

- System : Specific part of universe in which observations are made.
- Surroundings : Everything which surrounds the system.
- Types of the System :

(i) **Open System :** Exchange both matter and energy with the surroundings. For example : Reactant in an open test tube.

(ii) **Closed System :** Exchange energy but no matter with the surroundings. For example : Reactants in a closed vessel.

(iii) **Isolated System :** Neither exchange energy nor matter with the surroundings. For example : Reactants in a thermos flask.

• Please note no system is perfectly isolated.

# • Thermodynamic Processes :

- (i) Isothermal process :  $\Delta T = 0$
- (ii) Adiabatic process :  $\Delta q = 0$
- (iii) Isobaric process :  $\Delta P = 0$
- (iv) Isochoric process :  $\Delta V = 0$
- (v) Cyclic process :  $\Delta U = 0$

(vi) Reversible process : Process which proceeds infinitely slowly by a series of equilibrium steps.

(vii)Irreversible process : Process which proceeds rapidly and the system does not have chance to achieve equilibrium.

• Extensive Properties : Properties which depend upon the quantity or size of matter present in the system. For example : mass, volume, internal energy, enthalpy, heat capacity, work etc.

- Intensive Properties : Properties which do not depend upon the quantity or size of matter present in the system. For example : temperature, density, pressure, surface tension, viscosity, refractive index, boiling point, melting point etc.
- State Functions : The variables of functions whose value depend only on the state of a system or they are path independent. For example : pressure (P), volume (V), temperature (T), enthalpy (H), free energy (G), internal energy (U), entropy (S), amount (n) etc.
- **Internal Energy :** It is the sum of all kind of energies possessed by the system.
- First Law of Thermodynamics : "The energy of an isolated system is constant."

Mathematical Form :  $\Delta U = q + w$ 

• Sign Conventions for Heat (q) and Work (w) :

(i) W = +ve, if work is done on system

(ii) W = -ve, if work is done by system

(iii) q = + ve, if heat is absorbed by the system

(iv) q = -ve, if heat is evolved by the system

- Work of Expansion/compression :  $w = -P_{ext}(V_f V_i)$
- Work done in Isothermal Reversible Expansion of an Ideal Gas :

$$w_{rev} = -2.303 \ n\text{RT} \log \frac{V_f}{V_i}$$
  
Or,  $w_{rev} = -2.303 \ n\text{RT} \log \frac{P_i}{P_f}$ 

- Significance of  $\Delta H$  and  $\Delta U : \Delta H = q_p$  and  $\Delta U = q_v$
- **Relation** between  $\Delta H$  and  $\Delta U$ :  $\Delta H = \Delta U + (n_p n_r)RT$  for gaseous reaction.
  - (i)  $\Delta H = \Delta U$  if  $(n_p n_p)$  is zero; e.g.,  $H_2(g) + I_2(g) \rightarrow 2$ -HI(g)
  - (ii)  $\Delta H > \Delta U$  if  $(n_p n_r)$  is positive; e.g.,  $PC1_5(g) \rightarrow PC1_3(g) + C1_2(g)$ (iii)  $\Delta H < \Delta U$  if  $(n_p - n_r)$  is negative; e.g.,  $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
- Heat capacity (C) : Amount of heat required to raise the temperature of a substance by 1°C to 1 K.

 $q = C\Delta T$ 

60

• Specific heat capacity (C<sub>s</sub>) : Amount of heat required to raise the

temperature of 1g of a substance by 1°C or 1K.

$$q = C_s \times m \times \Delta T$$

• Molar Heat Capacity (C<sub>m</sub>) : Amount of heat required to raise the temperature of 1 mole of a substance by 1°C or 1K.

$$q = C_m \times n \times \Delta T$$

- **Standard State of a Substance :** The standard state of a substance at a specified temperature is its, pure form at 1 bar.
- Standard Enthalpy of Formation  $(\Delta_f H^\circ)$ : Enthalpy change accompanying the formation of one mole of a substance from its constituent elements under standard condition of temperature (normally 298 K) and pressure (1 bar).
  - $\succ \Delta_f H^\circ$  of an element in standard state is taken as zero.
  - Compounds with ve value of  $\Delta_f H^\circ$  are more stable than their constituents.
  - $\Delta_{i} H^{\circ} = \Sigma_{i} a_{i} \Delta_{f} H^{\circ} \text{ (products)} \Sigma_{i} b_{i} \Delta_{f} H^{\circ} \text{ (reactants)} : \text{ Where '}a' \text{ and } 'b' \text{ are coefficients of products and reactants in balanced equation.}$
- Standard Enthalpy of Combustion (Δ<sub>c</sub>H°) : Enthalpy change accompanying the complete combustion of one mole of a substance under standard conditions (298 K, 1 bar)
- Hess's Law of Constant Heat Summation : The total enthalpy change of a reaction remains same whether it takes place in one step or in several steps.
- Bond Dissociation Enthalpy : Enthalpy change when one mole of a gaseous covalent bond is broken to form products in gas phase. For example: Cl<sub>2</sub>(g) → 2Cl(g); Δ<sub>Cl-Cl</sub> H° = 242k/mol<sup>-1</sup>.
- For diatomic gaseous molecules; Bond enthalpy = Bond dissociation Enthalpy = Atomization Enthalpy
- For Polyatomic gaseous molecules; Bond Enthalpy = Average of the bond dissociation enthalpies of the bonds of the same type.
- $\Delta_r H^\circ = \Sigma \Delta_{hond} H^\circ$  (Reactants)  $\Sigma \Delta_{hond} H^\circ$  (Products)
- **Spontaneous Reaction :** A reaction which can take place either of its own or under some initiation.



Thermodynamics

• Entropy (S) : It is measure of degree of randomness or disorder of a system.

• 
$$\Delta S_{sys} = \frac{(q_{rev})_{sys}}{\Delta T} = \frac{(\Delta H)_{sys}}{\Delta T}$$

- Unit of Entropy =  $JK^{-1}$  mol<sup>-1</sup>
- Second Law of Thermodynamics : For all the spontaneous processes totally entropy change must positive.

 $\Delta S_{total} = \Delta S_{svs} + \Delta S_{surr} > 0$ 

• Gibbs Helmholtz Equation for determination of Spontaneity :

 $\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$ 

- (i) If  $\Delta G = -ve$ , the process is spontaneous
- (ii) If  $\Delta G = +$  ve, the process is nonspontaneous
- (iii) If  $\Delta G = 0$ , the process is in equilibrium
- Relation between Gibbs Energy Change and Equilibrium Constant :  $\Delta G^0 = -2.303 \text{ RT} \log K_c$ .
- Third law of thermodynamic : The entropy of a perfectly crystalline solid at absolute zero (0 K) is taken to be zero.

### **1-Mark Questions**

### **Thermodynamic Concepts and First Law of Thermodynamics**

**1.** Day temp. Name the thermodynamic system to which following belong:

(i) Human body (ii) Milk in Thermos flask (iii) Tea in steel kettle

- **2.** Identity State functions out of Ihe following : Enthalpy, Entropy, Heat, Temperature, Work, Free energy.
- **3.** Give two examples of state functions.
- 4. Write the mathematical statement of first law of thermodynamics.

### Work, Enthalpy, Internal Energy and Heat Capacity

- 5. Predict the internal energy change for an isolated system? [Ans. Zero]
- 6. Why AH is more significant than  $\Delta U$ ?
- 7. Write one example each of extensive and intensive properties.
- 8. Write a chemical equation in which  $\Delta H$  and  $\Delta U$  are equal.
- 9. Write the relationship between  $\Delta H$  and  $\Delta U$  for the reaction :





 $C(s) + O_2(g) \rightarrow CO_2(g).$ 

Different types of Enthalpy Changes and Hess's Law

- **10.** Define standard enthalpy of formation.
- **11.** Why is the standard enthalpy of formation of diamond not zero although it is an element ?
- **12.** The enthalpy of atomization of  $CH_4$  is 1665 kJ mol<sup>-1</sup>. What is the bond enthalpy of C-H bond ? [Ans. 416.25 kJ]
- **13.** Identify the species for which  $\Delta_f H^\circ = 0$ , at 298 K :  $-Br_2$ ,  $Cl_2$ ,  $CH_4$ . [*Hint* :  $Cl_2(Br_2 is liquid at 298K)$ ]

Spontaneity, Entropy, Second and Third Law of Thermodynamics

- **14.** For the reaction  $2Cl(g) \rightarrow Cl_2(g)$ ; what are the sign of  $\Delta H$  and  $\Delta S$ ?
- **15.** For an isolated system  $\Delta U = 0$ , what will be  $\Delta S$ ?
- 16. Why entropy of steam is more than that of water at its boiling point ?
- 17. Out of Diamond and Graphite which has higher entropy?
- 18. Write an example of endothermic spontaneous reaction.
- **19.** State second law of thermodynamics.
- **20.** State third law of thermodynamics.
- **21.** Which has more entropy ? 1 mol  $H_2O(l)$  at 25°C or 1 mol  $H_2O(l)$  at 35°C.
- 22. At what temperature the entropy of a perfectly crystalline solid is zero?

Gibbs Energy and Spontaneity, Effect of Temperature on Spontaneity

- **23.** For a certain reaction  $\Delta G^{\circ} = 0$ , what is the value of K<sub>c</sub>?
- 24. How can a non spontaneous reaction be made spontaneous ?
- **25.** For a reaction both  $\Delta H$  and  $\Delta S$  are negative. Under what conditions does the reaction occur.

### 2 Marks Question

### **Thermodynamic Concepts and First Law of Thermodynamics**

1. In a process 701 J of heat is absorbed by a system and 394 J work is done by the system. What is the change in internal energy for the process ?

[**Ans.** 307 J]



Thermodynamics

2. Neither q nor w is state functions but q + w is a state function. Explain.

### Work, Enthalpy, Internal Energy and Heat Capacity

- **3.** Classify the following as extensive or intensive properties : Heat capacity, Density, Temperature, Molar heat capacity.
- **4.** Derive the relationship between  $\Delta H$  and  $\Delta U$ .
- 5. Derive the relationship  $C_p C_v = R$ .
- 6. A 1.25g sample of octane ( $C_{18}$  H<sub>18</sub>) is burnt in excess of oxygen in a bomb calorimeter. The temperature of the calorimeter rises from 294.05 to 300.78K.If heat capacity of the calorimeter is 8.93 kJ K<sup>-1</sup>. Find the heat transferred to calorimeter. [Ans. 0.075 kJ]
- 7. Show that for an ideal gas, the molar heat capacity under constant volume conditions is equal to 3/2 R.
- 8. Expansion of a gas in vacuum is called free expansion. Calculate the work done and change in internal energy when 1 mol of an ideal gas expands isothermally from I L to 5 L into vacuum.

## Different types of Enthalpy Changes and Hess's Law

- **9.** State and explain Hess's Law of Constant Heat Summation with a suitable example.
- **10.** Derive the relationship between ∆H and ∆U. Given,  $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g); \Delta_r H^\circ = -92.4 \text{ kJ mol}^1$ ; What is the standard enthalpy of formation of NH<sub>3</sub> gas ? [Ans. 46.2 kJ mol<sup>-1</sup>]
- **11.** Calculate the enthalpy change for the reaction :  $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$ . Given the bond enthalpies  $H_2$ ,  $Br_2$  and HBr are 435 kJ mol<sup>-1</sup>, 192 kJ mol<sup>-1</sup> and 368 kJ mol<sup>-1</sup> respectively. [**Ans.** – 109 kJ mol<sup>-1</sup>]
- **12.** Is the bond dissociation enthalpy of all the four C-H bonds in  $CH_4$  same? Give reason in support of your.

### Spontaneity, Entropy, Second and Third Law of Thermodynamics

- **13.** Define the term entropy. Write its unit. How does entropy of a system change on increasing temperature?
- **14.** Dissolution of ammonium chloride in water is endothermic but still it dissolves in water readily. Why ?
- 15. Calculate the entropy change in the surroundings when 1.00 mol of HiO(I) is formed under standard conditions;  $\Delta_f H^\circ = -286 \text{ kJ mol}^{-1}$ .





[**Ans.** 959.7 J K<sup>-1</sup> mol<sup>-1</sup>]

16. The enthalpy of vaporization of a liquid is 30 kJ mol<sup>-1</sup> and entropy of vaporization is 75 J K<sup>-1</sup> mol<sup>-1</sup>. Calculate the boiling point of liquid at 1 atm.

### Gibbs Energy and Spontaneity, Effect of Temperature on Spontaneity

- **17.** The equilibrium constant for a reaction is 10. What will be the value of  $\Delta G^{\circ}$ ? R = 8.314J K<sup>-1</sup> mol<sup>-1</sup>, T = 300 K. [Ans. 5.527 kJ mol<sup>-1</sup>]
- **18.** Derive the relationship,  $\Delta G = -T\Delta S_{total}$  for a system.
- **19.** The  $\Delta$ H and  $\Delta$ S for  $2Ag_2O(s) \rightarrow 4Ag(s) + O(g)$  are given + 61.17 kJ mol<sup>-1</sup> and + 132 K<sup>-1</sup> mol<sup>-1</sup> respectively. Above what temperature will the reaction be spontaneous ? [**Ans.** > 463.4 K]

### **3 Mark Questions**

### Thermodynamic Concepts and First Law of Thermodynamics

- 1. Differentiate between the following (with examples) :
  - (i) Open and Closed System.
  - (ii) Adiabatic and Isothermal process
  - (iii) State function and path function

## Work, Enthalpy, Internal Energy and Heat Capacity

- Calculate the maximum work obtained when 0.75 mole of an ideal gas expands isothermally and reversibly at 27°C from a volume of 15 L to 25 L.
  [Ans. 955.7 J]
- Calculate the number of kJ necessary to raise the temperature of 60 g of aluminium from 35 to 55°C. Molar heat capacity of Al is 24 J mol<sup>-1</sup>J mol<sup>-1</sup>K<sup>-1</sup>. [Ans. 1.067kJ]
- 4. The reaction of cyanamide,  $NH_2CN(s)$ , with Dioxygen was carried out in a bomb calorimeter, and  $\Delta U$  was found to be -742.7 kJ mol<sup>-1</sup> at 298K.

Calculate Enthalpy change for the reaction at 298K, NH<sub>2</sub>CN (s) +  $\frac{3}{2}$ O<sub>2</sub>

$$(g) \rightarrow N_2(g) + CO_2(g) + H_2O(I)$$
 [Ans. - 741.5 kJ

## Different types of Enthalpy Changes and Hess's Law

5. The enthalpy of combustion of methane, graphite and dihydrogen at 298 K are – 890.3 kJ mol<sup>-1</sup>, – 393.5 kJ mol<sup>-1</sup> and – 285.8 kJ mol<sup>-1</sup> respectively.



Thermodynamics

 $mol^{-1}$ ]

Calculate enthalpy of formation of methane gas. [Ans. – 74.8 kJ mol<sup>-1</sup>]

- 6. Explain the Born Haber Cycle to determine the lattice enthalpy of NaCl.
- 7. Enthalpies of formation of CO(g), CO<sub>2</sub>(g), N<sub>2</sub>O(g) and N<sub>2</sub>O<sub>4</sub>(g) are -110, -393, 81 and 9.7 kJ mol<sup>-1</sup> respectively. Find the value of  $\Delta_r$ H for the reaction; N<sub>2</sub>O<sub>4</sub>(g) + 3CO(g)  $\rightarrow$  N<sub>2</sub>O(g) + 3CO<sub>2</sub>(g)

[Ans. – 777.7 kJ mol<sup>-1</sup>]

8. The combustion of 1 mol of benzene takes place at 298K .After combustion  $CO_2$  and  $H_2O$  are formed and 3267 kJ mol<sup>-1</sup> of heat is liberated. Calculate  $\Delta_f H^{\circ}(C_6H_6)$ .

Given :  $\Delta_f H^{\circ}(CO_2) = -286 \text{ kJ mol}^{-1}$ ,  $\Delta_f H^{\circ}(H_2O) = -393 \text{ kJ mol}^{-1}$ [Ans. 48.51 kJ mol}^{-1}]

**9.** Calculate the standard enthalpy of formation of CH<sub>3</sub>OH (1) from the following data :

CH<sub>3</sub>OH (1) + 
$$\frac{3}{2}$$
O<sub>2</sub>(g) CO<sub>2</sub>(g) + 2H<sub>2</sub>O (1);  $\Delta_c$ H° = − 726 kJ mol<sup>-1</sup>  
C(g) + O<sub>2</sub>(g) → CO<sub>2</sub>(g);  $\Delta_f$ H° = − 393 kJ mol<sup>-1</sup>  
H<sub>2</sub>(g) + ½O<sub>2</sub>(g) → H<sub>2</sub>O(1);  $\Delta_f$ H° = − 286 kJ mol<sup>-1</sup>

 $[Ans. - 239 \text{ kJ mol}^{-1}]$ 

### Spontaneity, Entropy, Second and Third Law of Thermodynamics

- 10. For oxidation of iron, 4 Fe(s) +  $3O_2(g) \rightarrow 2Fe_2O_3$  entropy change is - 549.4 J K-<sup>1</sup> mol<sup>-1</sup> at 298 K. In spite of negative entropy change of this reaction, why is the reaction spontaneous ? (Δ<sub>r</sub>H° for this reason is – 1648 kJ mol<sup>-1</sup>) [Ans. ΔS<sub>total</sub> = + 4980.6 J K<sup>-1</sup> mol<sup>-1</sup>]
- **11.** Give reasons :
  - (i) Evaporation of water is and endothermic process but it is spontaneous,
  - (ii) A real crystal has more entropy than an ideal crystal,
  - (iii) Entropy of universe is increasing.

### Gibbs Energy and Spontaneity, Effect of Temperature on Spontaneity

12. For the reaction at 298 K,  $2A + B \rightarrow C$ ;  $\Delta H = 400 \text{ kJ mol}^{-1}$ ,  $\Delta S = 0.2 \text{ kJ}$  K<sup>-1</sup> mol<sup>-1</sup>. At what temperature will the reaction become spontaneous considering  $\Delta H$  and  $\Delta S$  to be constant over the temperature range.

[Ans. T > 2000 K]





- 13. Reaction  $X \rightarrow Y$ ;  $\Delta H = +ve$  is spontaneous at temperature "T". Determine (i) Sign of  $\Delta S$  for this reaction,
  - (ii) Sign of  $\Delta G$  for  $Y \rightarrow X$
  - (iii) Sign of  $\Delta G$  at a temperature < T.

### **5-Mark Questions**

### Thermodynamic Concepts and First Law of Thermodynamics

- 1. (a) What is reversible process in Thermodynamics?
  - (b) Name the thermodynamic processes for which : (i) q = 0 (ii)  $\Delta U = 0$
  - (iii)  $\Delta V = 0$  (iv)  $\Delta P = 0$ .

(c) Water decomposes by absorbing 286.2 kJ of electrical energy per mole. When  $H_2$  and  $O_2$  combine to form one mole of  $H_2O$ , 286.2 kJ of heat is produced. Which thermodynamic law is proved? Write its statement.

## Work, Enthalpy, Internal Energy and Heat Capacity.

2. (a) Although heat is a path function but heat absorbed by the system under certain specific conditions is independent of path. What are those conditions ? Explain. [Hint :  $q_y = \Delta U$  and  $q_p = \Delta H$ ]

(b) It has been found that 221.4 J is needed to heat 30g of ethanol from 15°C to 18°C. Calculate (a) specific heat capacity, and (b) molar heat capacity of ethanol. [Ans. (a) 2.46  $Jg^{-1}$ °C<sup>-1</sup>, (b) 113.2 J mol<sup>-1</sup>C<sup>-1</sup>]

### Different types of Enthalpy Changes and Hess's Law

3. (a) Differentiate the terms Bond dissociation enthalpy and Bond Enthalpy.

(b) Calculate enthalpy change for the process  $CCl_4(g) \rightarrow C(g) + 4Cl(g)$ and calculate Bond enthalpy of C-C1 bond in  $CCl_4$ . Given :  $\Delta_{vap} H^{\circ}(CCl_4)$ = 30.5 kJ mol<sup>-1</sup>;  $\Delta_f H^{\circ}(CCl_4) = -135.5$  kJ mol<sup>-1</sup>;  $\Delta_a H^{\circ}(C) = 715$  kJ mol<sup>-1</sup> and  $\Delta_a H^{\circ}(Cl_2) = 242$  kJ mol<sup>-1</sup>. [**Ans.** 1304 kJ mol<sup>-1</sup>, 326 kJ mol<sup>-1</sup>]

### Spontaneity, Entropy, Second and Third Law

- 4. Predict the sign of  $\Delta S$  for the following changes :
  - (i) Freezing of water,
  - (ii)  $C(graphite) \rightarrow C(diamond)$
  - (iii)  $H_2(g)$  at 298 k and 1 bar  $\rightarrow H_2(g)$  at 298 k and 10 bar



Thermodynamics

6**7** 

(iv)  $H_2(g) + I_2(g) \rightarrow 2HI(g)$ (v)  $2NaHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$ 

# Gibbs Energy and Spontaneity, Effect of Temperature of Sponaneity

5. (i) Define Gibbs energy. Give its mathematical expression. What is Gibb's energy criteria of spontaneity.

(ii) For the reaction :  $2A(g) + B(g) \rightarrow 2D(g)$ ,  $\Delta U^{\circ} = -10.5$  kJ and  $\Delta S^{\circ} = -44.1$  J K<sup>-1</sup>. Calculate  $\Delta r G^{\circ}$  for the reaction, and predict whether will occur spontaneously. [**Ans.**  $\Delta r G^{\circ} = +0.16$  kJ, Non spontaneous]





