Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

NCERT Exercise

Question 1:

What will be the minimum pressure required to compress $500 \mathrm{dm}^{3}$ of air at 1 bar to $200 \mathrm{dm}^{3}$ at $30^{\circ} \mathrm{C}$?

Solution 1:

Given,
Initial pressure, $p_{1}=1$ bar
Initial volume, $V_{1}=500 \mathrm{dm}^{3}$
Final volume, $V_{2}=200 \mathrm{dm}^{3}$
Since the temperature remains constant, the final pressure (p_{2}) can be calculated using Boyle's law.
According to Boyle's law,
$p_{1} V_{1}=p_{2} V_{2}$
$\Rightarrow p_{2}=\frac{p_{1} V_{1}}{V_{2}}$
$=\frac{1 \times 500}{200} \mathrm{bar}$

$$
=2.5 \mathrm{bar}
$$

Therefore, the minimum pressure required is 2.5 bar.

Question 2:

A vessel of 120 mL capacity contains a certain amount of gas at $35^{\circ} \mathrm{C}$ and 1.2 bar pressure. The gas is transferred to answer vessel of volume 180 mL at $35^{\circ} \mathrm{C}$. What would be its pressure?

Solution 2:

Given,
Initial pressure, $p_{1}=1.2$ bar
Initial volume, $V_{1}=120 \mathrm{~mL}$
Final volume, $V_{2}=180 \mathrm{~mL}$
Since the temperature remains constant, the final pressure (p_{2}) can be calculated using Boyle's law.
According to Boyle's law,

$$
\begin{aligned}
& p_{1} V_{1}=p_{2} V_{2} \\
& p_{2}=\frac{p_{1} V_{1}}{V_{2}} \\
& =\frac{1.2 \times 120}{180} \mathrm{bar} \\
& \quad=0.8 \mathrm{bar}
\end{aligned}
$$

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper

Therefore, the pressure would be 0.8 bar.

Question 3:

Using the equation of state $=p V=n R T$; show that at a given temperature density of a gas is proportional to gas pressure $e p$.

Solution 3:

The equation of state is given by,
$p V=n R T$
Where,
$p \rightarrow$ Pressure of gas
$V \rightarrow$ Volume of gas
$n \rightarrow$ Number of moles of gas
$R \rightarrow$ Gas constant
$T \rightarrow$ Temperature of gas
From equation (i) we have,
$\frac{n}{V}=\frac{p}{R T}$
Replacing n with $\frac{m}{M}$, we have
$\frac{m}{M V}=\frac{p}{R T}$
Where,
$m \rightarrow$ Mass of gas
$M \rightarrow$ Molar mass of gas
But, $\frac{m}{V}=d \quad(\mathrm{~d}=$ density of gas)
Thus, from equation (ii), we have
$\frac{d}{M}=\frac{p}{R T}$
$\Rightarrow d=\left(\frac{M}{R T}\right) p$
Molar mass (M) of gas is always constant and therefore, at constant temperature
(T), $\frac{M}{R T}=$ constant,
$d=($ constant $) p$
$\Rightarrow d \alpha p$
Hence, at a given temperature, the density (d) of gas is proportional to its pressure (p)

Question 4:

At $0^{\circ} \mathrm{C}$, the density of certain oxide of a gas at 2 bar is same as that of dinitrogen at 5 bar.
What is the molecular mass of the oxide?

Solution 4:

Density (d) of substance at temperature (T) can be given by the expression,
$d=\frac{M p}{R T}$
Now, density of oxide $\left(\mathrm{d}_{1}\right)$ is given by,
$d_{1}=\frac{M_{1} p_{1}}{R T}$
Where, M_{1} and p_{1} are the mass and pressure of the oxide respectively.
Density of dinitrogen gas (d_{2}) is given by,
$d_{2}=\frac{M_{2} p_{2}}{R T}$
Where, M_{2} and p_{2} are the mass and pressure of the oxide respectively.
According to the given question,
$d_{1}=d_{2}$
$\therefore M_{1} p_{1}=M_{2} p_{2}$
Given,
$p_{1}=2$ bar
$p_{2}=5 \mathrm{bar}$
Molecular mass of nitrogen, $\mathrm{M}_{2}=28 \mathrm{~g} / \mathrm{mol}$
Now, $M_{1}=\frac{M_{2} p_{2}}{p_{1}}$
$=\frac{28 \times 5}{2}$
$=70 \mathrm{~g} / \mathrm{mol}$
Hence, the molecular mass of the oxide is $70 \mathrm{~g} / \mathrm{mol}$.

Question 5:

Pressure of 1 g of an ideal gas $\mathrm{A} 27^{\circ} \mathrm{C}$ is found to be 2 bar. When 2 g of another ideal gas B is introduced in the same flask at same temperature the pressure becomes 3 bar. Find a relationship between their molecular masses.

Solution 5:

For ideal gas A, the ideal gas equation is given by,
$p_{B} V=n_{B} R T$
Where, p_{B} and n_{B} represent the pressure and number of moles of gas B .
[V and T are constants for gases A and B]

From equation (i), we have
$p_{A} V=\frac{m_{A}}{M_{A}} R T \Rightarrow \frac{p_{A} M_{A}}{m_{A}}=\frac{R T}{V}$
From equation (ii), we have
$p_{B} V=\frac{m_{B}}{M_{B}} R T \Rightarrow \frac{p_{B} M_{B}}{m_{B}}=\frac{R T}{V}$.
Where, M_{A} and M_{B} are the molecular masses of gases A and B respectively.
Now, from equations (iii) and (iv), we have
$\frac{p_{A} M_{B}}{m_{B}}=\frac{p_{B} M_{B}}{m_{B}} \ldots \ldots$
Given,
$\mathrm{m}_{\mathrm{A}}=1 \mathrm{~g}$
$\mathrm{p}_{\mathrm{A}}=2 \mathrm{bar}$
$\mathrm{m}_{\mathrm{B}}=2 \mathrm{~g}$
$\mathrm{p}_{B}=(3-2)=1 \mathrm{bar}$
(Since total pressure is 3 bar)
Substituting these values in equation (v), we have
$\frac{2 \times M_{A}}{1}=\frac{1 \times M_{B}}{1}$
$\Rightarrow 4 M_{A}=M_{B}$
Thus, a relationship between the molecular masses of A and B is given by $4 M_{A}=M_{B}$

Question 6:

The drain cleaner, Drainex contains small bits of aluminum which react with caustic soda to produce dihydrogen. What volume of dihydrogen at $20^{\circ} \mathrm{C}$ and one bar will be released when 0.15 g of aluminum reacts?

Solution 6:

The reaction of aluminum with caustic soda can be represented as:
$2 \mathrm{Al}+2 \mathrm{NaOH}+2 \mathrm{H}_{2} 0 \rightarrow 2 \mathrm{NaAlO}_{2}+3 \mathrm{H}_{2}$
$2 \times 27 \mathrm{~g} \quad 3 \times 22400 \mathrm{~mL}$
At STP (273.15 K and 1 atm$), 54 \mathrm{~g}(2 \times 27 \mathrm{~g})$ of Al gives $3 \times 22400 \mathrm{~mL}$ of H_{2}.
$\therefore 0.15 \mathrm{~g}$ Al gives $\frac{3 \times 22400 \times 0.15}{54} \mathrm{~mL}$ of H_{2} i.e., 186.67 mL of H_{2}.
At STP,

VE ONLINE TUTORIN

Status of Matter

$$
\begin{aligned}
& \mathrm{p}_{1}=1 \mathrm{~atm} \\
& \mathrm{~V}_{1}=186.67 \mathrm{~mL} \\
& \mathrm{~T}_{1}=273.15 \mathrm{~K}
\end{aligned}
$$

Let the volume of dihydrogen be V_{2} at $\mathrm{p}_{2}=0.987 \mathrm{~atm}$ (since $1 \mathrm{bar}=0.987 \mathrm{~atm}$) and $\mathrm{T}_{2}=20^{\circ} \mathrm{C}$ $=(273.15+20) \mathrm{K}=293.15 \mathrm{~K}$.

$$
\begin{aligned}
\frac{\mathrm{p}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}} & =\frac{\mathrm{p}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}} \\
\mathrm{PV}_{2} & =\frac{\mathrm{p}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}}{\mathrm{p}_{2} \mathrm{~T}_{1}} \\
& =\frac{1 \times 186.67 \times 293.15}{0.987 \times 273.15} \\
& =202.98 \mathrm{~mL} \\
& =203 \mathrm{~mL}
\end{aligned}
$$

Therefore, 203 mL of dihydrogen will be released.

Question 7:

What will be the pressure exerted by a mixture of 3.2 g of methane and 4.4 g of carbon dioxide contained in a $9 \mathrm{~d}^{3}$ flask at $27^{\circ} \mathrm{C}$?

Solution 7:

It is known that,

$$
p=\frac{m}{M} \frac{R T}{V}
$$

For methane $\left(\mathrm{CH}_{4}\right)$,

$$
\begin{aligned}
\mathrm{p}_{\mathrm{CH}_{4}} & =\frac{3.2}{16} \times \frac{8.314 \times 300}{9 \times 10^{-3}}\left[\begin{array}{l}
\text { Since } 9 \mathrm{dm}^{3}=9 \times 10^{-3} \mathrm{~m}^{3} \\
27^{\circ} \mathrm{C}=300 \mathrm{~K}
\end{array}\right] \\
& =5.543 \times 10^{4} \mathrm{~Pa}
\end{aligned}
$$

For carbon dioxide $\left(\mathrm{CO}_{2}\right)$,

$$
\begin{aligned}
\mathrm{p}_{\mathrm{CO}_{4}} & =\frac{4.4}{44} \times \frac{8.314 \times 300}{9 \times 10^{-3}} \\
& =2.771 \times 10^{4} \mathrm{~Pa}
\end{aligned}
$$

The pressure exerted by the mixture can be obtained as:

$$
\begin{aligned}
p & =p_{C H_{4}}+p_{C O_{2}} \\
& =\left(5.543 \times 10^{4}+2.771 \times 10^{4}\right) \mathrm{Pa} \\
& =8.314 \times 10^{4} \mathrm{~Pa}
\end{aligned}
$$

Hence, the total pressure exerted by the mixture is $=8.314 \times 10^{4} \mathrm{~Pa}$.

Question 8:

What will be the pressure of he gaseous mixture when 0.5 L of H_{2} at 0.8 bar and 2.0 L of dioxygen at 0.7 bar are introduced in a 1 L vessel at $27^{\circ} \mathrm{C}$?

Solution 8:

Let the partial pressure of H_{2} in the vessel be $p_{\mathrm{H}_{2}}$.
Now,

$$
\begin{array}{ll}
\mathrm{p}_{1}=0.8 \text { bar } & \mathrm{p}_{2}=\mathrm{p}_{\mathrm{H}_{2}}=? \\
\mathrm{~V}_{1}=0.5 \mathrm{~L} & \mathrm{~V}_{2}=1 \mathrm{~L}
\end{array}
$$

It is known that,

$$
\begin{aligned}
& p_{1} V_{1}=p_{2} V_{2} \\
& \Rightarrow p_{2}=\frac{p_{1} V_{1}}{V_{2}} \\
& \Rightarrow p_{H_{2}}=\frac{0.8 \times 0.5}{1} \\
& \quad=0.4 \mathrm{bar}
\end{aligned}
$$

Now, let the partial pressure of O_{2} in the vessel be $p_{O_{2}}$.

$$
\begin{array}{ll}
\mathrm{p}_{1}=0.7 \mathrm{bar} & \mathrm{p}_{2}=\mathrm{p}_{\mathrm{o}_{2}}=? \\
\mathrm{~V}_{1}=2.0 \mathrm{~L} & \mathrm{~V}_{2}=1 \mathrm{~L} \\
p_{1} V_{1}=p_{2} V_{2} & \\
\Rightarrow p_{2}=\frac{p_{1} V_{1}}{V_{2}} & \\
\Rightarrow p_{O_{2}}=\frac{0.7 \times 20}{1} & \\
\quad=0.4 b a r &
\end{array}
$$

Total pressure of the gas mixture in the vessel can be obtained as:

$$
\begin{aligned}
p_{\text {total }} & =p_{\mathrm{H}_{2}}+p_{O_{2}} \\
& =0.4+1.4 \\
& =1.8 \mathrm{bar}
\end{aligned}
$$

Hence, the total pressure of the gaseous mixture in the vessel is 1.8 bar.

Question 9:

Density of a gas is found to be $5.46 \mathrm{~g} / \mathrm{dm}^{3}$ at $27^{\circ} \mathrm{C}$ at 2 bar pressure. What will be its density at STP?

Solution9:

Given,

$$
\begin{aligned}
& d_{1}=5.46 \mathrm{~g} / \mathrm{dm}^{3} \\
& p_{1}=2 \mathrm{bar} \\
& T_{1}=27^{\circ} \mathrm{C}=(27+273) \mathrm{K}=300 \mathrm{~K} \\
& p_{2}=1 \mathrm{bar} \\
& T_{2}=273 \mathrm{~K} \\
& d_{2}=?
\end{aligned}
$$

The density $\left(\mathrm{d}_{2}\right)$ of the gas at STP can be calculated using the equation,
$d=\frac{M p}{R T}$
$\therefore \frac{d_{1}}{d_{2}}=\frac{\frac{M p_{1}}{R T_{1}}}{\frac{M p_{2}}{R T_{2}}}$
$R T_{2}$
$\Rightarrow \frac{d_{1}}{d_{2}}=\frac{p_{1} T_{2}}{p_{2} T_{1}}$
$\Rightarrow d_{2}=\frac{p_{2} T_{1} d_{1}}{p_{1} T_{2}}$
$=\frac{1 \times 300 \times 5.46}{2 \times 273}$
$=3 \mathrm{gdm}^{-3}$
Hence, the density of the gas at STP will be $3 \mathrm{~g} \mathrm{dm}^{-3}$.

Question 10:

34.05 mL of phosphorus vapour weighs 0.0625 g at $546{ }^{\circ} \mathrm{C}$ and 0.1 bar pressure. What is the molar mass of phosphorus?

Solution10:

Given,
$\mathrm{p}=0.1 \mathrm{bar}$
$\mathrm{V}=34.05 \mathrm{~mL}=34.05 \times 10^{-3} \mathrm{~L}=34.05 \times 10^{-3} \mathrm{dm}^{-3}$
$\mathrm{R}=0.083 \mathrm{bar} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{T}=546^{\circ} \mathrm{C}=(546+273) \mathrm{K}=819 \mathrm{~K}$
The number of mass (n) can be calculated using the ideal gas equation as:
ve ontine tutoring

$$
\begin{aligned}
p V & =n R T \\
\Rightarrow n & =\frac{p V}{R T} \\
& =\frac{0.1 \times 34.05 \times 10^{-3}}{0.083 \times 819} \\
& =5.01 \times 10^{-5} \mathrm{~mol}
\end{aligned}
$$

Therefore, molar mass of phosphorus $=\frac{0.0625}{5.01 \times 10^{-5}}=1247.5 \mathrm{~g} \mathrm{~mol}^{-1}$
Hence, the molar mass of phosphorus is $1247.5 \mathrm{~g} \mathrm{~mol}^{-1}$.

Question 11:

A student forgot to add the reaction mixture to the round bottomed flask at $27^{\circ} \mathrm{C}$ but instead he/she placed the flask on the flame. After a lapse of time, he realized his mistake, and using a pyrometer he found the temperature of the flask was $477{ }^{\circ} \mathrm{C}$. What fraction of air would have been expelled out?

Solution11:

Let the volume of the round bottomed flask be V .
Then, the volume of air inside the flask at $27^{\circ} \mathrm{C}$ is V .
Now,
$\mathrm{V}_{1}=\mathrm{V}$
$\mathrm{T}_{1}=27^{\circ} \mathrm{C}=300 \mathrm{~K}$
$\mathrm{V}_{2}=$?
$\mathrm{T}_{2}=477^{\circ} \mathrm{C}=750 \mathrm{~K}$
According to Charles's law,
$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
$\Rightarrow V_{2}=\frac{V_{1} T_{2}}{T_{1}}$
$=\frac{750 \mathrm{~V}}{300}$
$=2.5 \mathrm{~V}$
Therefore, volume of air expelled out $=2.5 \mathrm{~V}-\mathrm{V}=1.5 \mathrm{~V}$
Hence, fraction of air expelled out $=\frac{1.5 \mathrm{~V}}{2.5 \mathrm{~V}}=\frac{3}{5}$

Question 12:

Calculate the temperature of 4.0 mol of gas occupying $5 \mathrm{dm}^{3}$ at 3.32 bar.
($\mathrm{R}=0.083 \mathrm{bar} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$).

Solution12:

Given,
$\mathrm{n}=4.0 \mathrm{~mol}$
$\mathrm{V}=5 \mathrm{dm}^{3}$
$\mathrm{p}=3.32$ bar
$\mathrm{R}=0.083 \mathrm{bar} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
The temperature (T) can be calculated using the ideal gas equation as:

$$
\begin{aligned}
p V & =n R T \\
\Rightarrow T & =\frac{p V}{n R} \\
& =\frac{3.32 \times 5}{4 \times 0.083} \\
& =50 \mathrm{~K}
\end{aligned}
$$

Hence, the required temperature is 50 K .

Question 13:

Calculate the total number of electrons present in 1.4 g of dinitrogen gas.

Solution13:

Molar mass of dinitrogen $\left(\mathrm{N}_{2}\right)=28 \mathrm{~g} \mathrm{~mol}^{-1}$
Thus, 1.4 g of $N_{2}=\frac{1.4}{28}=0.05 \mathrm{~mol}$
$=0.05 \times 6.02 \times 10^{23}$ number of molecules
$=3.01 \times 10^{23}$ number of molecules
Now, 1 molecule of N_{2} contains 14 electrons.
Therefore, 3.01×10^{23} molecules of N_{2} contains $=14 \times 3.01 \times 1023$
$=4.214 \times 10^{23}$ electrons

Question 14:

How much time would it take to distribute one Avogadro number of wheat grains, if 10^{10} grains are distributed each second?

Solution14:

Avogadro number $=6.02 \times 10^{23}$
Thus, time required

IVE ONLINE TUTOR

Status of Matter

$$
\begin{aligned}
& =\frac{6.02 \times 10^{23}}{10^{10}} \mathrm{~s} \\
& =6.02 \times 10^{23} \mathrm{~s} \\
& =\frac{6.02 \times 10^{23}}{60 \times 60 \times 24 \times 365} \text { years } \\
& =1.909 \times 10^{6} \text { years }
\end{aligned}
$$

Hence, the time taken would be $=1.909 \times 10^{6}$ years .

Question 15:

Calculate the total pressure in a mixture of 8 g of dioxygen and 4 g of dihydrogen confined in a vessel of $1 \mathrm{dm}^{3}$ at $27^{\circ} \mathrm{C}$. $\left(\mathrm{R}=0.083 \mathrm{bar} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$.

Solution 15:

Given,
Mass of dioxygen $\left(\mathrm{O}_{2}\right)=8 \mathrm{~g}$
Thus, number of moles of $\mathrm{O}_{2}=\frac{8}{32}=0.25 \mathrm{~mole}$
Mass of dihydrogen $\left(\mathrm{H}_{2}\right)=4 \mathrm{~g}$
$\mathrm{H}_{2}=\frac{4}{2}=2 \mathrm{~mole}$
Therefore, total number of moles in the mixture $=0.25+22.25$ mole
Given,
$\mathrm{V}=1 \mathrm{dm} 3$
$\mathrm{n}=2.25 \mathrm{~mol}$
$\mathrm{R}=0.083 \mathrm{bar} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{T}=27^{\circ} \mathrm{C}=300 \mathrm{~K}$
Total pressure (p) can be calculated as:

$$
\begin{aligned}
p V & =n R T \\
\Rightarrow p & =\frac{n R T}{V} \\
& =\frac{225 \times 0.083 \times 300}{1} \\
& =56.025 \mathrm{bar}
\end{aligned}
$$

Hence, the total pressure of the mixture is 56.025 bar.

Question 16:

Pay load is defined as the difference between the mass of displaced air and the mass of the

Status of Matter

balloon. Calculate the pay load when a balloon of radius 10 m , mass 100 kg is filled with helium at 1.66 bar $27^{\circ} \mathrm{C}$. (Density of air $=1.2 \mathrm{~kg} \mathrm{~m}^{-3}$. And $\mathrm{R}=0.083$ bar dm$^{-3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$).

Solution16:

Given,
Radius of the balloon, $\mathrm{r}=10 \mathrm{~m}$
\therefore Volume of the balloon $=\frac{4}{3} \pi r^{3}$
$=\frac{4}{3} \times \frac{22}{7} \times 10^{23}$
$=4190.5 \mathrm{~m}^{3}$ (approx)
Thus, the volume of the displaced air is $4190.5 \mathrm{~m}^{3}$.
Given,
Density of air $=1.2 \mathrm{~kg} \mathrm{~m}^{-3}$
Then, mass of displaced air $=4190.5 \times 1.2 \mathrm{~kg}$
$=5028.6 \mathrm{~kg}$
Now, mass of helium (m) inside the balloon is given by,
$m=\frac{M p V}{R T}$
Here,
$\mathrm{M}=4 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}$
$\mathrm{p}=1.66$ bar
$\mathrm{V}=$ Volume of the balloon
$=4190.5 \mathrm{~m}^{3}$
$\mathrm{R}=0.083 \mathrm{bar} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{T}=27^{\circ} \mathrm{C}=300 \mathrm{~K}$
Then, $\mathrm{m}=\frac{4 \times 10^{-3} \times 1.66 \times 4190.5 \times 10^{3}}{0.083 \times 300}$
$=1117.5 \mathrm{~kg}$ (approx)
Now, total mass of the balloon filled with helium $=(100+1117.5) \mathrm{kg}$
$=1217.5 \mathrm{~kg}$
Hence, pay load $=(5028.6-1217.5) \mathrm{kg}$
$=3811.1 \mathrm{~kg}$
Hence, the pay load of the balloon is 3811.1 kg .

Question 17:

Calculate the volume occupied by 8.8 g of CO_{2} at $31.1^{\circ} \mathrm{C}$ and 1 bar pressure.
$\mathrm{R}=0.083$ bar $\mathrm{L} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$.

Solution 17:

It is known that,

IVE ONLINE TUTORIN

Status of Matter

$p V=\frac{m}{N} R T$
$\Rightarrow V=\frac{m R T}{M p}$
Here,
$\mathrm{m}=8.8 \mathrm{~g}$
$\mathrm{R}=0.083{\text { bar } \mathrm{LK}^{-1} \mathrm{~mol}^{-1}}^{-1}$
$\mathrm{T}=31.1^{\circ} \mathrm{C}=304.1 \mathrm{~K}$
$\mathrm{M}=44 \mathrm{~g}$
$\mathrm{p}=1$ bar
Thus, Volume $(V)=\frac{8.8 \times 0.083 \times 304.1}{44 \times 1}$

$$
\begin{aligned}
& =5.04806 \mathrm{~L} \\
& =5.05 \mathrm{~L}
\end{aligned}
$$

Hence, the volume occupied is 5.05 L .

Question 18:

2.9 g of gas at $95^{\circ} \mathrm{C}$ occupied the same volume as 0.184 g of dihydrogen at $17^{\circ} \mathrm{C}$, at the same pressure. What is the molar mass of the gas?

Solution 18:

Volume (V) occupied by dihydrogen is given by,
$V=\frac{m}{M} \frac{R T}{p}$

$$
=\frac{0.184}{2} \times \frac{R \times 290}{p}
$$

Let M be the molar mass of the unknown gas. Volume (V) occupied by the unknown gas can be calculated as:

$$
\begin{aligned}
V & =\frac{m}{M} \frac{R T}{p} \\
& =\frac{2.9}{M} \times \frac{R \times 368}{p}
\end{aligned}
$$

According to the equation,

IVE ONLINE TUTORIN Status of Matter

$$
\begin{aligned}
& \frac{0.184}{2} \times \frac{R \times 290}{p}=\frac{2.9}{M} \times \frac{R \times 368}{p} \\
& \Rightarrow \frac{0.184 \times 290}{2}=\frac{2.9 \times 368}{M} \\
& \Rightarrow M=\frac{2.9 \times 368 \times 2}{0.184 \times 290} \\
& \quad=40 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

Hence, the molar mass of the gas is $40 \mathrm{~g} \mathrm{~mol}^{-1}$.

Question 19:

A mixture of dihydrogen and dioxygen atone bar pressure contains 20% by weight of dihydrogen. Calculate the partial pressure of dihydrogen.

Solution 19:

Let the weight of dihydrogen be 20 g and the weight of dioxygen be 80 g .
Then, the number of moles of dihydrogen, $n_{H_{2}}=\frac{20}{2}=10$ moles and the number of moles of dioxygen, $n_{O_{2}}=\frac{80}{32}=2.5$ moles .
Given,
Total pressure of the mixture, $P_{\text {total }}=1$ bar
Then, partial pressure of dihydrogen,

$$
\begin{aligned}
p_{H_{2}} & =\frac{n_{H_{2}}}{n_{H_{2}}+n_{O_{2}}} \times P_{\text {total }} \\
& =\frac{10}{10+2.5} \times 1 \\
& =0.8 \mathrm{bar}
\end{aligned}
$$

Hence, the partial pressure of dihydrogen is 0.8 bar.

Question 20:

What would be the SI units for the quantity $\mathrm{pV}^{2} \mathrm{~T}^{2} / \mathrm{n}$?

Solution 20:

The SI units for pressure, p is Nm^{-2}.
The SI unit for volume, V is m^{3}.
The SI unit for temperature, T is K .
The SI unit for the number of moles, n is mol.

Therefore, the SI unit for quantity $\frac{p V^{2} T^{2}}{n}$ is given by,
$=\frac{\left(\mathrm{Nm}^{-2}\right)\left(\mathrm{m}^{3}\right)^{2}(\mathrm{~K})^{2}}{\mathrm{~mol}}$
$=\mathrm{Nm}^{4} \mathrm{~K}^{2} \mathrm{~mol}^{-1}$

Question 21:

In terms of Charles' law explain why $-273^{\circ} \mathrm{C}$ is the lowest possible temperature.

Solution 21:

Charles's law states that at constant pressure, the volume of a fixed mass of gas is directly proportional to its absolute temperature.

It was found that for all gases (at any given pressure), the plots of volume vs. temperature $\left(\mathrm{in}^{\circ} \mathrm{C}\right.$) is a straight line. If this line is extended to zero volume, then it intersects the temperature-axis at $-273^{\circ} \mathrm{C}$. In other words, the volume of any gas at $273^{\circ} \mathrm{C}$ is zero. This is because all gases get liquefied before reaching a temperature of $273^{\circ} \mathrm{C}$. Hence, it can be concluded that $-273^{\circ} \mathrm{C}$ is the lowest possible temperature.

Question 22:

Critical temperature for carbon dioxide and methane are $31.1^{\circ} \mathrm{C}$ and $-81.9^{\circ} \mathrm{C}$ respectively.

Which of these has stronger intermolecular forces and why?

Solution 22:

Higher is the critical temperature of a gas, easier is its liquefaction. This means that the intermolecular forces of attraction between the molecules of a gas are directly proportional to its critical temperature. Hence, intermolecular forces of attraction are stronger in the case of CO_{2}.

Question 23:

Explain the physical significance of Van der Waals parameters.

Solution23:

The vander waals equation is an equation of state for a fluid composed of particles that have a non-zero volume and a pair wise attractive inter-particle force(Vander waals force) The equation is
$\left(p+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T$

Physical significance of ' a ':

' a ' is a measure of the magnitude of intermolecular attractive forces within a gas.
Physical significance of ' b ':
' b ' is a measure of the volume of a gas molecule.
V is the total volume of the container containing the fluid.

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

