oxidation state of P in $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$.
$4(+1)+2 X+7(-2)=0$
$x=+5$
Hence, the oxidation state of P in $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ is +5 .

## \#423464

Topic: Oxidation Number

## Passage

Assign oxidation number to the underlined elements in each of the following species.
$K_{2}{ }^{M n} O_{4}$

## Solution

Let $\mathrm{x} e$ the oxidation number of Mn in $\mathrm{K}_{2} \mathrm{MnO}_{4}$.
$2(+1)+X+4(-2)=0$
$2+X-8=0$
$X=6$

## \#423468

Topic: Oxidation Number
Assign oxidation number to the underlined elements in each of the following species.
$\mathrm{Ca}_{-2}^{\mathrm{O}}$

Solution
Let $x$ be the oxidation number of O in $\mathrm{CaO}_{2}$.
$2+2 x=0$
$x=-1$
\#423470
Topic: Oxidation Number
Passage
Assign oxidation number to the underlined elements in each of the following species.
$\mathrm{Na}^{B} \mathrm{H}_{4}$

Solution
Let $x$ be the oxidation number of $B$ in $\mathrm{NaBH}_{4}$.
$+1+x+4(-1)=0$
$x=+3$
\#423474
Topic: Oxidation Number
Passage
Complete the following reactions:
$H_{2}(g)+M_{m} O_{o}(s) \stackrel{\Delta}{\rightarrow}$

Solution
The completed reaction is
$o H_{2}(g)+M_{m} \mathrm{O}_{\mathrm{o}}(\mathrm{s}) \xrightarrow{\Delta} m M(\mathrm{~s})+o \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

- moles of $\mathrm{H}_{2}$ react with 1 mole of $M_{m} \mathrm{O}_{\mathrm{o}}(s)$ to give $m$ moles of $\mathrm{M}(\mathrm{s})$ and o moles of $\mathrm{H}_{2} \mathrm{O}()$


## \#423477

Topic: Oxidation Number
Passage
Assign oxidation number to the underlined elements in each of the following species.
$\mathrm{H}_{2}{ }_{-2}^{\mathrm{S}} \mathrm{O}_{7}$

## Solution

Let $X$ be the oxidation state of S in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$.
$2(+1)+2 X+7(2-)=0$
$X=+6$
Hence, the oxidation state of S in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ is +6 .

## \#423481

Topic: Oxidation Number

## Passage

Assign oxidation number to the underlined elements in each of the following species.
$\mathrm{KAll}_{-} \mathrm{S}_{\mathrm{S}} \mathrm{O}_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$

## Solution

Let $x$ be the oxidation state of S in $\left.K A l^{\mathrm{S}} \mathrm{O}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$.
$+1+3+2(x+4(-2))=0$
$+4+2 x-16=0$
$2 x=12$
$x=+6$

## \#423491

Topic: Oxidation Number
What are the oxidation number of the underlined elements in each of the following and how do you rationalise your results?
$K^{\prime}$

Solution
Let $X$ be the oxidation number of I in $\mathrm{KI}_{3}$
$+1+3 X=0$
$X=\frac{1}{3}$
But the oxidation number cannot be fractional.
$K I_{3}$ exists as $K^{+}\left[I-I \leftarrow I^{-}\right.$. A coordinate bond is formed between $I_{2}$ molecule and $I^{-}$ion. The oxidation number of two $I$ atoms in $I_{2}$ molecule is 0 and that of $I^{-}$ion is -1 .

## \#423493

Topic: Oxidation Number

## Passage

What are the oxidation number of the underlined elements in each of the following and how do you rationalise your results ?
$\mathrm{H}_{2}{ }_{-4}^{\mathrm{S}} \mathrm{O}_{6}$

## Solution

Let $X$ be the oxidation state of S in $\mathrm{H}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$.
$2(+1)+4 X+6(2-)=0$
$x=+\frac{5}{2}$
Hence, the oxidation state of S in $\mathrm{H}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ is $+5 / 2$.
But oxidation number cannot be fractional.
Terminal S atoms have +5 oxidation number and middle S atoms have 0 oxidation number


## \#423494

Topic: Oxidation Number
What are the oxidation number of the underlined elements in each of the following and how do you rationalise your results?
Fe
$-3$

## Solution

Let X be the oxidation state of Fe in $\mathrm{Fe}_{3} \mathrm{O}_{4}$.
$3 X+4(-2)=0$
$x=+\frac{8}{3}$
Hence, the oxidation state of Fe in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is $+8 / 3$.
But, oxidation number cannot be fractional.
$\mathrm{Fe}_{3} \mathrm{O}_{4}$ exists as mixture of FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$, in which Fe has oxidation number of +2 and +3 respectively.

## \#423498

Topic: Oxidation Number

## Passage

What are the oxidation number of the underlined elements in each of the following and how do you rationalise your results ?
${ }^{C} \mathrm{H}_{3} C_{\mathrm{H}_{2} \mathrm{OH}}$

## Solution

For the C atom of methyl group, each H has +1 oxidation number. 3 H atoms of methyl group in total have +3 oxidation number. The oxidation number of C atom of methyl group will be -3 as it will balance the total oxidation number of 3 H atoms.

For the C atom of methylene group, each H has +1 oxidation number and -OH group has -1 oxidation number. The oxidation number of C atom of methylene group will be -1 as it will balance the total oxidation number of 2 H atoms and one -OH group.

Note: The average oxidation number of $C$ atom is as calculated below.
Let $X$ be the oxidation state of C in $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}$.
$2 X+6(+1)-2=0$
$X=-2$
Hence, the oxidation state of C in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ is -2 .

## \#423504

Topic: Oxidation Number

## Passage

What are the oxidation number of the underlined elements in each of the following and how do you rationalise your results ?
$C_{\mathrm{H}_{3} \mathrm{COOH}}$

## Solution

(a) By conventional method:

We will determine average oxidation number of $C$ atom
Let $x$ be the oxidation number of C in $\mathrm{CH}_{3} \mathrm{COOH}$.
The oxidation numbers of H and O are +1 and -2 respectively.
$2 X+4(+1)+2(-2)=0$
$x=0$
Thus, the oxidation number of both the carbon atoms is zero.
(b) According to the structure:

We will determine the oxidation number of each C atom
(i) For C atom of -COOH group, let X be the oxidation number of this C atom
 -OH group is -1 . The C atom of methyl group will not affect the oxidation number of - COOH group.
$x+1+1(-2)+1(-1)=0$
$x=+2$
(ii) For methyl carbon atom, let X be the oxidation number of this C atom

This C atom is attached to 3 H atoms and one -COOH group.
The oxidation number of H atom is +1 and the -COOH group does not affect the oxidation number of C atom of methyl group
$3(+1)+x+1(-1)=0$
$x=-2$

## \#423513

Topic: Types of redox reactions

## Passage

Justify that the following reactions are redox reactions:
$\mathrm{CuO}(s)+\mathrm{H}_{2}(g) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(g)$

## Solution

The oxidation number of Cu decreases from +2 to O and that of H increases from O to +1 . Hence, CuO is reduced to Cu and $\mathrm{H}_{2}$ is oxidized to $\mathrm{H}_{2} \mathrm{O}$ Hence, it is a redox reaction.

## \#423538

Topic: Types of redox reactions
$2 K(s)+F_{2}(g) \rightarrow 2 K^{+} F^{-}(s)$ is a type of $\qquad$ reaction.

A disproportionation

B combustion

C corrosion

D redox

Solution
The oxidation number of K increases from 0 to +1 and the oxidation number of F 2 decreases from 0 to -1 . Hence, K is oxidized and $F_{2}$ is reduced. Hence, it is redox reaction.

## \#423548

Topic: Oxidation and reduction - electron transfer concept
Fluorine reacts with ice and results as follows:
$\mathrm{H}_{2} \mathrm{O}(s)+\mathrm{F}_{2}(g) \rightarrow \mathrm{HF}(g)+\mathrm{HOF}(\mathrm{s})$
Justify that this reaction is a redox reaction.

Solution
The oxidation number of $F_{2}$ changes from 0 to -1 .
Thus, it is reduced. The oxidation number of oxygen changes from -2 to 0 . Hence, it is oxidized. Thus, it is a redox reaction.

## \#423550

Topic: Types of redox reactions

## Passage

Complete the following chemical reactions. Classify the below into (a) hydrolysis, (b) redox and (c) hydration reactions.

```
MnO-
```

Solution
The complete chemical equation is given below:
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{O}_{2}(a q)+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}(a q)+8 \mathrm{H}_{2} \mathrm{O}(\eta)+5 \mathrm{O}_{2}(g)$
This is an example of redox reaction. Mn is reduced and H 2 O 2 is oxidized.

## \#423554

Topic: Oxidation Number
Calculate the oxidation number of sulphur, chromium and nitrogen in $\mathrm{H}_{2} \mathrm{SO}_{5}, \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ and $\mathrm{NO}_{3}^{-}$. Suggest structure of these compounds. Count for the fallacy.

## Solution

(a) $\mathrm{H}_{2} \mathrm{SO}_{5}$ by conventional method.

Let $x$ be the oxidation number of $S$
$2(+1)+x+5(-2)=0$
$x=+8$
+8 Oxidation state of $S$ is not possible as $S$ cannot have oxidation number more than 6 . The fallacy is overcomed if we calculate the oxidation number from its structure
$\mathrm{HO}-\mathrm{S}\left(\mathrm{O}_{2}\right)-\mathrm{O}-\mathrm{O}-\mathrm{H}$.
$-1+X+2(-2)+2(-1)+1=0$
$x=+6$
(b) Dichromate ion

Let x be the oxidation number of Cr in dichromate ion
$2 x+7(-2)=-2$
$x=+6$
Hence the oxidation number of Cr in dichromate ion is +6 . This is correct and there is no fallacy.
(c) Nitrate ion, by conventional method

Let x be the oxidation number of N in nitrate ion
$x+3(-2)=-1$
From the structure $\mathrm{O}^{-}-\mathrm{N}^{+}(\mathrm{O})-\mathrm{O}^{-}$
$x+1(-1)+1(-2)+1(-2)=0$
$x=+5$
Thus there is no fallacy.



Dichromate


Nitrate
\#423557
Topic: Oxidation Number
Passage
Write formulas for the following compounds.

Mercury (II) chloride

## Solution

Formula for mercury (II) chloride is $\mathrm{HgCl}_{2}$
\#423560
Topic: Oxidation Number
Passage
Write formulas for the following compounds.

Nickel (II) sulphate

## Solution

Formula for Nickel (II) sulphate is $\mathrm{NiSO}_{4}$.

| \#423562 |
| :--- |
| Topic: Oxidation Number |
| Passage |
| Write formulas for the following compounds. |
| Tin (IV) oxide |
| Solution |
| As Tin has +4 oxidation state(IM, and oxidation state of $O$ is -2 . |
| So, there must be 2 O atom so that neutral compound can be formed with correct formula. |
| So, formula must be $\mathrm{SnO}_{2}$. |
| \#423565 |
| Topic: Oxidation Number |
| Passage |
| Write formulas for the following compounds. |

Thallium (I) sulphate

Solution
Formula for thallium(l)sulphate is $\mathrm{T}_{2} \mathrm{SO}_{4}$.
\#423566
Topic: Oxidation Number
Passage
Write formulas for the following compounds.

Iron (III) sulphate

## Solution

Formula for Iron (III) sulphate is $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.

## \#423569

Topic: Oxidation Number
Passage
Write formulas for the following compounds.

Chromium (III) oxide

## Solution

Formula for chromium (III) oxide is $\mathrm{Cr}_{2} \mathrm{O}_{3}$

## \#423571

Topic: Oxidation Number
Suggest a list of the substances where carbon can exhibit oxidation states from -4 to +4 and nitrogen from -3 to +5 .

## Solution

The substances alongwith oxidation states of $C$ are shown below.

| Substance | Oxidation number of C |
| :--- | :--- |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 0 |
| $\mathrm{FC} \equiv \mathrm{CF}$ | +1 |
| $\mathrm{HC} \equiv \mathrm{CH}$ | -1 |
| $\mathrm{CHCl}_{3}, \mathrm{CO}$ | +2 |
| $\mathrm{CH}_{3} \mathrm{Cl}$ | -2 |
| $\mathrm{Cl}_{3} \mathrm{C}-\mathrm{CCl}_{3}$ | +3 |
| $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$ | -3 |
| $\mathrm{CCl}_{4}, \mathrm{CO}_{2}$ | +4 |
| $\mathrm{CH}_{4}$ | -4 |

The substances alongwith oxidation states of N are shown below.

| Substance | Oxidation number of N |
| :--- | :--- |
| $\mathrm{N}_{2}$ | 0 |
| $\mathrm{~N}_{2} \mathrm{O}$ | +1 |
| $\mathrm{~N}_{2} \mathrm{H}_{2}$ | -1 |
| NO | +2 |
| $\mathrm{~N}_{2} \mathrm{H}_{4}$ | -2 |
| $\mathrm{~N}_{2} \mathrm{O}_{3}$ | +3 |
| $\mathrm{NH}_{3}$ | -3 |
| $\mathrm{NO}_{2}$ | +4 |
| $\mathrm{~N}_{2} \mathrm{O}_{5}$ | +5 |

## \#423576

Topic: Oxidation and reduction - electron transfer concept
While sulphur dioxide and hydrogen peroxide can act as oxidising as well as reducing agents in their reactions, ozone and nitric acid act only as oxidants. Why ?

## Solution

The S atom in $\mathrm{SO}_{2}$ has +4 oxidation number. The minimum and maximum oxidation numbers of S are -2 and +6 respectively. Hence, in $\mathrm{SO}_{2}, \mathrm{~S}$ can increase and decrease its oxidation number. Hence, $\mathrm{SO}_{2}$ is an oxidizing agent as well as reducing agent.

The $O$ atom in hydrogen peroxide has oxidation number of -1 . The minimum and maximum oxidation numbers of $O$ are -2 and 0 respectively. Hence, hydrogen peroxide is oxidant as well as reluctant.

In ozone, O atom has oxidation number of 0 . It can decrease its oxidation number to -1 or -2 but cannot increase it. Hence ozone is an oxidizing agent.
In nitric acid, N has oxidation number of +5 which is maximum. N can only decrease its oxidation number. Hence, nitric acid is an oxidizing agent.

## \#423608

Topic: Oxidation and reduction - electron transfer concept
The compound $A g F_{2}$ is unstable compound. However, if formed, the compound acts as a very strong oxidising agent. Why?

## Solution

$A g$ in $A g F_{2}$ has +2 oxidation state which is an unstable oxidation state of $A g$.
When $A g F_{2}$ is formed, silver accepts an electron to form $A_{g}{ }^{+}$.
Hence, silver is reduced and $A g F_{2}$ acts as a very strong oxidizing agent.

## \#423615

Topic: Oxidation Number
 compound of higher oxidation state is formed if the oxidising agent is in excess. Justify this statement giving three illustrations.

## Solution

Whenever a reaction between an oxidizing agent and a reducing agent is carried out, a compound of lower oxidation state is formed if the reducing ent is in excess and a compound of higher oxidation state is formed if the oxidizing agent is in excess. Following illustrations justify this.
(i) Oxidizing agent is $F_{2}$ and reducing agent is $P_{4}$. When excess $P_{4}$ reacts with $F_{2}, P F_{3}$ is produced in which P has +3 oxidation number.
$P_{4}($ excess $)+F_{2} \rightarrow P F_{3}$

But if fluorine is in excess, $P F_{5}$ is formed in which $P$ has oxidation number of +5 .
$P_{4}+F_{2}$ (excess) $\rightarrow P F_{5}$
(ii) Oxidizing agent is oxygen and reducing agent is K . When excess K reacts with oxygen, $\mathrm{K}_{2} \mathrm{O}$ is formed in which oxygen has oxidation number of -2 .
$4 \mathrm{~K}($ excess $)+\mathrm{O}_{2} \rightarrow 2 \mathrm{~K}_{2} \mathrm{O}$

But if oxygen is in excess, then $\mathrm{K}_{2} \mathrm{O}_{2}$ is formed in which O has oxidation number of -1 .
$2 \mathrm{~K}+\mathrm{O}_{2}$ (excess) $\rightarrow \mathrm{K}_{2} \mathrm{O}_{2}$
(iii) The oxidizing agent is oxygen and the reducing agent is $C$. When an excess of $C$ reacts with oxygen, $C O$ is formed in which $C$ has +2 oxidation number.

C (excess) $+\mathrm{O}_{2} \rightarrow \mathrm{CO}$

When excess of oxygen is used, $\mathrm{CO}_{2}$ is formed in which C has +4 oxidation number.
$\mathrm{C}+\mathrm{O}_{2}$ (excess) $\rightarrow \mathrm{CO}_{2}$

## \#423663

Topic: Oxidation and reduction - electron transfer concept
$2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}(a q)+I_{2}(s) \rightarrow S_{4} \mathrm{O}_{6}^{2-}(a q)+2 I^{-}(a q)$
$\mathrm{S}_{2} \mathrm{O}_{3}^{2-}(a q)+2 \mathrm{Br}_{2}(\eta)+5 \mathrm{H}_{2} \mathrm{O}(\eta) \rightarrow 2 \mathrm{SO}_{4}^{2-}(a q)+4 \mathrm{Br}^{-}(a q)+10 \mathrm{H}^{+}(a q)$
Why does the same reductant, thiosulphate react differently with iodine and bromine?

## Solution

Bromine is stronger oxidizing agent. Hence, it oxidizes $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ to $\mathrm{SO}_{4}^{2-}$.
lodine is a weaker oxidizing agent. Hence, it oxidizes $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ to $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$.
\#423664
Topic: Oxidation and reduction - electron transfer concept
Justify giving reactions that among halogens, fluorine is the best oxidant and among hydrohalic compounds, hydroiodic acid is the best reductant.

Solution

Fluorine oxidizes chloride ion to chlorine, bromide ion to bromine and iodide ion to iodine respectively.
$\mathrm{F}_{2}+2 \mathrm{Cl}^{-} \rightarrow 2 \mathrm{~F}^{-}+\mathrm{Cl}_{2}$
$F_{2}+2 B r^{-} \rightarrow 2 F^{-}+B r_{2}$
$F_{2}+2 I^{-} \rightarrow 2 F^{-}+I_{2}$

Chlorine oxidizes bromide ion to bromine and iodide ion to iodine
$\mathrm{Cl}_{2}+\mathrm{Br}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{Br}_{2}$
$\mathrm{Cl}_{2}+\mathrm{I}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{I}_{2}$

Bromine oxidizes iodide ion to iodine
$B r_{2}+I^{-} \rightarrow 2 \mathrm{Br}^{-}+I_{2}$

halogens is $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$.
$H$ and HBr can reduce sulphuric acid to sulphur dioxide but $H C /$ and $H F$ cannot. Thus, $H /$ and $H B r$ are stronger reducing agents than $H C /$ and $H F$.
$2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{I}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{HBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Br}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
lodide ion can reduce $C u(I)$ to $C u(I)$ but bromide cannot
$4 I^{-}+2 C_{U^{2+}} \rightarrow \mathrm{Cu}_{2} I_{2}+I_{2}$

Hence, among the hydrohalic compounds, hydroiodic acid is the best reductant. The reducing power of hydrohalic acids is $\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$.
\#423692
Topic: Oxidation Number
Passage
Consider the elements $\mathrm{Cs}, \mathrm{Ne}, \mathrm{I}$ and $F$.

Identify the element that exhibits only negative oxidation state.

Solution
Fluorine is the most electronegative element in the periodic table. It exhibits only negative oxidation state of -1 .
\#423693
Topic: Oxidation Number
Passage
Consider the elements $\mathrm{Cs}, \mathrm{Ne}, \mathrm{I}$ and $F$

Identify the element that exhibits only postive oxidation state.

## Solution

Cs is the most electropositive element in the periodic table. It is an alkali metal and exhibits only positive oxidation state of +1

## \#423694

Topic: Oxidation Number

## Passage

Consider the elements $\mathrm{Cs}, \mathrm{Ne}, \mathrm{I}$ and F .

Identify the element that exhibits both positive and negative oxidation states

Solution
lodine exhibits both positive and negative oxidation states. It exhibits oxidation states $-1,+1,+3,+5$ and +7 .
\#423695
Topic: Oxidation Number
Passage
Consider the elements $\mathrm{Cs}, \mathrm{Ne}, \mathrm{I}$ and F .

Identify the element which exhibits neither the negative nor does the positive oxidation state.

Solution
The element which exhibits neither the negative nor does the positive oxidation state is Ne . It is a noble gas with oxidation state of zero.
\#423701
Topic: Balance redox reactions
In Ostwald's process for the manufacture of nitric acid, the first step involves the oxidation of ammonia gas by oxygen gas to give nitric oxide gas and steam. What is the maximum weight of nitric oxide that can be obtained starting only with 10.00 g . of ammonia and 20.00 g of oxygen ?

Solution
The balanced chemical equation is:
$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$
The molar masses of ammonia and oxygen are $17 \mathrm{~g} / \mathrm{mol}$ and $32 \mathrm{~g} / \mathrm{mol}$ respectively
5 moles $(160 \mathrm{~g})$ of oxygen reacts with 4 moles $(68 \mathrm{~g})$ of ammonia.
20 g of oxygen will react with $\frac{68 \times 20}{160}=8.5 \mathrm{~g}$ of ammonia. Hence, oxygen is the limiting regent.
The molar mass of $N O$ is $30 \mathrm{~g} / \mathrm{mol}$.
5 moles $(160 \mathrm{~g})$ of oxygen will produce 4 moles $(120 \mathrm{~g})$ of $\mathrm{NO} \$$.
20 g of oxygen will produce $\frac{120 \times 20}{160}=15 \mathrm{~g}$ of NO .
\#423705
Topic: Electrode potential

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| * | ${ }_{\text {Pr ma }}$ | $\xrightarrow{+\mathrm{Cr}^{2}}$ | ${ }_{1}^{2.87}$ |
|  |  | $\rightarrow 240$ | ${ }^{1,78}$ |
|  | $\mathrm{Ac}^{\text {an+ }} \mathrm{Be}$ | $\rightarrow$ xata | 1,40 |
|  |  | $\rightarrow 3 \mathrm{za}$ | ${ }_{1}^{1.36}$ |
|  | 9en +1t +4c | $\rightarrow$ 2no | ${ }_{\substack{1,23 \\ 1.23}}^{1.25}$ |
|  | $\mathrm{Br}_{5}+2 \mathrm{ce}$ | $\rightarrow$ zar | 1.09 |
| \% |  | $\rightarrow$ Hole 2 HS | ${ }_{\text {a }}^{0,07}$ |
| \% | atecter | $\rightarrow$ hest | ${ }_{0}^{0.180}$ |
| \% | +10) | $\rightarrow{ }_{\text {cee }} \rightarrow$ | ${ }_{\substack{0.078 \\ 0.08}}$ |
|  |  |  | ${ }_{0}^{0.54}$ |
| 4 |  | $\rightarrow \mathrm{COH}$ | ${ }_{0}^{0.52}$ |
|  | Aecmite | $\rightarrow$ Aspl + Cr | 0.28 |
|  | $2 \mathrm{tar}+2 \mathrm{e}$ | $\rightarrow \mathrm{Hasem}$ | 0.10 <br> 0.00 |
|  |  | $\rightarrow$ Pbes | 0.13 |
|  |  | $\rightarrow$ mild | -1.25 |
|  |  | $\rightarrow$ Pras | -0.44 |
|  | $\mathrm{zan}^{2+2 c^{2}}$ | $\rightarrow$ zacm | 4.76 |
|  |  | $\rightarrow$ 为 | ${ }_{\text {-1. }}$ |
|  | $\mathrm{Mrg}^{\text {mer }}$ | $\xrightarrow{\rightarrow \text { xeses }}$ | ${ }_{-2.21}^{-2.36}$ |
|  | $\mathrm{Cor}+2 \mathrm{c}$ | $\rightarrow$ cat | ${ }^{2.287}$ |
|  |  | ( | -2.039 |

Using the standard electrode potentials given in the table, predict if the reaction between the following is possible.
$F e^{3+}(a q)$ and $I^{-}(a q)$

## Solution

The oxidation half reaction is $2 J^{-}(a q) \rightarrow I_{2}(s)+2 e^{-} ; E^{0}=-0.54 \mathrm{~V}$.
The reduction half reaction is $\left[F_{e^{3+}}(a q)+e^{-} \rightarrow\right] \times 2 ; E^{0}=+0.77 \times 2 V=+0.77 V$.
The net cell reaction is $2 \mathrm{Fe}^{3+}(a q)+2 I^{-}(a q) \rightarrow 2 \mathrm{Fe}^{2+}(a q)+I_{2}(s) ; E^{0}=+23 \mathrm{~V}$.
Since, the cell potential is positive, the reaction is feasible

## \#423706

Topic: Electrode potential


Using the standard electrode potentials given in the table，predict if the reaction between the following is possible．
$A_{g}{ }^{+}(\mathrm{aq})$ and $\mathrm{Cu}(\mathrm{s})$

Solution
Oxidation half reaction is $\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(a q)+2 e^{-} ; E^{0}=-0.34 \mathrm{~V}$ ．
Reduction half reaction is $\left[\mathrm{Ag}^{+}(a q)+e^{-} \rightarrow A g(s)\right] \times 2 ; E^{0}=+0.80 \mathrm{~V}$ ．
The net cell reaction is $2 A_{g}{ }^{+}(a q)+C u(s) \rightarrow 2 A g(s)+C u^{2+} ; E^{0}=+0.46 V$ ．
Since，the cell potential is positive，the reaction is feasible．

## \＃423708

Topic：Electrode potential

|  |  | $\rightarrow$ Remestim） | Kiv |
| :---: | :---: | :---: | :---: |
| ＊ |  | $\rightarrow 2 \mathrm{~F}$ | 2，87 |
|  | 11．3．2H | $\rightarrow{ }_{-1} \rightarrow$ | ${ }_{1}^{1,78}$ |
|  | mmot， $\mathrm{sit}+\mathrm{se}$ |  | 1.51 |
|  | Cils +2 | － | ${ }_{1,36}^{1.20}$ |
|  | croat 14 l |  | ${ }_{1}^{1.33}$ |
|  | ane |  | 123 |
| 崖 |  | $\xrightarrow{\rightarrow \text { Noiral }+ \text { 2ho }}$ | ${ }_{\text {la }}^{1.49}$ |
| 新 | ${ }^{24 k+20}$ | $\rightarrow$ Her | ${ }_{0}^{0.028}$ |
| \％ | coter | $\rightarrow \mathrm{re}$ | ${ }_{0}^{0.787}$ |
| ： | 边 | $\xrightarrow[\rightarrow 27]{\rightarrow+2 r^{2}}$ | ${ }_{0}^{0.0 .88}$ |
| d |  |  | ${ }_{\text {a }}^{0.52}$ |
|  | Aemete | $\rightarrow 4 \mathrm{cos}+\mathrm{Cl}$ | ${ }^{0} 0.22$ |
|  | ${ }_{2 r}$ |  | ${ }_{0}^{0.10}$ |
| 9 | Pbrac | $\rightarrow$ mber | ${ }^{-0.13}$ |
|  |  | $\xrightarrow{\rightarrow \text { mued }}$ | ${ }_{-0.14}^{-0.14}$ |
|  | Pe．${ }^{\text {Pax}}$ | $\rightarrow \mathrm{rabi}$ | － |
|  | ${ }_{2 m \times 2}$ |  | ${ }^{-1.74}$ |
|  |  | $\underset{\rightarrow}{\rightarrow \text { Hats }}$ | － |
|  |  | $l$ | － |
|  | $\mathrm{Can}+2 \mathrm{c}^{\mathrm{Na}}$ | $\rightarrow$－ | ${ }_{-287}$ |
|  |  |  | 2．939 |

Using the standard electrode potentials given in the table，predict if the reaction between the following is possible．
$\mathrm{Fe}^{3+}(\mathrm{aq})$ and $\mathrm{Cu}(s)$

## Solution

Oxidation half reaction is $C u(s) \rightarrow C U^{2+}(a q)+2 e^{-} ; E^{0}=-0.34 V$ ．
Reduction half reaction is $\left[F e^{3+}(a q)+e^{-} \rightarrow F e^{2+}(a q)\right] \times 2 ; E^{0}=+0.77 \mathrm{~V}$ ．
The net cell reaction is $2 \mathrm{Fe}^{3+}(a q)+\mathrm{Cu}(s) \rightarrow 2 \mathrm{Fe}^{2+}(a q)+\mathrm{Cu}^{2+} ; E^{0}=+0.43 \mathrm{~V}$ ．
Since，the cell potential is positive，the reaction is feasible．
\＃423710
Topic：Types of redox reactions


Using the standard electrode potentials given in the Table，predict if the reaction between the following is feasible．
$A g(s)$ and $\mathrm{Fe}^{3+}(a q)$

Solution
Oxidation half reaction is $A g(s) \rightarrow A_{g}{ }^{+}(a q)+e^{-} ; E^{0}=-0.80 \mathrm{~V}$ ．
Reduction half reaction is $\mathrm{Fe}^{3+}(a q)+e^{-} \rightarrow \mathrm{Fe}^{2+}(a q) ; E^{0}=+0.77 \mathrm{~V}$ ．
The net cell reaction is $2 F_{e}{ }^{3+}(a q)+A g(s) \rightarrow 2 F_{e}^{2+}(a q)+A_{g}{ }^{+} ; E^{0}=-0.03 \mathrm{~V}$ ．
Since，the cell potential is negative，the reaction is not feasible．

## \＃423712

Topic：Electrode potential

|  |  | $\rightarrow$ Ratase（fm） | $\overline{\mathrm{r}} / \mathrm{iv}$ |
| :---: | :---: | :---: | :---: |
| ＊ | $\mathrm{Brac}_{4}+2 \mathrm{c}$ | $\rightarrow 27$ | ${ }^{2.87}$ |
|  | 14．$+234+2$ | $\xrightarrow{\rightarrow-\mathrm{Ca}^{2}}$ | ${ }_{1}^{1,78}$ |
|  | mate， $\mathrm{sit}+\mathrm{se}$ | $\rightarrow \mathrm{ma}^{-1}$ | 1.51 |
|  | Cils +2 | $\rightarrow$ ar | ${ }_{1,36}^{1,50}$ |
|  |  | $\rightarrow 2 \mathrm{Cra}+7 \mathrm{HCO}$ | ${ }_{123}^{1.23}$ |
|  | ander | $\xrightarrow{\rightarrow} \rightarrow$ 20， | （123 |
| 暏 |  |  | ${ }_{0}^{1.09}$ |
| 数 |  | $\rightarrow$ Het | ${ }_{0}^{0.0 .82}$ |
| \％ | 践 |  | （0， |
| ： | 边 |  |  |
| 新 | $\mathrm{Cum}_{\text {cos }}$ | $\xrightarrow{\rightarrow \text { case }}$ | 0.52 |
| \％ | Aemin + cos | $\rightarrow \mathrm{Acos}+\mathrm{Cl}$ | 0.22 |
| 8 | ${ }_{2 \sim}^{2+2 e r}$ |  | 0．10 |
| \％ | cien |  | －0．00 |
|  | $\mathrm{Sn}^{+2 \mathrm{tan}}$ | $\rightarrow$ sat | －1．14 |
|  | $\mathrm{Na}^{\mathrm{N} \mathrm{N}^{2}+2 \mathrm{c}}$ | $\rightarrow$（tis） | －0．25 |
|  | ${ }_{\text {cor }}$ | $\rightarrow$ | －174 |
|  |  | $\rightarrow$ \％ras | －0，76 |
|  | aremer |  | ${ }_{-2.1 .68}^{-1.68}$ |
|  | Sore | $\rightarrow$－ | ${ }_{-287}$ |
|  | \％+c |  | ${ }_{-2,29}$ |
|  | urer | $\rightarrow$ tis | －3，05 |

Using the standard electrode potentials given in the table，predict if the reaction between the following is possible．
$B r_{2}(a q)$ and $\mathrm{Fe}^{2+}(a q)$

## Solution

Oxidation half reaction is $\left[F e^{2+}(a q) \rightarrow F e^{3+}(a q)+e^{-}\right] ; E^{0}=-0.77 V$ ．
Reduction half reaction is $B r_{2}(a q)+2 e^{-} \rightarrow 2{B r^{-}}^{-}(a q) ; E^{0}=+1.09 \mathrm{~V}$ ．
The net cell reaction is $B r_{2}(a q)+2 F e^{2+}(a q) \rightarrow 2 B_{r}^{-}(a q)+2 F e^{3+}(a q) ; E^{0}=-0.32 \mathrm{~V}$ ．
Since，the cell potential is negative，the reaction is not feasible．

## \＃423716

Topic：Types of redox reactions
Passage
Predict the products of electrolysis in each of the following．

An aqueous solution of $\mathrm{AgNO}_{3}$ with silver electrodes．

Solution

Reaction in solution;
$\mathrm{AgNO}_{3} \rightarrow \mathrm{Ag}^{+}+\mathrm{NO}_{3}^{-}$
$\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}$
Reaction at cathode;
$A g^{+}+e^{-} \rightarrow A g$
Reaction at anode;
$\mathrm{Ag}(\mathrm{s})+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{AgNO}_{3}(a q)+e^{-}$
In aqueous solution, silver nitrate ionizes to silver ions and nitrate ions
At cathode, either silver ions or water molecules can be reduced.
Since, silver ion has higher reduction potential than water, silver ions are reduced at cathode.
Similarly, at anode, either silver metal of water molecules can be oxidized. Since oxidation potential of silver is higher than that of water molecules, silver is oxidized.
\#423717
Topic: Types of redox reactions
Passage
Predict the products of electrolysis in each of the following.

An aqueous solution $\mathrm{AgNO}_{3}$ with platinum electrodes.

Solution
The oxidation of $P t$ is not possible. Water is oxidized at anode which liberates oxygen. Silver ions are reduced at cathode and are deposited.
Reaction in solution;
$\mathrm{AgNO}_{3} \rightarrow \mathrm{Ag}^{+}+\mathrm{NO}_{3}^{-}$
$\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}$
Reaction at cathode;
$A g^{+}+e^{-} \rightarrow A g$
Reaction at anode;
Due to platinum electrode, self ionization of water will take place.
$\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}^{+}+\frac{1}{2} \mathrm{O}_{2}+2 e^{-}$
Hence, silver will deposit at cathode and oxygen gas will generate at anode.

## \#423718

Topic: Types of redox reactions

## Passage

Predict the products of electrolysis in each of the following.

A dilute solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ with platinum electrodes.

## Solution

The dissociation of sulphuric acid gives protons and sulphate ions

 ions have lower oxidation potential than water. Hence, water is oxidized at the anode to liberate oxygen molecules
$\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{-}$
$\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}$
Reaction at cathode;
$2 \mathrm{H}^{+}+2 e^{-} \rightarrow \mathrm{H}_{2}$
Reaction at anode;
Due to platinum electrode, self ionization of water will take place.
$\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}^{+}+\frac{1}{2} \mathrm{O}_{2}+2 e^{-}$
Hence, hydrogen gas will generate at cathode and oxygen gas will generate at anode.

## \#423719

Topic: Types of redox reactions

## Passage

Predict the products of electrolysis in each of the following.

An aqueous solution of $\mathrm{CuCl}_{2}$ with platinum electrodes.

## Solution

When an aqueous solution of $\mathrm{CuCl}_{2}$ is electrolyzed with platinum electrodes, chlorine is obtained at anode and Cu is deposited at cathode.
$2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 e^{-}$
$C u^{2+}+2 e^{-} \rightarrow \mathrm{Cu}$
\#423720
Topic: Electrode potential

Arrange the following metals in the order in which they displace each other from the solution of their salts.
$A l, C u, F e, M g$ and $Z n$

Solution
A metal having stronger reducing power displaces another metal having weaker reducing power from its salt solution.
The increasing order of reducing power is $\mathrm{Cu}<\mathrm{Fe}<\mathrm{Zn}<\mathrm{Al}<\mathrm{Mg}$.
Thus, Mg can displace Al from its salt solution but Al cannot displace Mg
The order in which the metals displace each other from their salt solutions is $\mathrm{Mg}>\mathrm{Al}>\mathrm{Zn}>\mathrm{Fe}>\mathrm{Cu}$.
\#423721
Topic: Electrode potential

Given the standard electrode potentials of some metals
$K^{+} / K=2.93 V$,
$A g^{+} / A g=0.80 V$
$\mathrm{Hg}^{2+} / \mathrm{Hg}=0.79 \mathrm{~V}$,
$M g^{2+} / M g=2.37 V$ and
$\mathrm{Cr}^{3+} / \mathrm{Cr}=0.74 \mathrm{~V}$
Arrange these metals in their increasing order of reducing power.

Solution
Lower reduction potential corresponds to higher reducing power. The increasing order of the standard reduction potentials is
$K^{+}\left|K<M g^{2+}\right| M g<C_{r}^{3+}\left|\mathrm{Cr}<\mathrm{Hg}^{2+}\right| \mathrm{Hg}<\mathrm{Ag}^{+} \mid \mathrm{Ag}$
The increasing order of the reducing power is $\mathrm{Ag}<\mathrm{Hg}<\mathrm{Cr}<\mathrm{Mg}<K$.

## \#423723

Topic: Electrode potential

## Passage

Depict the galvanic cell in which the reaction $Z n(s)+2 A g^{+}(a q) \rightarrow Z_{n^{2+}}(a q)+2 A g(s)$ takes place. Further show:
which of the electrode is negatively charged?

## Solution

For the given redox reaction, the galvanic cell is :
$Z n\left|Z n^{2+}(a q)\right|\left|A^{\prime}{ }^{+}(a q)\right| A g$
Zinc electrode is negatively charged as Zn is oxidized to $Z n^{2+}$. The electrons released during oxidation accumulate on this electrode.

## \#423725

Topic: Electrode potential
Passage
Depict the galvanic cell in which the reaction $Z n(s)+2 A_{g}{ }^{+}(a q) \rightarrow Z_{n}{ }^{+}(a q)+2 A g(s)$ takes place. Further show:
individual reaction at each electrode.

Solution
For the given redox reaction, the galvanic cell is
$Z n\left|Z n^{2+}(a q)\right|\left|A g^{+}(a q)\right| A g$
At $Z n$ electrode, $Z n$ is oxidized to $Z n(I)$ ions.
At $A g$ electrode, $A g(\Lambda)$ is reduced to $A g$.

## \#464730

Topic: Types of redox reactions
Food cans are coated with tin and not with zinc because:

A zinc is costlier than tin

B zinc has a higher melting point than tin

C
zinc is more reactive than tin

D zinc is less reactive than tin

## Solution

Food cans are coated with tin and not with zinc because zinc is above the tin in reactivity series means more reactive than tin and can react with food elements preserved in it.

## \#423521 <br> Topic: Oxidation Number

## Passage

Justify that the following reactions are redox reactions:
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(g)$

## Solution

The oxidation number of iron decreases from +3 to 0 . The oxidation number of C increases from +2 to +4 . Hence, $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is reduced and CO is oxidized. Hence, it is a redox
reaction.

## \#423532

Topic: Oxidation Number

## Passage

Justify that the following reactions are redox reactions:
$4 \mathrm{BCl}_{3}(g)+3 \mathrm{LiAlH}_{4}(g) \rightarrow 2 \mathrm{~B}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{LiCl}(\mathrm{s})+3 \mathrm{AlCl}_{3}(\mathrm{~s})$

## Solution

The oxidation number of B decreases from +3 to -3 . The oxidation number of hydrogen increases from -1 to +1 . Hence, $B C l_{3}$ is reduced and $L i A l H_{4}$ is oxidized.
Hence, it is a redox reaction.

## \#423537

Topic: Oxidation Number

## Passage

Justify that the following reactions are redox reactions:
$2 K(s)+F_{2}(g) \rightarrow 2 K^{+} F^{-}(s)$

## Solution

The oxidation number of K increases from 0 to +1 and the oxidation number of $F_{2}$ decreases from 0 to -1 . Hence, K is oxidized and $F_{2}$ is reduced. Hence, it is redox reaction.

## \#423542

Topic: Oxidation and reduction - classical concept
Consider the reaction of water with $F_{2}$ and suggest in terms of oxidation and reduction which species are oxidised/reduced.

Solution
The balanced chemical equations are given below.
$2 \mathrm{~F}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{~F}^{-}$
$3 \mathrm{~F}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{3}+6 \mathrm{H}^{+}+6 \mathrm{~F}^{-}$
Thus, water is a reductant and itself is oxidized to oxygen or ozone. Fluorine is an oxidant and itself is reduced to fluoride ion.

## \#423543

Topic: Oxidation Number

## Passage

Justify that the following reactions are redox reactions:
$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2}(s)$

## Solution

The oxidation number of nitrogen increases from -3 to +2 . The oxidation number of oxygen decreases from 0 to -2 . Ammonia is oxidized and oxygen is reduced. Thus, it is a redox reaction.

## \#423584

Topic: Balance redox reactions
Consider the reactions:
Why it is more appropriate to write these reactions as: $6 \mathrm{CO}_{2}(g)+12 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow C_{6} H_{12} \mathrm{O}_{6}(a q)+6 O_{2}(g)+6 H_{2} O(l)$
Also suggest a technique to investigate the path of the above (a) and (b) redox reactions.
$6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})+6 \mathrm{O}_{2}(\mathrm{~g})$

## Solution

The given reaction is
$6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)+6 \mathrm{O}_{2}(g)$
It is more appropriate to write this reaction as
$6 \mathrm{CO}_{2}(g)+12 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)+6 \mathrm{O}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)$

 can investigate above paths.

## \#423618

Topic: Balance redox reactions
 potassium permanganate as an oxidant. Why? Write the balanced redox equation for the reaction.

## Solution

Toluene is oxidized to benzoic acid by using alcoholic potassium permanganate.
In neutral medium hydroxide ions are produced. This reduces cost of adding acid or base.
 toluene and $\mathrm{KMnO}_{4}$ is higher. The balanced redox reaction is as shown.

\#423621
Topic: Types of redox reactions
How do you count for the following observations?
 get red vapour of bromine. Why?

## Solution

 we get red vapour of bromine. This is because HBr can be formed only if dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ is used. Note: concentrated sulphuric acid converts inorganic chloride to HCl . But concentrated sulphuric acid converts inorganic bromide to bromine. Dilute sulphuric acid will convert inorganic bromide to $H B r$.

## \#423622

Topic: Types of redox reactions
 get red vapour of bromine. Why ?

## Solution

 we get red vapour of bromine. This is because HBr can be formed only if dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ is used.

Note: concentrated sulphuric acid converts inorganic chloride to HCl .
But concentrated sulphuric acid converts inorganic bromide to bromine
Dilute sulphuric acid will convert inorganic bromide to HBr

## \#423632

Topic: Oxidation Number

## Passage

Identify the substance oxidised, reduced, oxidising agent and reducing agent for each of the following reactions.
$2 \mathrm{AgBr}(s)+\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}(a q) \rightarrow 2 \mathrm{Ag}(s)+2 \mathrm{HBr}(a q)+\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(a q)$

## Solution

$A g^{+}$is reduced and acts as oxidizing agent
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$ is oxidized and acts as reducing agent.
\#423636
Topic: Oxidation Number

Passage
Identify the substance oxidised, reduced, oxidising agent and reducing agent for each of the following reactions.
$\mathrm{HCHO}(\mathrm{l})+2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(a q)+3 \mathrm{OH}^{-}(a q) \rightarrow 2 \mathrm{Ag}(s)+\mathrm{HCOO}^{-}(a q)+4 \mathrm{NH}_{3}(a q)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

## Solution

HCHO is oxidized and $\left[\mathrm{Ag}\left(N H_{3}\right)_{2}\right]^{+}$is reduced.
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is the oxidizing agent and HCHO is reducing agent.

## \#423659

Topic: Oxidation Number

## Passage

Identify the substance oxidised, reduced, oxidising agent and reducing agent for each of the following reactions.
$\mathrm{HCHO}(1)+2 \mathrm{Cu}^{2+}(a q)+5 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{HCOO}^{-}(a q)+3 \mathrm{H}_{2} \mathrm{O}(l)$

Solution
HCHO is oxidized and $\mathrm{Cu}^{2+}$ is reduced.
$\mathrm{Cu}^{2+}$ is the oxidizing agent and HCHO is the reducing agent.

## \#423661

Topic: Oxidation Number

## Passage

Identify the substance oxidised, reduced, oxidising agent and reducing agent for each of the following reactions.
$\mathrm{Pb}(s)+\mathrm{PbO}_{2}(s)+2 \mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow 2 \mathrm{PbSO}_{4}(s)+2 \mathrm{H}_{2} \mathrm{O}(l)$

## Solution

Pb is oxidized ad $\mathrm{PbO}_{2}$ is reduced.
$\mathrm{PbO}_{2}$ is oxidizing agent and Pb is reducing agent.

## \#423666

Topic: Oxidation and reduction - electron transfer concept
$\mathrm{XeO}_{6}^{4-}(a q)+2 \mathrm{~F}^{-}(a q)+6 \mathrm{H}^{+}(a q) \rightarrow \mathrm{XeO}_{3}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$
What conclusion about the compound $\mathrm{Na}_{4} \mathrm{XeO}_{6}$ (of which $\mathrm{XeO}_{6}^{4-}$ is a part) can be drawn from the reaction?

## Solution

$\mathrm{XeO}_{6}^{4-}$ oxidizes $\mathrm{F}^{-}$and $\mathrm{F}^{-}$reduces $\mathrm{XeO}_{6}^{4-}$.
Hence, the given reaction occurs.
The oxidation number of $X e$ decreases from +8 to +6 . The oxidation number of $F$ increases from -1 to 0
Thus, $N a_{4} X e O_{6}$ is a stronger oxidsing agent than $F^{-}$.

## \#423668

Topic: Oxidation and reduction - electron transfer concept
From the following reactions, determine if $\mathrm{Ag}^{+}$is a stronger oxidizing agent than $C u^{2+}$
(a) $H_{3} \mathrm{PO}_{2}(a q)+4 \mathrm{AgNO}_{3}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{PO}(a q)+4 \mathrm{Ag}(s)+4 H \mathrm{NO}_{3}(a q)$
(b) $\mathrm{H}_{3} \mathrm{PO}_{2}(a q)+2 \mathrm{CuSO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(a q)+2 \mathrm{Cu}(s)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q)$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}(l)+2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(a q)+3 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(a q)+2 \mathrm{Ag}(s)+4 \mathrm{NH}_{3}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}(l)+2 \mathrm{Cu}^{2+}(a q)+5 \mathrm{OH}^{-}(a q) \rightarrow$ No Change observed.

## Solution

In the reactions (a) and (b), $A g^{+}$and $C u^{2+}$ are oxidizing agents. In the reaction (c) $A g^{+}$oxidizes benzaldehyde to benzoate ion. In reaction (d) $C u^{2+}$ cannot oxidize benzaldehyde. Hence, $\mathrm{Ag}^{+}$is a stronger oxidizing agent than $\mathrm{Cu}^{2+}$.

## \#423669

Topic: Oxidation and reduction - electron transfer concept
From the following reactions, determine if $\mathrm{Ag}^{+}$is a stronger oxidizing agent than $\mathrm{Cu} u^{2+}$
(a) $\mathrm{H}_{3} \mathrm{PO}_{2}(a q)+4 \mathrm{AgNO}_{3}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{PO}(a q)+4 \mathrm{Ag}(s)+4 \mathrm{HNO}_{3}(a q)$
(b) $\mathrm{H}_{3} \mathrm{PO}_{2}(a q)+2 \mathrm{CuSO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(a q)+2 \mathrm{Cu}(s)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q)$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}(\mathrm{l})+2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(a q)+3 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(a q)+2 \mathrm{Ag}(s)+4 \mathrm{NH}_{3}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}(l)+2 \mathrm{Cu}^{2+}(a q)+5 \mathrm{OH}^{-}(a q) \rightarrow$ No Change observed.

## Solution

In the reactions (a) and (b), $A g^{+}$and $C u^{2+}$ are oxidizing agents. In the reaction (c) $A g^{+}$
oxidizes benzaldehyde to benzoate ion. In reaction (d) $C u^{2+}$ cannot oxidize benzaldehyde. Hence, $A g^{+}$is a stronger oxidizing agent than $C u^{2+}$

## \#423674

Topic: Balance redox reactions
Balance the following redox reactions by ion electron method.
$\mathrm{MnO}_{4}^{-}(a q)+I^{-}(a q) \rightarrow \mathrm{MnO}_{2}(s)+I_{2}(s)$ (in basis medium)

## Solution

The unbalanced chemical equation is
$\mathrm{MnO}_{4}^{-}(a q)+I^{-}(a q) \rightarrow \mathrm{MnO}_{2}(s)+I_{2}(s)$

The oxidation half reaction is
$I^{-}(a q) \rightarrow I_{2}(s)$
The reduction half reaction is
$\mathrm{MnO}_{4}^{-}(a q) \rightarrow \mathrm{MnO}_{2}(a q)$

Balance I atoms and charges in the oxidation half reaction.
$2 I^{-}(a q) \rightarrow I_{2}(s)+2 e^{-}$

In the reduction half reaction, the oxidation number of Mn changes from +7 to +4 . Hence, add 3 electrons to reactant side of the reaction.
$\mathrm{MnO}_{\overline{4}}(a q)+3 e^{-} \rightarrow \mathrm{MnO}_{2}(a q)$

Balance charge in the reduction half reaction by adding 4 hydroxide
ions to product side.
$\mathrm{MnO}_{4}^{-}(a q)+3 e^{-} \rightarrow \mathrm{MnO}_{2}(a q)+4 \mathrm{OH}^{-}$

To balance O atoms, add 2 water molecules to reactant side.
$\mathrm{MnO}_{4}^{-}(a q)+3 e^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MnO}_{2}(a q)+4 \mathrm{OH}^{-}$

To equalize the number of electrons, multiply the oxidation half reaction by 3 and multiply the reduction half reaction by 2 .
$6 I^{-}(a q) \rightarrow 3 I_{2}(s)+6 e^{-}$
$2 \mathrm{MnO}_{4}^{-}(a q)+6 e^{-}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MnO}_{2}(a q)+8 \mathrm{OH}^{-}$

Add two half cell reactions to obtain the balanced equation.
$2 \mathrm{MnO}_{4}^{-}(a q)+6 \mathrm{I}^{-}(a q)+4 \mathrm{H}_{2} \mathrm{O}_{2}(l) \rightarrow 2 \mathrm{MnO}_{2}(s)+3 \mathrm{I}_{2}(s)+8 \mathrm{OH}^{-}$

## \#423675

Topic: Balance redox reactions
Passage
Balance the following redox reactions by ion electron method
$\mathrm{MnO}_{4}^{-}(a q)+\mathrm{SO}_{2}(g) \rightarrow \mathrm{Mn}^{2+}(a q)+\mathrm{HSO}_{4}^{-}\left(a q\right.$ ) ${ }^{\text {in }}$ acidic solution)

## Solution

The unbalanced chemical equation is:
$\mathrm{MnO}_{\overline{4}}(a q)+\mathrm{SO}_{2}(g) \rightarrow \mathrm{Mn}^{2+}(a q)+\mathrm{HSO}_{\overline{4}}(a q)$
The oxidation half reaction is $\mathrm{SO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{HSO}_{4}^{-}(a q)+3 \mathrm{H}^{+}(a q)+2 e^{-}(a q)$
The reduction half reaction is $\mathrm{MnO}_{4}^{-}(a q) \rightarrow M n(2+)(a q)$
In the reduction half reaction, the oxidation number of Mn changes from +7 to +2 . Hence, 5 electrons are added to LHS of the reaction.
$\mathrm{MnO}_{\overline{4}}^{-}(a q)+5 e^{-} \rightarrow \mathrm{Mn}^{2+}(a q)$
Charge is balanced in the reduction half reaction by adding 8 hydrogen ions to LHS.
$\mathrm{MnO}_{4}^{-}(a q)+5 e^{-}+8 H^{+}(a q) \rightarrow \mathrm{Mn}^{2+}(a q)$
To balance $O$ atoms, 4 water molecules are added on RHS.
$\mathrm{MnO}_{4}^{-}(a q)+5 e^{-}+8 H^{+}(a q) \rightarrow \mathrm{Mn}^{2+}(a q)+4 H_{2} O(l)$
To equalize the number of electrons, the oxidation half reaction is multiplied by 5 and the reduction half reaction is multiplied by 2 .
$5 \mathrm{SO}_{2}(g)+10 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 5 \mathrm{HSO}_{4}^{-}(a q)+15 \mathrm{H}^{+}(a q)+10 e^{-}(a q)$
$2 \mathrm{MnO}_{4}^{-}(a q)+10 e^{-}+16 \mathrm{H}^{+}(a q) \rightarrow 2 \mathrm{Mn}^{2+}(a q)$
Two half cell reactions are added to obtain the balanced equation
$2 \mathrm{MnO}_{4}^{-}(a q)+5 \mathrm{SO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{Mn}^{2+}(a q)+5 \mathrm{HSO}_{4}^{-}(a q)$

## \#423677

Topic: Balance redox reactions

## Passage

Balance the following redox reactions by ion electron method.
$\mathrm{H}_{2} \mathrm{O}_{2}(a q)+\mathrm{Fe}^{2+}(a q) \rightarrow \mathrm{Fe}^{3+}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$ (in acidic solution)

## Solution

The oxidation half reaction is $F e^{2+}(a q) \rightarrow F e^{3+}(a q)+e^{-}$.
The reduction half reaction is $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 e^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)$
In above half reactions, all the atoms are balanced.
The oxidation half reaction is multiplied by 2 so as to balance the number of electrons in oxidation half reaction with reduction half reaction.
$2 \mathrm{Fe}^{2+}(a q) \rightarrow 2 \mathrm{Fe}^{3+}(a q)+2 e^{-}$.
The oxidation half reaction is then added to the reduction half reaction to obtain balanced chemcial equation.
$\mathrm{H}_{2} \mathrm{O}_{2}(a q)+2 \mathrm{Fe}^{2+}(a q)+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{Fe}^{3+}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)$

## \#423679

Topic: Balance redox reactions

## Passage

Balance the following redox reactions by ion electron method
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{SO}_{2}(g) \rightarrow \mathrm{Cr}^{3+}(a q)+\mathrm{SO}_{4}^{2-}(a q)$ (in acidic solution)

Solution
The oxidation half reaction is $\mathrm{SO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}(\mathrm{aq})+2 e^{-}$.
The reduction half reaction is $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+14 \mathrm{H}^{+}(a q)+6 e^{-} \rightarrow 2 \mathrm{Cr}^{3+}(a q)+7 \mathrm{H}_{2} \mathrm{O}(l)$
The oxidation half reaction is multiplied by 3 and added to the reduction half reaction to obtain the balanced redox reaction.
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}(a q) \rightarrow 2 \mathrm{Cr}^{3+}(a q)+3 \mathrm{SO}_{4}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$

## \#423686

Topic: Balance redox reactions
Passage
Balance the following equations in basic medium by ion-electron method and oxidation number methods and identify the oxidising agent and the reducing agent.
$\mathrm{P}_{4}(s)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{PH}_{3}(\mathrm{~g})+\mathrm{HPO}_{2}(a q)$

## Solution

Oxidation number method:
The oxidation number of P decreases from 0 to -3 and increases from 0 to +2 . Hence, $P_{4}$ is oxidizing as well as reducing agent
During reduction, the total decrease in the oxidation number for 4 P atoms is 12 .
During oxidation, total increase inn teh oxidation number for 4 P atoms is 4 .
The increase in the oxidation number is balanced with decrease in the oxidation number by multiplying $\mathrm{H}_{2} \mathrm{PO}_{2}$ with 3 .
$\mathrm{P}_{4}(s)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{PH}_{3}(g)+3 \mathrm{H}_{2} \mathrm{PO}_{2}^{-}(a q)$
To balance O atoms, multiply $\mathrm{OH}^{-}$ions by 6 .
$P_{4}(s)+6 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{PH}_{3}(g)+3 \mathrm{H}_{2} \mathrm{PO}_{2}^{-}(a q)$
To balance H atoms, 3 water molecules are added to L.H.S and 3 hydroxide ions on R.H.S.
$\mathrm{P}_{4}(s)+6 \mathrm{OH}^{-}(a q)+3 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{PH}_{3}(g)+3 \mathrm{H}_{2} \mathrm{PO}_{2}^{-}(a q)+3 \mathrm{OH}^{-}(a q)$
Subtract 3 hydroxide ions from both sides.
$\mathrm{P}_{4}(s)+3 \mathrm{OH}^{-}(a q)+3 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{PH}_{3}(g)+3 \mathrm{H}_{2} \mathrm{PO}_{2}^{-}(a q)$

Ion electron method:
The oxidation half reaction is $\mathrm{P}_{4}(s) \rightarrow \mathrm{H}_{2} \mathrm{PO}_{2}^{-}(a q)$.
The P atom is balanced.
$P_{4}(s) \rightarrow 4 H_{2} \mathrm{PO}_{2}^{-}(a q)$
The oxidation number is balanced by adding 4 electrons on RHS.
$P_{4}(s) \rightarrow 4 \mathrm{H}_{2} \mathrm{PO}_{2}^{-}(a q)+4 e^{-}$
The charge is balanced by adding 8 hydroxide ions on LHS.
$P_{4}(s)+8 \mathrm{OH}^{-}(a q) \rightarrow 4 \mathrm{H}_{2} \mathrm{PO}_{2}^{-}(a q)$
The O and H atoms are balanced
The reduction half reaction is $P_{4}(s) \rightarrow P H_{3}(g)$.
The oxidation number is balanced by adding 12 eelctrons on LHS
$P_{4}(s)+12 e^{-} \rightarrow \mathrm{PH}_{3}(g)$
The charge is balanced by adding 12 hydroxide ions on RHS.
$P_{4}(s)+12 e^{-} \rightarrow \mathrm{PH}_{3}(g)+12 O H^{-}$
The oxidation half reaction is multiplied by 3 and the reduction half reaction is multiplied by 2 .
The half reactions are then added to obtain balanced chemical equation.
$\mathrm{P}_{4}(\mathrm{~s})+3 \mathrm{OH}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{PH}_{3}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{PO}_{2}^{-}(a q)$

## \#423687 <br> Topic: Balance redox reactions

## Passage

Balance the following equations in basic medium by ion-electron method and oxidation number methods and identify the oxidising agent and the reducing agent.
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{ClO}_{3}(a q) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g})$

Solution

The oxidation number of $N$ increases from -2 to +2 . The oxidation number of $C l$ decreases from +5 to -1 . Hence, hydrazine is the reducing agent and chlorate ion is the oxidizing agent.

Ion-electron method:
The oxidation half reaction is
$N_{2} H_{4}(l) \rightarrow N O(g)$
Balance the N atoms.
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$

To balance oxidation number, add 8 electrons.
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+8 e^{-}$

Add 8 hydroxide ions are to balance the charge.
$\mathrm{N}_{2} \mathrm{H}_{4}(l)+8 \mathrm{OH}^{-}(a q) \rightarrow 2 \mathrm{NO}(g)+8 e^{-}$

The reduction half reaction is
$\mathrm{ClO}_{3}^{-}(a q) \rightarrow \mathrm{Cl}^{-}(a q)$

Add 6 electrons to balance the oxidation number.
$\mathrm{ClO}_{3}^{-}(a q)+6 e^{-} \rightarrow \mathrm{Cl}^{-}(a q)$

Add 6 hydroxide ions to balance the charge.
$\mathrm{ClO}_{3}^{-}(a q)+6 e^{-} \rightarrow \mathrm{Cl}^{-}(a q)+6 \mathrm{OH}^{-}(a q)$

Multiply the oxidation half reaction by 3 and multiply the reduction half reaction by 2 . Add two half reactions obtain the balanced chemical equation.
$3 \mathrm{~N}_{2} \mathrm{H}_{4}(a q)+4 \mathrm{ClO}_{3}^{-}(a q) \rightarrow 6 \mathrm{NO}(s)+4 \mathrm{Cl}^{-}(a q)+6 \mathrm{H}_{2} \mathrm{O}(a q)$

Oxidation number method:
Total decrease in oxidation number of N is 8 . Total increase in the oxidation number of Cl is 6 .

Multiply $\mathrm{N}_{2} \mathrm{H}_{4}$ with 3 and multiply $\mathrm{ClO}_{3}$ with 4 .
$3 \mathrm{~N}_{2} \mathrm{H}_{4}(l)+4 \mathrm{ClO}_{3}^{-}(a q) \rightarrow \mathrm{NO}(g)+\mathrm{Cl}^{-}(a q)$

Balance N and Cl atoms.
$3 \mathrm{~N}_{2} \mathrm{H}_{4}(l)+4 \mathrm{ClO}_{3}^{-}(a q) \rightarrow 6 \mathrm{NO}(g)+4 \mathrm{Cl}^{-}(a q)$

Balance the $O$ atoms are by adding 6 water molecules.
$3 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{l})+4 \mathrm{ClO}_{3}^{-}(a q) \rightarrow 6 \mathrm{NO}(g)+4 \mathrm{Cl}^{-}(a q)+6 \mathrm{H}_{2} \mathrm{O}(l)$
This is the balanced chemical equation.


## \#423688

Topic: Balance redox reactions
Passage
Balance the following equations in basic medium by ion-electron method and oxidation number methods and identify the oxidising agent and the reducing agent.
$\mathrm{Cl}_{2} \mathrm{O}_{7}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow \mathrm{ClO}_{2}^{-}(a q)+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}^{+}$

Solution
The oxidation number of chlorine decreases from +7 to +3 and the oxidation number of $O$ increases from -1 to zero. Thus, $\mathrm{Cl}_{2} \mathrm{O}_{7}$ is oxidizing agent and $\mathrm{H}_{2} \mathrm{O}_{2}$ is the reducing agent.

Ion electron method:
The oxidation half equation is
$\mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow \mathrm{O}_{2}(\mathrm{~g})$
To balance oxidation number, 2 electrons are added.
$\mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow \mathrm{O}_{2}(g)+2 e^{-}$
2 hydroxide ions are added to balance the charge.
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{OH}^{-} \rightarrow \mathrm{O}_{2}(g)+2 e^{-}$
2 water molecules are added to balance the $O$ atoms.
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{OH}^{-} \rightarrow \mathrm{O}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(a q)+2 e^{-}$
The reduction half reaction is $\mathrm{Cl}_{2} \mathrm{O}_{7} \rightarrow \mathrm{ClO}_{-}(\mathrm{aq})$
The Cl atoms are balanced
$\mathrm{Cl}_{2} \mathrm{O}_{7} \rightarrow \mathrm{ClO}_{2}^{-}(a q)$
8 electrons are added to balance the oxidation number.
$\mathrm{Cl}_{2} \mathrm{O}_{7}+8 e^{-} \rightarrow \mathrm{ClO}_{2}^{-}(a q)$
6 hydroxide ions are added to balance the charge.
$\mathrm{Cl}_{2} \mathrm{O}_{7}+8 e^{-} \rightarrow \mathrm{ClO}_{2}^{-}(a q)+6 \mathrm{OH}^{-}(a q)$
The oxidation half equation is multiplied with 4 and added to reduction
half equation
$\mathrm{CI}_{2} \mathrm{O}_{7}(g)+4 \mathrm{H}_{2} \mathrm{O}_{2}(a q)+2 \mathrm{OH}^{-} \rightarrow \mathrm{CIO}_{2}^{-}(a q)+4 \mathrm{O}_{2}(g)+5 \mathrm{H}_{2} \mathrm{O}(l)$

Oxidation number method:
Total decrease in oxidation number of $\mathrm{Cl}_{2} \mathrm{O}_{7}$ is 8 .
Total increase in oxidation number of $\mathrm{H}_{2} \mathrm{O}_{2}$ is 2 .
$\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{O}_{2}$ are multiplied with 4
$\mathrm{Cl}_{2} \mathrm{O}_{7}(g)+4 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{ClO}_{2}(\mathrm{aq})+4 \mathrm{O}_{2}(g)$
Chlorine atoms are balanced
$\mathrm{Cl}_{2} \mathrm{O}_{7}(g)+4 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow 2 \mathrm{ClO}_{2}^{-}(a q)+4 \mathrm{O}_{2}(g)$
$O$ atoms are balanced by adding 3 water molecules.
$\mathrm{Cl}_{2} \mathrm{O}_{7}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{ClO}_{2}^{-}(\mathrm{aq})+4 \mathrm{O}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$H$ atoms are balanced by adding 2 hydroxide ions and 2 water molecules.
$\mathrm{CI}_{2} \mathrm{O}_{7}(g)+4 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{OH}^{-} \rightarrow \mathrm{CIO}_{2}^{-}(\mathrm{aq})+4 \mathrm{O}_{2}(g)+5 \mathrm{H}_{2} \mathrm{O}(l)$
O.N. of Cl decreases by 4 per atom


## \#423689

Topic: Types of redox reactions
What sorts of informations can you draw from the following reaction ?
$(C N)_{2}(g)+2 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{CN}^{-}(a q)+\mathrm{CNO}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$

Solution

The reaction is a disproportionation reaction.
It occurs in basic medium.
The oxidation number of N in $(\mathrm{CN})_{2}, C \mathrm{~N}^{-}$and $\mathrm{CNO}^{-}$is $-3,-2$ and -5 respectively.
Cyanogen $(C N)_{2}$ is simultaneously reduced to $C N^{-}$ion and oxidised to cyanate ion $C N O^{-}$ion.

## \#423690

Topic: Balance redox reactions
The $\mathrm{Mn}^{3+}$ ion is unstable in solution and undergoes disproportionation to give $\mathrm{Mn}^{2+}, \mathrm{MnO}_{2}$ and $\mathrm{H}^{+}$ion. Write a balanced ionic equation for the reaction.

Solution
The unbalanced chemical reaction is:
$M n^{3+}(a q) \rightarrow M n^{2+}(a q)+M n O_{2}(s)+H^{+}(a q)$
The oxidation half reaction is,
$\mathrm{Mn}^{3+}(a q) \rightarrow \mathrm{MnO}_{2}(s)$
To balance oxidation number, one electron is added on R.H.S.
$\mathrm{Mn}^{3+}(a q) \rightarrow \mathrm{MnO}_{2}(s)+e^{-}$
4 protons are added to balance the charge.
$\mathrm{Mn}^{3+}(a q) \rightarrow \mathrm{MnO}_{2}(s)+4 \mathrm{H}^{+}(a q)+e^{-}$
2 water molecules are added to balance $O$ atoms.
The reduction half reaction is $M n^{3+}(a q) \rightarrow M n^{2+}(a q)$
An electron is added to balance oxidation number.
$M n^{3+}(a q)+e^{-} \rightarrow M n^{2+}(a q)$
Two half cell reactions are added to obtain balanced chemical equation.
$2 \mathrm{Mn}^{3+}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{Mn}^{2+}(a q)+\mathrm{MnO}_{2}(s)+4 \mathrm{H}^{+}(a q)$

## \#423696

Topic: Balance redox reactions
 redox change taking place in water.

## Solution

The balanced chemical reaction for the redox reaction between chlorine and sulphur dioxide is:
$\mathrm{Cl}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}$

## \#423698

Topic: Types of redox reactions

## Passage

Refer to the periodic table given in your book and now answer the following questions:

Select three possible non metals that can show disproportionation reaction.

## Solution

Phosphorous, chlorine and sulphur are the non metals which can show disproportionation reaction. The reactions shown by them are:
$\mathrm{P}_{4}+3 \mathrm{OH}^{-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PH}_{3}+3 \mathrm{H}_{2} \mathrm{PO}_{-}$
$\mathrm{Cl}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{S}_{8}+12 \mathrm{OH}^{-} \rightarrow 4 \mathrm{~S}^{2-}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

## \#423699

Topic: Types of redox reactions

## Passage

Refer to the periodic table given in your book and now answer the following questions:

Select three metals that can show disproportionation reaction.

Solution
Copper, gallium and indium are the metals that show disproportionation reaction. The reactions are shown below.
$2 C u^{+} \rightarrow C u^{2+}+C u$
$3 G a^{+} \rightarrow \mathrm{Ga}^{3+}+2 G a$
$3 I n+\rightarrow$ n $^{3+}+2$ In
\#423724
Topic: Electrode potential
Passage
Depict the galvanic cell in which the reaction $Z n(s)+2 A g^{+}(a q) \rightarrow Z n^{2+}(a q)+2 A g(s)$ takes place. Further show:
the carriers of the current in the cell.

## Solution

For the given redox reaction, the galvanic cell is
$Z n\left|Z n^{2+}(a q)\right|\left|A g^{+}(a q)\right| A g$
The current is carried by the ions in the cell.

