Page 1

Unit 3: States of Matter Practice Exam

Multiple Choice. Identify the choice that best completes the statement or answers the question.

1. Two gases with unequal masses are injected into opposite ends of a long tube at the same time and allowed to diffuse toward the center. They should begin to mix

c. solids, liquids, and gases.

- a. in approximately five minutes.
- b. closer to the end that holds the heavier gas.
- c. closer to the end that holds the lighter gas.
- d. exactly in the middle.
- 2. According to the kinetic-molecular theory, particles of matter
 - a. are in constant motion. c. have different colors.
 - b. have different shapes. d. are always fluid.
- 3. Which process can be explained by the kinetic-molecular theory?
 - a. combustion c. condensation
 - b. oxidation d. displacement reactions
- 4. According to the kinetic-molecular theory, which substances are made of particles?
 - a. gases only c. all matter
 - b. liquids only d. all matter except solids
 - 5. According to the kinetic-molecular theory, particles of matter are in motion in
 - a. gases only.
 - b. gases and liquids only. d. solids only.
 - 6. An ideal gas is a hypothetical gas
 - a. not made of particles.
 - b. that conforms to all of the assumptions of the kinetic theory.
 - c. whose particles have zero mass.
 - d. made of motionless particles.
- 7. A real gas
 - a. does not obey all the assumptions of the kinetic-molecular theory.
 - b. consists of particles that do not occupy space.
 - c. cannot be condensed.
 - d. cannot be produced in scientific laboratories.
 - 8. According to the kinetic-molecular theory, particles of an ideal gas
 - a. attract each other but do not collide.
 - b. repel each other and collide.
 - c. neither attract nor repel each other but collide.
 - d. neither attract nor repel each other and do not collide.
- 9. Which is an example of gas diffusion?
 - a. inflating a flat tire
 - b. the odor of perfume spreading throughout a room
 - c. a cylinder of oxygen stored under high pressure
 - d. All of the above
- 10. By which process do gases take the shape of their container?
 - a. evaporation c. adhesion
 - b. expansion d. diffusion

Page 2 – Unit 3 Practice Exam

- 11. According to the kinetic-molecular theory, how does a gas expand?
 - a. Its particles become larger.
 - b. Collisions between particles become elastic.
 - c. Its temperature rises.
 - d. Its particles move greater distances.
- 12. Which is an example of effusion?
 - a. air slowly escaping from a pinhole in a tire
 - b. the aroma of a cooling pie spreading across a room
 - c. helium dispersing into a room after a balloon pops
 - d. oxygen and gasoline fumes mixing in an automobile carburetor
- 13. The particles in a liquid are usually
 - a. closer together and lower in energy than those in a solid.
 - b. farther apart and higher in energy than those in a gas.
 - c. closer together and lower in energy than those in a gas.
 - d. farther apart and lower in energy than those in a solid.
 - 14. Which term best describes the process by which particles escape from the surface of a nonboiling liquid and enter the gas state?
 - a. sublimation
 - c. surface tension b. evaporation d. aeration
 - 15. A solid forms when the average energy of a substance's particles
 - a. increases.

c. decreases then increases.

b decreases

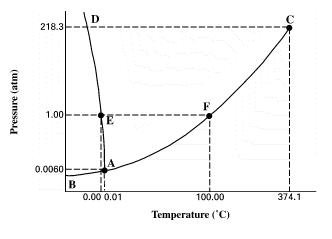
d. creates a random arrangement.

16. Particles within a solid a. do not move.

- c. move about freely.
- d. exchange positions easily.
- 17. The compressibility of solids is generally

b. vibrate about fixed positions.

- a. lower than the compressibility of liquids and gases.
- b. higher than the compressibility of liquids only.
- c. about equal to the compressibility of liquids and gases.
- d. higher than the compressibility of gases only.
- 18. Which causes the high density of solids?
 - a. The particles are more massive than those in liquids.
 - b. The intermolecular forces between particles are weak.
 - c. The particles are packed closely together.
 - d. The energy of the particles is very high.
 - If the rate of evaporation from the surface of a liquid exceeds the rate of condensation, 19
 - a. the system is in equilibrium.
 - b. the liquid is boiling.
 - c. energy as heat is no longer available.
 - d. the concentration of the vapor is increasing.


20. When energy as heat is applied to a liquid-vapor system at equilibrium, a new equilibrium state will have

- a. a higher percentage of liquid. c. equal amounts of liquid and vapor.
- b. a higher percentage of vapor.
- 21. At pressures greater than 1 atm, water will boil at
 - a. a temperature higher than 100°C. c. 100°C.
 - b. a temperature lower than 100°C. d. 4°C.
- d. all liquid.

Page 3 – Unit 3 Practice Exam

- 22. During the process of freezing, a liquid
 - a. loses kinetic energy.
 - b. loses potential energy.

- c. gains potential energy.
- d. gains kinetic energy.

Use the phase diagram for water to answer the questions 23 thorugh 27.

- 23. What does point C represent in the figure above?
- 24. What state exists above the curve AB and to the left of the curve AD?
- 25. What does point A represent in the figure above?
- 26. What state exists below the curve BC?
- 27. What state exists between the AC and AD curves?

Page 4 – Unit 3 Practice Exam

Math Problems. Show all work including the correct units and sig figs with your answer.

28. Water has a heat of fusion of \pm 333.4 J/g. Calculate the energy required or released when 10.9 g of water freezes.

29. Water has a heat of vaporization of ± 2266 J/g. How many grams of water can be condensed by releasing 2023 J of energy?

30. How much energy is required or released to cool 28.3 g of steam (water vapor) at 100.0°C to liquid water at 25.5°C? Water has a heat of vaporization of \pm 2266 J/g and a specific heat of 4.184 J/g°C.

Essay. Use complete sentences to answer the question below.

31. Use Kinetic Molecular Theory to compare and contrast a substance's particles in the gas and liquid states. Be sure to discuss the particles thermal energy, interaction energy, attractive forces, speed of motion, range of motion and temperature.

Unit 3: States of Matter Practice Exam - Answer Section MULTIPLE CHOICE

- 1. ANS: B
- 2. ANS: A
- 3. ANS: C
- 4. ANS: C
- 5. ANS: C
- 6. ANS: B
- 7. ANS: A
- 8. ANS: C
- 9. ANS: B
- 10. ANS: B
- 11. ANS: D
- 12. ANS: A
- 13. ANS: C
- 14. ANS: B
- 15. ANS: B
- 16. ANS: B
- 17. ANS: A
- 18. ANS: C
- 19. ANS: D
- 20. ANS: B
- 21. ANS: A
- 22. ANS: B

SHORT ANSWER

- 23. ANS: C is the critical point.
- 24. ANS: The solid phase.
- 25. ANS: A is the triple point.
- 26. ANS: The gas state.

27. ANS: The liquid state.

NUMERIC RESPONSE

- 28. ANS: Q = (10.9 g) x (-333.4 J/g) = -3630 J (3 s.f.)
- 29. ANS: $Q = (-2023 \text{ J}) \div (-2266 \text{ J/g}) = 0.8928 \text{ g} (4 \text{ s.f.})$
- 30. ANS: Phase Change Q = (28.3 g) x (-2266 J/g) = - 64128 J (3 s.f.) Temp Change Q = (28.3 g) x (4.184 J/g°C) x (25.5°C - 100.0°C) = - 8821 J (3 s.f.) Total Energy = - 64126 J + (- 8821 J) = - 72900 J (s.f. to the hundreds digit)

ESSAY

31. ANS: The particles in both gas and liquid states have random motion and the particles can move past each other. Gas particles have a higher temperature than liquid particles and therefore more thermal energy and a faster speed of motion than liquid particles. Gas particles have more interaction energy than liquid particles and therefore a greater rand of motion than liquid particles.