\#419429
 Topic: Pressure in Static Fluid

Explain why
(a) The blood pressure in humans is greater at the feet than at the brain
(b) Atmospheric pressure at a height of about 6 km decreases to nearly half of its value at the sea level, though the height of the atmosphere is more than 100 km
(c) Hydrostatic pressure is a scalar quantity even though pressure is force divided by area

Solution

(a) The height of the blood column in the human body is more at feet than at the brain. That is why, the blood exerts more pressure at the feet than at the brain.
(Pressure $=\rho g h$)
where $h=$ height, $\rho=$ density of liquid and $g=$ accleration due to gravity)
(b) Density of air decreases very rapidly with increase in height and reduces to nearly half its value at the sea level at a height of about 6 km . After 6 km , the density of air decreases but rather very slowly.
(c) When force is applied on a liquid, then according to Pascal's Law, the pressure in the liquid is transmitted in all directions.

Hence, hydrostatic pressure does not have a fixed direction and it is a scalar physical quantity.

\#419436

Topic: Angle of Contact
Explain why
(a) The angle of contact of mercury with glass is obtuse, while that of water with glass is acute.
(b) Water on a clean glass surface tends to spread out while mercury on the same surface tends to form drops. (Put differently, water wets glass while mercury does not).
(c) Surface tension of a liquid is independent of the area of the surface.
(d) Water with detergent dissolved in it should have small angles of contact.
(e) A drop of liquid under no external forces is always spherical in shape

Solution
 $T_{L A}, T_{S A}$ and $T_{S L}$ respectively

Now angle of contact of solid with liquid is
$\theta=\frac{T_{S A}-T_{S L}}{T_{L A}}$
In case of mercury-glass $T_{S A}<T_{S L}$, making $\cos \theta$ negative and the angle of contact obtuse.

 must be in equilibrium,

The angle of contact θ, is obtuse if $S_{S A}<S_{L A}$ (as in the case of mercury on glass). This angle is acute if $S_{S L}<S_{L A}$ (as in the case of water on glass).
(b) $T_{L A} \cos \theta+T_{S L}=T_{S A}$
 liquid then does not wet the solid. This is what happens with mercury on a glass surface. On the other hand,
 angle and hence water wets the glass surface.
 area of liquid surface taken, so is the surface tension.
(d) The cloth has narrow spaces in form of fine capillaries. The rise of liquid in a capillary tube is given by
$h=\frac{2 T \cos \theta}{\rho r g}$
$h \propto \cos \theta$
this implies that if detergent has a small angle of contact it will have a greater value of h, implying that detergent penetrates more in the cloth to remove dirt
(e) A liquid tends to acquire the minimum surface area to minimise the energy by the virtue of surface tension. For a given volume, the sphere has the least surface area.

\#419443

Topic: Surface Tension
Fill in the blanks using the word(s) from the list appended with each statement.
(a) Surface tension of liquids generally with temperatures. (increases / decreases)
(b) Viscosity of gases with temperature, whereas viscosity of liquids with temperature (increases / decreases)
(c) For solids with elastic modulus of rigidity, the shearing force is proportional to , while for fluids it is proportional to (shear strain / rate of shear strain)
(d) For a fluid in a steady flow, the increase in flow speed at a constriction follows (conservation of mass / Bernoullis principle)
(e) For the model of a plane in a wind tunnel, turbulence occurs at a speed for turbulence for an actual plane (greater / smaller)

Solution

(a) Surface tension of liquids generally decreases with temperatures. As temperature increases, the kinetic energy of molecules increases and they overcome the attractive forces.
(b) η of gases increase and η of liquids decrease with an increases in temperature.

 void most of the time, any increase in the contact they have with one another will increase the intermolecular force which will ultimately lead to a disability for the whole substance to move.
(c) For solids with elastic modulus of rigidity, the shearing force is proportional to Shear Strain
$F=G \epsilon A$
For fluids, it is proportional to the rate of shear strain
$F=\frac{d u}{-}$
(d) Conservation of mass will always be followed and since the flow is steady, even Bernoullis principle would be followed.
(e) Greater

Since in an actual environment, the external disturbances also come into picture that cannot be introduced in a lab.

\#419450

Topic: Fluid Dynamics
Explain why
(a) To keep a piece of paper horizontal, you should blow over, not under, it .
(b) When we try to close a water tap with our fingers, fast jets of water gush through the openings between our fingers.
(c) The size of the needle of a syringe controls flow rate better than the thumb pressure exerted by a doctor while administering an injection.
(d) A fluid flowing out of a small hole in a vessel results in a backward thrust on the vessel.
(e) A spinning cricket ball in air does not follow a parabolic trajectory.

Solution

 reduces above the paper and the paper remains horizontal.
b)According to the equation of continuity:

Area \times velocity $=C$, as we decrease the area , velocity increases.

 to each other .
 the flow rate suddenly increases to a high value for a constant thumb pressure applied.
 of continuity:

Area \times velocity $=C$
According to the law of conservation of momentum, the vessel attains a backward velocity because there are no external forces acting on the system

 curved path. It does not follow a parabolic path.

\#419455

Topic: Pressure in Static Fluid
A 50 kg girl wearing high heel shoes balances on a single heel. The heel is circular with a diameter 1.0 cm . What is the pressure exerted by the heel on the horizontal floor ?

Solution

Mass of the girl, $m=50 \mathrm{~kg}$
Diameter of the heel, $d=1 \mathrm{~cm}=0.01 \mathrm{~m}$
Radius of the heel, $r=\frac{d}{2}=0.005 \mathrm{~m}$
Area of the heel $=\pi r^{2}$

$$
\begin{aligned}
& =\pi \times(0.005)^{2} \\
& =7.85 \times 10^{-5} m^{2}
\end{aligned}
$$

Force exerted by the heel on the floor:
$F=m g$
$=50 \times 9.8$
$=490 \mathrm{~N}$
Pressure exerted by the heel on the floor:
$P=\frac{\text { Force }}{\text { Area }}$

$$
=490 /\left(7.85 \times 10^{-5}\right)=6.24 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
$$

Therefore, the pressure exerted by the heel on the horizontal floor is $6.24 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$.

\#419456

Topic: Pressure Measurement

Solution
Density of mercury, $\rho_{1}=13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m} 3$
Height of the mercury column, $h_{1}=0.76 \mathrm{~m}$
Density of French wine, $\rho_{2}=984 \mathrm{~kg} / \mathrm{m} 3$
Height of the French wine column $=h_{2}$
Acceleration due to gravity, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
The pressure in both the columns is equal, i.e.,
Pressure in the mercury column $=$ Pressure in the French wine column
$\rho_{1} h_{1} g=\rho_{2} h_{2} g$
$h_{2}=\rho_{1} h_{1} / \rho_{2}$
$=13.6 \times 10^{3} \times 0.76 / 984=10.5 \mathrm{~m}$
Hence, the height of the French wine column for normal atmospheric pressure is 10.5 m .

\#419457

Topic: Pressure in Static Fluid
 ocean to be roughly 3 km , and ignore ocean currents.

Solution

Depth of sea $h=3 \times 10^{3} \mathrm{~m}$
Maximum stress $=10^{9} \mathrm{~Pa}$
Density of water $\rho=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Pressure exerted by a water column of depth 3 km

$$
\begin{aligned}
P= & h \rho g \\
& =3 \times 10^{3} \times 10^{3} \times 9.8 \\
& =2.94 \times 10^{7} P a
\end{aligned}
$$

This pressure is less than the maximum stress of $10^{9} \mathrm{~Pa}$; so the structure is suitable.

\#419458

Topic: Pressure in Static Fluid
A hydraulic automobile lift is designed to lift cars with a maximum mass of 3000 kg . The area of cross-section of the piston carrying the load is $425 \mathrm{~cm}^{2}$. What maximum pressure would the smaller piston have to bear ?

Solution

Pressure on the piston $P=\frac{F}{A}$
Force $F=m \times a$
$=3000 \times 9.8$
$=29400 \mathrm{~N}$
Area of cross section $A=425 \times 10^{-4}$ sq m

Therefore the pressure $P=\frac{3000 \times 9.8}{425 \times 10^{-4}}=6.92 \times 10^{5} \mathrm{~Pa}$.

\#419459

Topic: Pressure in Static Fluid
A U-tube contains water and methylated spirit separated by mercury. The mercury columns in the two arms are in level with 10.0 cm of water in one arm and 12.5 cm of spirit in
the other. What is the specific gravity of spirit?

Solution

Height of the spirit column, $h_{1}=12.5 \mathrm{~cm}=0.125 \mathrm{~m}$
Height of the water column, $h_{2}=10 \mathrm{~cm}=0.1 \mathrm{~m}$
$P_{o}=$ Atmospheric pressure
$\rho_{1}=$ Density of spirit
$\rho_{2}=$ Density of water
Pressure at point $\mathrm{B}=P_{0}+\rho_{1} h_{1} g$
Pressure at point $\mathrm{D}=P_{0}+\rho_{2} h_{2} g$
Pressure at points B and D is the same.
$P_{o}+\rho_{1} h_{1} g=P_{o}+\rho_{2} h_{2} g$
$\rho_{1} / \rho_{2}=h_{2} / h_{1}$
$=10 / 12.5=0.8$
Therefore, the specific gravity of spirit is 0.8 .

\#419460

Topic: Pressure in Static Fluid
 arms ? (Specific gravity of mercury $=13.6$)

Problem:
[A U-tube contains water and methylated spirit separated by mercury. The mercury columns in the two arms are in level with 10.0 cm of water in one arm and 12.5 cm of spirit in the other]

Solution

Height of the water column, $h_{1}=10+15=25 \mathrm{~cm}$
Height of the spirit column, $h_{2}=12.5+15=27.5 \mathrm{~cm}$
Density of water, $\rho_{1}=1 \mathrm{~g} / \mathrm{cm}^{3}$
Density of spirit, $\rho_{2}=0.8 \mathrm{~g} / \mathrm{cm}^{3}$
Density of mercury $\rho=13.6 \mathrm{~g} / \mathrm{cm}^{3}$
Let h be the difference between the levels of mercury in the two arms.
Pressure exerted by height h, of the mercury column:
$=\rho h g$
$=h \times 13.6 \times g$ (i)
Difference between the pressures exerted by water and spirit:
$=\rho_{1} h_{1} g-\rho_{2} h_{2} g$
$=g(25 \times 1-27.5 \times 0.8)$
$=3 g$ (ii)
Equating equations (i) and (ii), we get:
$13.6 \mathrm{hg}=3 \mathrm{~g}$
$h=0.221 \mathrm{~cm}$
Hence, the difference between the levels of mercury in the two arms is 0.221 cm .

\#419461

Topic: Bernoulli's Equation
Can Bernoulli's equation be used to describe the flow of water through a rapid in a river ? Explain.

Solution

Bernoullis equation cannot be used to describe the flow of water through a rapid in a river because of the turbulent flow of water. This principle can only be applied to a streamline flow.

\#419462

Topic: Bernoulli's Equation
Does it matter if one uses gauge instead of absolute pressures in applying Bernoulli's equation ? Explain.

Solution

Using Bernoulli's theorem : $P+\rho g h+\frac{1}{2} \rho v^{2}=$ constant
where P is the absolute pressure at a point, ρ is the density of the fluid, h is the height of that point above a reference point and v is the velocity of fluid at that point.
Thus $P_{1}+\rho g h_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\rho g h_{2}+\frac{1}{2} \rho v_{2}^{2}$
Subtracting atmospheric pressure from both sides.
We get $P_{1}-P_{o}+\rho g h_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}-P_{o}+\rho g h_{2}+\frac{1}{2} \rho v_{2}^{2}$
Gauge pressure $P_{i}^{\prime}=P_{i}-P_{o} \quad(i=1,2)$
$\Rightarrow \quad P_{1}^{\prime}+\rho g h_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}^{\prime}+\rho g h_{2}+\frac{1}{2} \rho v_{2}^{2}$
Thus the Bernoulli's equation remains in the same form.
Hence, it does not matter if one uses gauge instead of absolute pressure in applying Bernoulli's equation.

\#419463

Topic: Stoke's Law and Terminal Velocity
 pressure difference between the two ends of the tube ? (Density of glycerine $=1.3 \times 10^{3} \mathrm{kgm}^{-3}$ and viscosity of glycerine $=0.83$ Pa s). [You may also like to check if the assumption of laminar flow in the tube is correct].

Solution

Length of the horizontal tube, $/=1.5 \mathrm{~m}$
Radius of the tube, $r=1 \mathrm{~cm}=0.01 \mathrm{~m}$
Diameter of the tube, $d=2 r=0.02 m$
Glycerine is flowing at a rate of $4 \times 10^{-3} \mathrm{~kg} / \mathrm{s}$
$M=4.0 \times 10^{-3} \mathrm{~kg} / \mathrm{s}$

Density of glycerine, $\rho=1.3 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Viscosity of glycerine, $\eta=0.83$ Pas
Volume of glycerine flowing per sec:
$=4 \times 10^{-3} /\left(1.3 \times 10^{3}\right)$
$=3.08 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}$

According to Poisevilles formula, we have the relation for the rate of flow:
$V=\pi p r^{4} / 8 \eta /$
where p is the pressure difference between the two ends of the tube

$$
\begin{aligned}
p & =V 8 \eta \| \pi r^{4} \\
& =3.08 \times 10^{-6} \times 8 \times 0.83 \times 1.5 /\left[\pi \times 0.01^{4}\right] \\
& =9.8 \times 10^{2} \mathrm{~Pa}
\end{aligned}
$$

Reynolds number is given by the relation:

$$
\begin{aligned}
R & =4 \rho v / \pi d \eta \\
& =4 \times 1.3 \times 10^{3} \times 3.08 \times 10^{-6} /(0.02 \times 0.83) \\
& =0.3
\end{aligned}
$$

Reynolds number is about 0.3 . Hence, the flow is
laminar.

\#419464

Topic: Bernoulli's Equation

on the wing if its area is $2.5 \mathrm{~m}^{2}$? Take the density of air to be $1.3 \mathrm{kgm}^{-3}$

Solution

Speed of wind on the upper surface of the wing, $V_{1}=70 \mathrm{~m} / \mathrm{s}$

Speed of wind on the lower surface of the wing, $V_{2}=63 \mathrm{~m} / \mathrm{s}$
Area of the wing, $A=2.5 \mathrm{~m}^{2}$
Densityof air, $\rho=1.3 \mathrm{~kg} / \mathrm{m}^{3}$

According to Bernoullis theorem, we have the relation:
$P q+(1 / 2) \rho\left(V_{1}^{2}\right)=P 2+(1 / 2) \rho\left(V_{2}^{2}\right)$
$P 2-P 1=(1 / 2) \rho\left(V_{1}^{2}-V_{2}^{2}\right)$

Where,
$P q=$ Pressure on the upper surface of the wing
$P 2=$ Pressure on the lower surface of the wing

The pressure difference between the upper and lower surfaces of the wing provides lift to the aeroplane.
Lift on the wing $=(P 2-P 1) A$

$$
\begin{aligned}
& =(1 / 2) \rho\left(V_{1}^{2}-V_{2}^{2}\right) A \\
& =(1 / 2) 1.3\left[70^{2}-63^{2}\right] 2.5 \\
& =1512.87
\end{aligned}
$$

$N=1.51 \times 10^{3} N$
Therefore, the lift on the wing of the aeroplane is $1.51 \times 10^{3} \mathrm{~N}$.

\#419465

Topic: Bernoulli's Equation

Figures (a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of the two figures is incorrect ? Why ?

Solution

Fig. (a) is incorrect. Accoridng to equation of continuity, i.e., $a v=$ Constant, where area of cross-section of tube is less, the velcoity of liquid flow is more. So the velocity of liquid flow at a constriction of tube is more than the other portion of tube.

Accroding to Bernoulli's Theorem,
$P+\frac{1}{2} \rho V^{2}=$ Constant,
where v is more, P is less and vice versa.

\#419466

Topic: Fluid Dynamics
 what is the speed of ejection of the liquid through the holes ?

Solution

The cross-section area of the cylindrical tube $A_{1}=8 \mathrm{~cm}^{2}$

$$
=8 \times 10^{-4} \mathrm{~m}^{2}
$$

The speed of the liquid flow inside the tube $V_{1}=1.5 \mathrm{~m} /$ minute

$$
=\frac{1.5}{60} m_{S}{ }^{-1}
$$

Area of each hole $=\pi\left(0.5 \times 10^{-3}\right)^{2} \mathrm{~m}^{2}$
Area of 40 holes $A_{2}=40 \pi\left(0.5 \times 10^{-3}\right)^{2} \mathrm{~m}^{2}$
$A_{1} V_{1}=A_{2} V_{2}$
$V_{2}=\frac{A_{1} V_{1}}{A_{2}}$
$=\frac{8 \times 10^{-4} \times 1.5}{40 \pi \times\left(0.5 \times 10^{-3}\right)^{2} \times 60}=0.636 \mathrm{~ms}^{-1}$.

\#419467

Topic: Surface Tension
A U-shaped wire is dipped in a soap solution, and removed. The thin soap film formed between the wire and the light slider supports a weight of $1.5 \times 10^{-2} N$ (which includes the small weight of the slider). The length of the slider is 30 cm . What is the surface tension of the film ?

Solution

Weight $m g=1.5 \times 10^{-2} \mathrm{~N}$
Length of slider $I=30 \times 10^{-2} \mathrm{~m}$
Force due to surface tension $=$ weight
We know that $\sigma \times 2 I=m g$
Therefore surface tension $\sigma=\frac{m g}{21}$

$$
\begin{aligned}
& =\frac{1.5 \times 10^{-2}}{2 \times 30 \times 10^{-2}} \\
& =2.5 \times 10^{-2} \mathrm{Nm}^{-1} .
\end{aligned}
$$

\#419468

Topic: Surface Tension

(a)

(b)

(c)

Figure (a) shows a thin liquid film supporting a small weight $=4.5 \times 10^{-2} N$. What is the weight supported by a film of the same liquid at the same temperature in Fig. (b) and (c)? Explain your answer physically.

Solution

Take case (a):The length of the liquid film supported by the weight, $\mathrm{I}=40 \mathrm{~cm}=0.4 \mathrm{~cm}$
The weight supported by the film, $W=4.5 \times 10^{-2} \mathrm{~N}$
A liquid film has two free surfaces.
Surface tension $=W / 21$

$$
=4.5 \times 10^{-2} /(2 \times 0.4)=5.625 \times 10^{-2} \mathrm{~N} / \mathrm{m}
$$

In all the three figures, the liquid is the same. Temperature is also the same for each case. Hence, the surface tension in figure (b) and figure (c) is the same as in figure (a), i.e.,
$5.625 \times 10^{-2} \mathrm{~N} / \mathrm{m}$.
Since the length of the film in all the cases is 40 cm , the weight supported in each case is $4.5 \times 10^{-2} \mathrm{~N}$.

\#419469

Topic: Liquid Drops and Bubbles

What is the pressure inside the drop of mercury of radius 3.00 mm at room temperature ? Surface tension of mercury at that temperature $\left(20^{\circ} \mathrm{C}\right)$ is $4.65 \times 10^{-1} \mathrm{Nm}^{-1}$. The
atmospheric pressure is $1.01 \times 10^{5} \mathrm{~Pa}$. Also give the excess pressure inside the drop.

Solution

Radius of the mercury drop, $r=3.00 \mathrm{~mm}=3 \times 10^{-3} \mathrm{~m}$
Surface tension of mercury, $S=4.65 \times 10^{-1} \mathrm{~N} / \mathrm{m}$
Atmospheric pressure, $P_{o}=1.01 \times 10^{5} \mathrm{~Pa}$
Total pressure inside the mercury drop
= Excess pressure inside mercury + Atmospheric pressure
$=2 S / r+P_{0}$
$=\left[2 \times 4.65 \times 10^{-1} /\left(3 \times 10^{-3}\right)\right]+1.01 \times 10^{5}$
$=1.0131 \times 10^{5}$
Excess pressure $=2 \mathrm{~S} / \mathrm{r}$
$=\left[2 \times 4.65 \times 10^{-1} /\left(3 \times 10^{-3}\right)\right]=310 P a$

\#419472

Topic: Liquid Drops and Bubbles

 inside the bubble ? (1 atmospheric pressure is $1.01 \times 10^{5} \mathrm{~Pa}$)

Solution

Excess pressure inside the soap bubble is 20 Pa ;
Pressure inside the air bubble is $1.06 \times 10^{5} \mathrm{~Pa}$
Soap bubble is of radius, $r=5.00 \mathrm{~mm}=5 \times 10^{-3} \mathrm{~m}$
Surface tension of the soap solution, $S=2.50 \times 10^{-2} N_{m}{ }^{-1}$
Relative density of the soap solution $=1.20$
\therefore Density of the soap solution, $\rho=1.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Air bubble formed at a depth, $h=40 \mathrm{~cm}=0.4 \mathrm{~m}$
Radius of the air bubble, $r=5 \mathrm{~mm}=5 \times 10^{-3} \mathrm{~m}$
1 atmospheric pressure $=1.01 \times 10^{5} \mathrm{~Pa}$
Acceleration due to gravity, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Hence, the excess pressure inside the soap bubble is given by the relation:

$$
\begin{aligned}
P & =\frac{4 S}{r} \\
& =\frac{4 \times 2.5 \times 10^{-2}}{5 \times 10^{-3}} \\
& =20 \mathrm{~Pa}
\end{aligned}
$$

Therefore, the excess pressure inside the soap bubble is 20 Pa
The excess pressure inside the air bubble is given by the relation:
$\rho^{\prime}=\frac{2 S}{r}$

$$
\begin{aligned}
& =\frac{2 \times 2.5 \times 10^{-2}}{\left(5 \times 10^{-3}\right)} \\
& =10 \mathrm{~Pa}
\end{aligned}
$$

Therefore, the excess pressure inside the air bubble is 10 Pa .
At a depth of 0.4 m , the total pressure inside the air bubble
$=$ Atmospheric pressure $+h \rho g+P^{\prime}$
$=1.01 \times 10^{5}+0.4 \times 1.2 \times 10^{3} \times 9.8+10$
$=1.06 \times 10^{5} \mathrm{~Pa}$
Therefore, the pressure inside the air bubble is $1.06 \times 10^{5} \mathrm{~Pa}$
\#419474
Topic: Pressure in Static Fluid
A tank with a square base of area $1.0 \mathrm{~m}^{2}$ is divided by a vertical partition in the middle. The bottom of the partition has a small-hinged door of area $20 \mathrm{~cm}^{2}$. The tank is filled with water in one compartment, and an acid (of relative density 1.7) in the other, both to a height of 4.0 m . compute the force necessary to keep the door close.

Solution

Base area of the given tank, $A=1.0 \mathrm{~m}^{2}$
Area of the hinged door, $a=20 \mathrm{~cm}^{2}=20 \times 10^{-4} \mathrm{~m}^{2}$
Density of water, $\rho_{1}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Density of acid, $\rho_{2}=1.7 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Height of the water column, $h_{1}=4 \mathrm{~m}$
Height of the acid column, $h_{2}=4 m$
Acceleration due to gravity, $g=9.8$
Pressure due to water is given as:
$P_{1}=h_{1} \rho_{1} g$

$$
=4 \times 10^{3} \times 9.8=3.92 \times 10^{4} \mathrm{~Pa}
$$

Pressure due to acid is given as:
$P_{2}=h_{2} \rho_{2} g$
$=4 \times 1.7 \times 10^{3} \times 9.8=6.664 \times 10^{4} \mathrm{~Pa}$
Pressure difference between the water and acid columns:
$\Delta P=P_{2}-P_{1}$
$=6.664 \times 10^{4}-3.92 \times 10^{4}$
$=2.744 \times 10^{4}$
Hence, the force exerted on the door $=\triangle P \times a$

$$
\begin{aligned}
& =2.744 \times 10^{4} \times 20 \times 10^{-4} \\
& =54.88 \mathrm{~N}
\end{aligned}
$$

Therefore, the force necessary to keep the door closed is 54.88 N .

\#419478

Topic: Pressure Measurement

A manometer reads the pressure of a gas in an enclosure as shown in Fig (a). When a pump removes some of the gas, the manometer reads as in Fig (b). The liquid used in the manometers is mercury and the atmospheric pressure is 76 cm of mercury.
(a) Give the absolute and gauge pressure of the gas in the enclosure for cases (a) and (b), in units of cm of mercury.
(b) How would the levels change in case (b) if 13.6 cm of water (immiscible with mercury) are poured into the right limb of the manometer? (Ignore the small change in the volume of the gas).

Solution

(a) For figure (a)

Atmospheric pressure, $P_{0}=76 \mathrm{~cm}$ of Hg
Difference between the levels of mercury in the two limbs gives gauge pressure
Hence, gauge pressure is 20 cm of Hg .
Absolute pressure $=$ Atmospheric pressure + Gauge pressure

$$
=76+20=96 \mathrm{~cm} \text { of } \mathrm{Hg}
$$

For figure (b)
Difference between the levels of mercury in the two limbs $=-18 \mathrm{~cm}$
Hence, gauge pressure is -18 cm of Hg .
Absolute pressure $=$ Atmospheric pressure + Gauge pressure
$=76 \mathrm{~cm}-18 \mathrm{~cm}=58 \mathrm{~cm}$
(b) 13.6 cm of water is poured into the right limb of figure (b).

Relative density of mercury $=13.6$
Hence, a column of 13.6 cm of water is equivalent to 1 cm of mercury.
Let h be the difference between the levels of mercury in the two limbs.
The pressure in the right limb is given as:
$P R=$ Atmospheric pressure +1 cm of Hg
$=76+1=77 \mathrm{~cm}$ of Hg (i)
The mercury column will rise in the left limb.
Hence, pressure in the left limb, $P L=58+h$..... (ii)
Equating equations (i) and (ii), we get:
$77=58+h$
$\therefore h=19 \mathrm{~cm}$
Hence, the difference between the levels of mercury in the two limbs will be 19 cm .

\#419481

Topic: Pressure in Static Fluid

 readings on a weighing scale ?

Solution

Pressure (and therefore force) on the two equal base areas are identical. But force is exerted by water on the sides of the vessels also, which has a nonzero vertical component when the sides of the vessel are not perfectly normal to the base. This net vertical component of force by water on sides of the vessel is greater for the first vessel than the second. Hence the vessels weigh different even when the force on the base is the same in the two cases.

\#419483

Topic: Pressure Measurement

During blood transfusion the needle is inserted in a vein where the gauge pressure is 2000 Pa . At what height must the blood container be placed so that blood may just enter
the vein ? [Density of whole blood $=1.06 \times 10^{3} \mathrm{kgm}^{-3}$].

Solution

Gauge pressure, $P=2000 P a$
Density of whole blood, $\rho=1.06 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Acceleration due to gravity, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Height of the blood container $=h$
Pressure of the blood container, $P=h \rho g$
$h=P / \rho g$
$=2000 /\left(1.06 \times 10^{3} \times 9.8\right)$
$=0.1925 \mathrm{~m}$
The blood can enter the vein if the blood container is kept at a height higher than 0.1925 m , i.e., about 0.2 m

\#419484

Topic: Stoke's Law and Terminal Velocity

 qualitatively.

Solution

(a)

Diameter, $D=2 \times 10^{-3} \mathrm{~m}$
Viscosity of the blood $\eta=2.084 \times 10^{3} \mathrm{~Pa}$
Density of the blood $\rho=1.06 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
Maximum value of Reynolds number of flow to be laminar, $N_{R}=2000$
Average velocity $V_{c}=\frac{N_{R} \eta}{\rho D}$

$$
=\frac{2000 \times 2.084 \times 10^{3}}{1.06 \times 10^{3} \times 2 \times 10^{3}}
$$

$$
=\frac{4.168}{2.12}=1.96 \mathrm{~m} / \mathrm{s}
$$

(b) The dissipative forces become more important with increasing flow velocity, because of turbulence.

\#419486

Topic: Stoke's Law and Terminal Velocity
 blood to be 2.084×10^{-3} Pas).

Solution

(a) Radius of the artery $r=2 \times 10^{-3} \mathrm{~m}$

Diameter, $D=2 \times 2 \times 10^{-3} \mathrm{~m}=4 \times 10^{-3} \mathrm{~m}$
Viscosity of the blood $\eta=2.084 \times 10^{3} \mathrm{~Pa}$
Density of the blood $\rho=1.06 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
Maximum valu of Reynold number of flow to be laminar, $N_{R}=20 \mathrm{~N}$
Average velocity $V_{c}=\frac{N_{R} \eta}{\rho D}$

$$
\begin{aligned}
& =\frac{2000 \times 2.084 \times 10^{3}}{1.06 \times 10^{3} \times 4 \times 10^{3}} \\
& =\frac{4.168}{4.24}=0.98 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) Flow rate is given by the relation:

$$
\begin{aligned}
R= & \pi r^{2} V(a v g) \\
& =3.14 \times\left(2 \times 10^{-3}\right)^{2} \times 0.983 \\
& =1.235 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Therefore, the corresponding flow rate is $1.235 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}$.

\#419489

Topic: Bernoulli's Equation
 wing surface, determine the plane's mass. (Take air density to be $1 \mathrm{kgm}^{-3}$).

Solution

The area of the wings of the plane, $A=225=50 s q-m$
Speed of air over the lower wing, $V_{1}=180 \mathrm{~km} / \mathrm{h}=50 \mathrm{~m} / \mathrm{s}$

Speed of air over the upper wing, $V_{2}=234 \mathrm{~km} / \mathrm{h}=65 \mathrm{~m} / \mathrm{s}$
Density of air, $=1 \mathrm{~kg} / \mathrm{cu} . \mathrm{m}$
Pressure of air over the lower wing $=P_{1}$
Pressure of air over the upper wing $=P_{2}$
The upward force on the plane can be obtained using Bernoullis equation as:
$P_{1}-P_{2}=\frac{1}{2} \rho\left(V_{2}^{2}-V_{1}^{2}\right)$
$F=\left(P_{1}-P_{2}\right) A=\frac{1}{2} \rho\left(V_{2}^{2}-V_{1}^{2}\right) A$
$F=\left(P_{1}-P_{2}\right) A=\frac{1}{2} \times 1 \times\left(65^{2}-50^{2}\right) \times 50=43125 N$
$\therefore m=\frac{F}{g}=4400 \mathrm{~kg}$

\#419492

Topic: Stoke's Law and Terminal Velocity
 of the experiment to be 1.8×10^{-5} Pas. How much is the viscous force on the drop at that speed ? Neglect buoyancy of the drop due to air.

Solution

Terminal speed $=5.8 \mathrm{~cm} / \mathrm{s}$
Viscous force $=3.9 \times 10^{-10} \mathrm{~N}$
Radius of the given uncharged drop, $r=2.0 \times 10^{-5} \mathrm{~m}$
Density of the uncharged drop, $\rho=1.2 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{-3}$
Viscosity of air, $\eta=1.8 \times 10^{-5}$ Pas
Density of air $\left(\rho_{0}\right)$ can be taken as zero in order to neglect buoyancy of air.
Acceleration due to gravity, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Terminal velocity (v) is given by the relation:

$$
\begin{aligned}
V & =2 r^{2} \times\left(\rho-\rho_{0}\right) g / 9 \eta \\
& =2 \times\left(2 \times 10^{-5}\right)^{2}\left(1.2 \times 10^{3}-0\right) \times 9.8 /\left(9 \times 1.8 \times 10^{-5}\right) \\
& =5.8 \times 10^{-2} \mathrm{~m} / \mathrm{s} \\
& =5.8 \mathrm{~cm}^{-1}
\end{aligned}
$$

Hence, the terminal speed of the drop is $5.8 \mathrm{~cm} \mathrm{~s}^{-1}$.
The viscous force on the drop is given by:
$F=6 \pi \eta r v$

$$
\therefore F=6 \times 3.14 \times 1.8 \times 10^{-5} \times 2 \times 10^{-5} \times 5.8 \times 10^{-2}
$$

$$
=3.9 \times 10^{-10} \mathrm{~N}
$$

Hence, the viscous force on the drop is $3.9 \times 10^{-10} \mathrm{~N}$.

\#419493

Topic: Capillarity
 amount does the mercury dip down in the tube relative to the liquid surface outside ? Surface tension of mercury at the temperature of the experiment is $0.465 \mathrm{Nm}^{-1}$. Density of mercury $=13.6 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$.

Solution

Angle of contact between mercury and soda lime glass, $\theta=140^{\circ}$
Radius of the narrow tube, $r=1 \mathrm{~mm}=1 \times 10^{-3} \mathrm{~m}$
Surface tension of mercury at the given temperature, $s=0.465 \mathrm{Nm}^{-1}$
Density of mercury, $\rho=13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Dip in the height of mercury $=h$
Acceleration due to gravity, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Surface tension is related with the angle of contact and the dip in the height as:

$$
\begin{aligned}
& s=h \rho g r / 2 \cos \theta \\
& \begin{aligned}
\therefore h & =2 s \cos \theta / \rho g r \\
& =2 \times 0.465 \times{\cos 140^{\circ}}^{\circ} /\left(1 \times 10^{-3} \times 13.6 \times 10^{3} \times 9.8\right) \\
& =-0.00534 m \\
& =-5.34 m
\end{aligned}
\end{aligned}
$$

Here, the negative sign shows the decreasing level of mercury. Hence, the mercury level dips by 5.34 mm .

\#419496

Topic: Capillarity
 two limbs of the tube ? Surface tension of water at the temperature of the experiment is $7.3 \times 10^{-2} \mathrm{Nm}^{-1}$. Take the angle of contact to be zero and density of water to be
$1.0 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}\left(\mathrm{~g}=9.8 \mathrm{~ms}^{-2}\right)$.

Solution

Diameter of the first bore, $d_{1}=3.0 \mathrm{~mm}=3 \times 10^{-3} \mathrm{~m}$
Hence, the radius of the first bore, $r_{1}=d_{1} / 2=.5 \times 10^{-3} \mathrm{~m}$
Diameter of the first bore, $d_{2}=6.0 \mathrm{~mm}=6 \times 10^{-3} \mathrm{~mm}$
Hence, the radius of the first bore, $r_{2}=d_{2} / 2=3 \times 10^{-3} \mathrm{~m}$
Surface tension of water, $s=7.3 \times 10^{-2} \mathrm{Nm}^{-1}$
Angle of contact between the bore surface and water, $\theta=0$
Density of water, $\rho=1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{-3}$
Acceleration due to gravity, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Let h_{1} and h_{2} be the heights to which water rises in the first and second tubes respectively. These heights are given by the relations:
$h_{1}=2 s \cos \theta / r_{1} \rho g$..... (i)
$h_{2}=2 s \cos \theta / r_{2} \rho g \quad \ldots$. (ii)
The difference between the levels of water in the two limbs of the tube can be calculated as:
$=\frac{2 s \cos \theta}{r_{1} \rho g}-\frac{2 s \cos \theta}{r_{2} \rho g}$
$=\frac{2 \cos \theta}{\rho g}\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right]$
$=\frac{2 \times 7.3 \times 10^{-2 \times 1}}{1 \times 10^{3} \times 9.8}\left[\frac{1}{1.5 \times 10^{-3}}-\frac{1}{3 \times 10^{-3}}\right]$
$=4.966 \times 10^{-3} \mathrm{~m}$
$=4.97 \mathrm{~mm}$
Hence, the difference between levels of water in the two bores is 4.97 mm .

\#419498
 Topic: Pressure in Static Fluid

(a) It is known that density of air decreases with height y as
$\rho=\rho_{0} e^{-y / y_{0}}$
where $\rho_{0}=1.25 \mathrm{~kg} \mathrm{~m}^{-3}$ is the density at sea level, and y_{0} is constant. This density variation is called the law of atmospheres. Obtain this law assuming that the temperature of the atmosphere remains a constant (isothermal conditions). Also, assume that the value of g remains constant.
(b) A large He balloon of volume $1425 \mathrm{~m}^{3}$ is used to lift a payload of 400 kg . Assume that the balloon maintains constant radius as it rises. How high does it rise?
[Take $\mathrm{y}_{0}=8000 \mathrm{~m}$ and $\rho_{\mathrm{He}}=0.18 \mathrm{~kg} \mathrm{~m}-3$].

Solution

(a)

Consider an atmospheric layer of thickness $d y$ at height y and cross section area A at static equilibrium.

Mass of the layer $=$ density \times volume $=$ Number of atoms per unit volume \times volume \times mass of an atom

$$
M=\rho A d y=m A N d y
$$

$$
\Rightarrow \rho=m N
$$()

For equilibrium, upward force $=$ downward force + weight
$P A-(P+d P) A=m N A d y g$
where m : mass of an atom, N : Number of atoms per unit volume
$d P=-m A N g d y$
Substituting from (i),
$d P=-A \rho g d y \ldots \ldots \ldots$ (ii)

From gas law,
$P=N k T$
$P=\rho k T / m$
$d P=\frac{k T}{m} d \rho$. (iii)

From (ii) and (iii),
$\frac{k T}{m} d \rho=-A \rho g d y$
$\frac{d \rho}{\rho}=-\alpha d y \quad$ where α is a constant
$\int_{\rho_{0}}^{\rho} \frac{d \rho}{\rho}=\int_{0}^{y}-\alpha d y$
$\ln \rho-\ln \rho_{o}=-\alpha y$
$\ln \frac{\rho}{\rho_{0}}=-\alpha y$
$\rho=\rho_{o} e^{-\alpha y}$. \qquad

Putting $y=y_{o}, \rho=\rho_{o}$
$\alpha=1 / y_{0} \ldots \ldots \ldots \ldots(v)$

From (iv) and (v),
$\rho=\rho_{o e^{-y / y_{o}}}$
Hence proved.
(b) Density $\rho=$ Mass / Volume
$\rho=($ Mass of the payload + Mass of helium $) /$ Volume

$$
=\left(m+V \rho_{\text {He }}\right) / V
$$

$$
=(400+1425 \times 0.18) / 1425
$$

$$
=0.46 \mathrm{~kg} \mathrm{~m}^{-3}
$$

From part (a)
$\rho=\rho_{0 e^{-y / y_{0}}}$
$\log _{e}\left(\rho / \rho_{0}\right)=-y / y_{0}$
$\therefore y=-8000 \times \log _{e}(0.46 / 1.25)$

$$
=-8000 \times(-1)
$$

$$
=8000 \mathrm{~m}=8 \mathrm{~km}
$$

Hence, the balloon will rise to a height of 8 km .

\#419525
 Topic: Density

 Sun $=2.0 \times 10^{30} \mathrm{~kg}$, radius of the Sun $=7.0 \times 10^{8} \mathrm{~m}$

Solution

Density $=\frac{\text { mass of sun }}{\frac{4}{3} \pi r^{3}}$

$$
=\frac{2 \times 10^{30}}{\frac{4}{3} \times \pi \times 7^{3} \times 10^{24}}=1392.0257 \mathrm{~kg} / \mathrm{m}^{3}
$$

The density of the Sun is in the range of density of liquids and solutions not gases.
This high density of the hot plasma arises due to inward gravitational attraction on outer layers due to inner layers of the Sun, and the gases inside the sun are subjected to enormous hydrostatic pressure of gases themselves.

