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MEASUREMENT AND UNITS & DIMENSIONS 
Synopsis :  
1. Every measurement has two parts. The first is a number (n) and the next is a unit (u).  Q = nu. 

Eg : Length of an object = 40 cm. 
2. The number expressing the magnitude of a physical quantity is inversely proportional to the unit 

selected. 
3. If n1 and n2 are the numerical values of a physical quantity corresponding to the units u1 and u2, 

then n1u1 = n2u2. Eg : 2.8 m = 280 cm; 6.2 kg = 6200 g 
4. The quantities that are independent of other quantities are called fundamental quantities. The units 

that are used to measure these fundamental quantities are called fundamental units. 
5. There are four systems of units namely C.G.S,  M.K.S, F.P.S and SI 
6. The quantities that are derived using the fundamental quantities are called derived quantities. The 

units that are used to measure these derived quantities are called derived units. 
7. The early systems of units : 
 
 
 
 
 
 
 
 
8. Fundamental and supplementary physical quantities in SI system (Systeme Internationale d’units) : 

 Physical quantity Unit Symbol 
Length Metre m 
Mass kilogram kg 
Time second s 
Electric current ampere A 
Thermodynamic temperature  kelvin K 
Intensity of light candela cd 
Quantity of substance mole mol 

  Supplementary quantities:  

Plane angle radian rad 
Solid angle steradian sr 

SI units are used in scientific research. SI is a coherent system of units.  
13. A coherent system of units is one in which the units of derived quantities are obtained as multiples 

or submultiples of certain basic units. 
SI system is a comprehensive, coherent and rationalised M.K.S. Ampere system (RMKSA system) 
and was devised by Prof. Giorgi. 

System of units 
Fundamental Quantity 

C.G.S. M.K.S. F.P.S. 
Length centimetre Metre foot 

Mass Gram Kilogra
m pound 

Time second Second second 



Measurement and Units & $ dimensions 

2 

14. Metre : A metre is equal to 1650763.73 times the wavelength of the light emitted in vacuum due 
to electronic transition from 2p10 state to 5d5 state in Krypton–86. But in 1983, 17th General 
Assembly of weights and measures, adopted a new definition for the metre in terms of velocity of 
light. According to this definition, metre is defined as the distance travelled by light in vacuum 
during a time interval of 1/299, 792, 458 of a second. 

15. Kilogram : The mass of a cylinder of platinum–iridium alloy kept in the International Bureau of 
weights and measures preserved at Serves near Paris is called one kilogram.  

16. Second : The duration of 9192631770 periods of the radiation corresponding to the transition 
between the two hyperfine levels of the ground state of caesium–133 atom is called one second. 

17. Ampere : The current which when flowing in each of two parallel conductors of infinite length 
and negligible cross–section and placed one metre apart in vacuum, causes each conductor to 
experience a force of 2x10–7 newton per metre of length is known as one ampere. 

18. Kelvin : The fraction of 1/273.16 of the thermodynamic temperature of the triple point of water is 
called kelvin. 

19. Candela : The luminous intensity in the perpendicular direction of a surface of a black body of 
area 1/600000 m2 at the temperature of solidifying platinum under a pressure of  
101325 Nm–2 is known as one candela. 

20. Mole : The amount of a substance of a system which contains as many elementary entities as there 
are atoms in 12x10 3 kg of carbon–12 is known as one mole. 

21. Radian : The angle made by an arc of the circle equivalent to its radius at the centre is known as 
radian. 1 radian = 57o17l45ll. 

22. Steradian : The angle subtended at the centre by one square metre area of the surface of a sphere 
of radius one metre is known as steradian. 

23. The quantity having the same unit in all the systems of units is time. 
24. Angstrom is the unit of length used to measure the wavelength of light. 1 Å  = 10–10 m. 
25. Fermi is the unit of length used to measure nuclear distances. 1 fermi = 10–15 metre. 
26. Light year is the unit of length for measuring astronomical distances. 
27. Light year = distance travelled by light in 1 year = 9.4605x1015 m. 
28. Astronomical unit = Mean distance between the sun and earth = 1.5x1011 m. 
29. Parsec = 3.26 light years = 3.084x1016 m 
30. Barn is the unit of area for measuring scattering cross–section of collisions. 1 barn = 10–28 m2. 
31. Chronometer and metronome are time measuring instruments. 
32. PREFIXES : (or) Abbreviations for multiples and sub–multiples of 10. 

MACRO Prefixes MICRO Prefixes 

Kilo  K  103 
Mega  M  106 

Giga  G  109 
Tera  T  1012 
Peta  P  1015 
Exa  E  1018 
Zetta  Z  1021 
Yotta  y  1024 

Milli  m  103 
micro  μ  10 6 
nano  n  109 
pico  p  1012 
femto  f  1015 
atto  a  1018 
zepto  z  1021 
yocto  y  10 24 
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Note : The following are not used in SI system. 
deca  101 deci  101 
hecta  102 centi  102 

33. Full names of the units, even when they are named after a scientist should not be written with a 
capital letter. Eg : newton, watt, ampere, metre. 

34. Unit should be written either in full or in agreed symbols only. 
35. Units do not take plural form. Eg : 10 kg but not  

10 kgs, 20 w but not 20 ws 2 A but not 2 As 
36. No full stop or punctuation mark should be used within or at the end of symbols for units. Eg : 10 

W but not 10 W. 
37. Dimensions of a physical quantity are the powers to which the fundamental units are raised to 

obtain one unit of that quantity. 
38. The expression showing the powers to which the fundamental units are to be raised to obtain one 

unit of a derived quantity is called the dimensional formula of that quantity. 
39. If Q is the unit of a derived quantity represented by Q = MaLbTc, then MaLbTc is called 

dimensional formula and the exponents a,b and c are called the dimensions. 
40. Dimensional Constants : The physical quantities which have dimensions and have a fixed value 

are called dimensional constants. Eg : Gravitational constant (G), Planck’s constant (h), Universal 
gas constant (R), Velocity of light in vacuum (C) etc. 

41. Dimensionless quantities are those which do not have dimensions but have a fixed value.  
a) Dimensionless quantities without units.  
Eg : Pure numbers, π e, sinθ cosθ tanθ …. etc., 
b) Dimensionless quantities with units.  
Eg : Angular displacement – radian, Joule’s constant – joule/calorie, etc., 

42. Dimensional variables are those physical quantities which have dimensions and do not have fixed 
value. Eg : velocity, acceleration, force, work, power… etc. 

43. Dimensionless variables are those physical quantities which do not have dimensions and do not 
have fixed value. Eg : Specific gravity, refractive index, coefficient of friction, Poisson’s ratio etc. 

44. Dimensional formulae are used to a) verify the correctness of a physical equation, b) derive 
relationship between physical quantities and c) to convert the units of a physical quantity from one 
system to another system. 

45. Law of homogeneity of dimensions : In any correct equation representing the relation between 
physical quantities, the dimensions of all the terms must be the same on both sides. Terms 
separated by ‘+’ or ‘–’ must have the same dimensions. 

46. A physical quantity Q has dimensions a, b and c in length (L), mass (M) and time (T) respectively, 
and n1 is its numerical value in a system in which the fundamental units are L1, M1 and T1 and n2 is 
the numerical value in another system in which the fundamental units are L2, M2 and T2 
respectively, then 
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47. Fourier laid down the foundations of dimensional analysis. 
48. Limitations of dimensional analysis : 
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1. Dimensionless quantities cannot be determined by this method. Constant of proportionality 
cannot      be determined by this method. They can be found either by experiment (or) by 
theory. 

2. This method is not applicable to trigonometric, logarithmic and exponential functions. 
3. In the case of physical quantities which are dependent upon more than three physical 

quantities, this method will be difficult. 
4. In some cases, the constant of proportionality also possesses dimensions. In such cases we 

cannot use this system. 
5. If one side of equation contains addition or subtraction of physical quantities, we can not use 

this method to derive the expression. 
50. Some important conversions : 
51. 1 bar   =  06 dyne/cm2   = 105 Nm�  = 105 pascal 

76 cm of Hg   =  1.013x106 dyne/cm2  

                                =  1.013x105 pascal  = 1.013 bar. 
1 toricelli or torr     =  1 mm of Hg  
                              =  1.333x103 dyne/cm2  

                                            =  1.333 millibar. 
1 kmph  =  5/18 ms 1 

1 dyne  =  10 5 N,  
1 H.P  =  746 watt 
1 kilowatt hour = 36x105 J 
1 kgwt = g newton 
1 calorie = 4.2 joule 
1 electron volt = 1.602x1019 joule 
1 erg = 10 7 joule 

52. Some important physical constants : 
Velocity of light in vacuum (c) = 3x108 ms1 

Velocity of sound in air at STP = 331 ms 1 

Acceleration due to gravity (g) = 9.81 ms2 

Avogadro number (N) = 6.023x1023 /mol 
Density of water at 4oC = 1000 kgm3 or  1 g/cc. 
Absolute zero =   273.15oC or  0 K 
Atomic mass unit = 1.66x1027 kg 
Quantum of charge (e) = 1.602x1019 C 
Stefan’s constant( σ ) = 5.67x10–8  W/m2/K4 

Boltzmann’s constant (K) = 1.381x1023 JK1 

One atmosphere = 76 cm Hg 
  =  1.013x105 Pa 
Mechanical equivalent of heat (J)  =  4.186 J/cal  
Planck’s constant (h) = 6.626x10 34 Js 
Universal gas constant (R) = 8.314 J/mol–K 
Permeability of free space ( oμ ) = 4 π x107 Hm1 
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Permittivity of free space ( oε ) =  8.854x1012 Fm1 

Density of air at S.T.P. = 1.293 kgm3 

Universal gravitational constant    =  6.67x1011 Nm2kg 2 

53. Derived SI units with special names : 

Physical quantity  SI unit Symbol 
Frequency hertz Hz 
Energy joule J 
Force newton N 
Power watt W 
Pressure pascal Pa 
Electric charge or quantity of electricity coulomb C 
Electric potential difference and emf volt V 
Electric resistance ohm Ω  
Electric conductance siemen S 
Electric capacitance farad F 
Magnetic flux weber Wb 
Inductance henry H 
Magnetic flux density tesla T 
Illumination lux Lx 
Luminous flux lumen Lm 

Dimensional formulae for some physical quantities : 

Physical quantity Unit Dimensiona
l formula 

Acceleration or acceleration due to gravity ms–2 LT–2 
Angle (arc/radius) rad MoLoTo 
Angular displacement rad MoloTo 
Angular frequency (angular displacement / time) rads–1 T–1 
Angular impulse (torque x time) Nms ML2T–1 
Angular momentum (I ω ) kgm2s–1 ML2T–1 
Angular velocity (angle / time) rads–1 T–1 
Area (length x breadth) m2 L2 
Boltzmann’s constant JK–1 ML2T–2 θ –1 

Bulk modulus (
V

V.P
Δ

Δ ) Nm–2, Pa M1L–1T–2 

Calorific value Jkg–1 L2T–2 
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Coefficient of linear or areal or volume expansion oC–1 or K–1 θ –1 
Coefficient of surface tension (force/length) Nm–1 or Jm–2 MT–2 
Coefficient of thermal conductivity Wm–1K–1 MLT–3 θ –1 

Coefficient of viscosity (F = 
dx
dvAη ) poise ML–1T–1 

Compressibility (1/bulk modulus) Pa–1, m2N–2 M–1LT2 
Density (mass / volume) kgm–3 ML–3 
Displacement, wavelength, focal length m L 
Electric capacitance (charge / potential) CV–1, farad M–1L–2T4I2 

Electric conductance (1 / resistance)                                   Ohm–1 or mho or 
siemen M–1L–2T3I2 

Electric conductivity (1 / resistivity)                                   siemen/metre or 
Sm–1 M–1L–3T3I2 

Electric charge or quantity of electric charge (current x 
time) coulomb IT 

Electric current ampere I 
Electric dipole moment (charge x distance) Cm LTI 
Electric field strength or Intensity of electric field (force 
/ charge) NC–1, Vm–1 MLT–3I–1 

Electric resistance (
current

difference potential ) ohm ML2T–3I–2 

Emf (or) electric potential (work / charge) volt ML2T–3I–1 
Energy (capacity to do work) joule ML2T–2 

Energy density (
volume
energy ) Jm–3 ML–1T–2 

Entropy ( T/QS Δ=Δ ) J θ –1 ML2T–2 θ –1 
Force (mass x acceleration) newton (N) MLT–2 
Force constant or spring constant (force / extension) Nm–1 MT–2 
Frequency (1 / period) Hz T–1 
Gravitational potential (work / mass) Jkg–1 L2T–2 
Heat (energy) J or calorie ML2T–2 

Illumination (Illuminance) lux 
(lumen/metre2) MT–3 

Impulse (force x time) Ns or kgms–1 MLT–1 

Inductance (L) (energy = 2L
2
1 I ) or  

coefficient of self induction 
henry (H) ML2T–2I–2 
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Intensity of gravitational field (F / m) Nkg–1 L1T–2 
Intensity of magnetisation (I) Am–1 L–1I 
Joule’s constant or mechanical equivalent of heat Jcal–1 MoLoTo 
Latent heat (Q = mL) Jkg–1 MoL2T–2 
Linear density (mass per unit length) kgm–1 ML–1 
Luminous flux lumen or (Js–1) ML2T–3 
Magnetic dipole moment  Am2 L2I 
Magnetic flux (magnetic induction x area) weber (Wb) ML2T–2I–1 
Magnetic induction (F = Bil) NI–1m–1 or T MT–2I–1 
Magnetic pole strength (unit: ampere–metre) Am LI 
Modulus of elasticity (stress / strain) Nm–2, Pa ML–1T–2 
Moment of inertia (mass x radius2) kgm2 ML2 
Momentum (mass x velocity) kgms–1 MLT–1 

Permeability of free space (
21

2

o mm
Fd4π

=μ ) Hm–1 or NA–2 MLT–2I–2 

Permittivity of free space (
2
21

o
Fd4
QQ

π
=ε ) Fm–1 or C2N–1m–2 M–1L–3T4I2 

Planck’s constant (energy / frequency) Js ML2T–1 
Poisson’s ratio (lateral strain / longitudinal strain) –– MoLoTo 
Power (work / time) Js–1 or watt (W) ML2T–3 
Pressure (force / area) Nm–2 or Pa ML–1T–2 
Pressure coefficient or volume coefficient oC–1 or θ –1 θ –1 
Pressure head m MoLTo 

Radioactivity                                                                 disintegrations 
per second  MoLoT–1 

Ratio of specific heats –– MoLoTo 
Refractive index –– MoLoTo 
Resistivity or specific resistance Ω –m ML3T–3I–2 
Specific conductance or conductivity (1 / specific 
resistance) 

  siemen/metre or 
Sm–1 M–1L–3T3I2 

Specific entropy (1/entropy) KJ–1 M–1L–2T2 θ  
Specific gravity (density of the substance / density of 
water) –– MoLoTo 

Specific heat (Q = mst) Jkg–1 θ –1 MoL2T–2 θ –1 
Specific volume (1 / density) m3kg–1 M–1L3 
Speed (distance / time) ms–1 LT–1 
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Stefan’s constant 
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
4etemperaturxtimexarea

energyheat  Wm–2 θ –4 MLoT–3 θ –4 

Strain (change in dimension / original dimension) –– MoLoTo 
Stress (restoring force / area) Nm–2 or Pa ML–1T–2 
Surface energy density (energy / area) Jm–2 MT–2 
Temperature oC or θ  MoLoTo θ  

Temperature gradient (
distance

etemperatur in change ) oCm–1 or θ m–1 MoL–1To θ  

Thermal capacity (mass x specific heat) J θ –1 ML2T–2 θ –1 
Time period second T 
Torque or moment of force (force x distance) Nm ML2T–2 
Universal gas constant (work / temperature) Jmol–1 θ –1 ML2T–2 θ –1 

Universal gravitational constant (F = G.
2

21

d
mm ) Nm2kg–2 M–1L3T–2 

Velocity (displacement/time) ms–1 LT–1 

Velocity gradient (
dx
dv ) s–1 T–1 

Volume (length x breadth x height) m3 L3 
Water equivalent kg MLoTo 
Work (force x displacement) J ML2T–2 

 
54. Quantities having the same dimensional formulae : 

a) impulse and momentum. 
b) work, energy, torque, moment of force, energy 
c) angular momentum, Planck’s constant, rotational impulse 
d) stress, pressure, modulus of elasticity, energy density. 
e) force constant, surface tension, surface energy. 
f) angular velocity, frequency, velocity gradient 
g) gravitational potential, latent heat. 
h) thermal capacity, entropy, universal gas constant and Boltzmann’s constant. 
i) force, thrust. 
j) power, luminous flux. 
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ERRORS AND SIGNIFICANT FIGURES 
 

ACCURACY, PRECISION OF INSTRUMENTS AND ERRORS IN MEASUREMENT : 
1. The measured value of a physical quantity is usually different from its true value. The result of 

every measurement by any measuring instrument is an approximate number, which contains some 
uncertainty. This uncertainty is called error.  

2. Every calculated quantity which is based on measured values also has an error. We distinguish 
between two terms accuracy and precision.  

3. The accuracy of a measurement is a measure of how close the measured value is to the true value 
of the quantity. Precision tells us to what resolution or limit the quantity is measured. 

4. In general, the errors in measurement can be broadly classified as (a) systematic errors and (b) 
random errors. 

5. Systematic errors : 
The systematic errors are those errors that tend to be in one direction, either positive or negative. 
Some of the sources of systematic errors are : 
a) Instrumental errors that arise from the errors due to imperfect design or calibration of the 

measuring instrument, etc. For example, in a Vernier calipers the zero mark of vernier scale 
may not coincide to the zero mark of the main scale, or simply an ordinary metre scale may be 
worn off at one end. 

b) Imperfection for experimental technique or procedure. For example, to determine the 
temperature of a human body, a thermometer placed under the armpit will always give a 
temperature lower than the actual value of the body temperature. 

c) Personal errors that arise due to an individual’s bias, lack of proper setting of the apparatus of 
individuals, carelessness in taking observations without observing proper precautions, etc. For 
example, if you, by habit, always hold your head a bit too far to the right while reading the 
position of a needle on the scale, you will introduce an error due to parallax. 

6. Random errors : 
The random errors are those errors, which occur irregularly and hence are random with respect to 
sign and size. These can arise due to random and unpredictable fluctuations in experimental 
conditions (e.g. unpredictable fluctuations in temperature, voltage supply). 

7. Least count error : 
a) The least count error is the error associated with the resolution of the instrument. For example, 

a vernier calipers has a least count as 0.001 cm. It occurs with both systematic and random 
errors. The smallest division on the scale of the measuring instrument is called its least count. 

b) Systematic errors can be minimized by improving experimental techniques, selecting better 
instruments and removing personal bias as far as possible. 

c) Random errors are minimized by repeating the observations several times and taking the 
arithmetic mean of all the observations. The mean value would be very close to the true value of 
the measured quantity. 

8. Absolute Error, Relative Error and Percentage Error : 
a) Suppose the values obtained in several measurements are a1, a2, a3 … an. The arithmetic mean 

of these values is taken as the best possible value of the quantity under the given conditions of 
measurement as : 

mean 1 2 3 na (a a a ... a ) /n= + + + +   (or) 
n

mean i
i 1

a a /n
=

= ∑  
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• The magnitude of the difference between the true value of the quantity and the individual 
measurement value is called the absolute error of the measurement. This is denoted by |Δt| (As 
we do not know the true value of a quantity, let us accept the arithmetic mean of all 
measurements as the true value of the measured quantity). Then the absolute errors in the 
individual measurement values are  Δa1 = amean – a1 ;  Δa2 = amean – a2 ; … ; Δan = amean – an. 

• The arithmetic errors may be positive in certain cases and negative in some other cases. 
b) The arithmetic mean of all the absolute errors is taken as the final or mean absolute error of the 

value of the physical quantity ‘a’. It is represented by Δamean. 
Thus,  
Δamean  = ( |Δa1| + |Δa2| + |Δa3| + … + |Δan| ) / n 

 = 
n

i
i 1

| a | /n
=

Δ∑  

• If we do a single measurement, the value we get may be in the range amean ± Δamean. 
i.e.  a = amean ± Δamean. or 

  amean – Δamean ≤ a ≤ amean + Δamean. 
• This implies that any measurement of the physical quantity ‘a’ is likely to lie between 

(amean + Δamean) and (amean – Δamean) 
c) Instead of the absolute error, we often use the relative error or the percentage error (δa). The 

relative error is the ratio of the mean absolute error Δamean to the mean value amean of the 
quantity measured. 
Relative error = Δamean / amean. 

• When the relative error is expressed in percent, it is called the percentage error (δa) 
• Thus, Percentage error 

δa = (Δamean / amean) × 100% 
9. Combination of Errors : If we do an experiment involving several measurements, we 

must know how the errors in all the measurements combine. 
a) Error of a sum or a difference : Suppose two physical quantities A and B have measured 

values A ± ΔA, B ± ΔB respectively where ΔA and ΔB are their absolute errors. We wish to 
find the error ΔZ in the sum  

Z = A + B 
We have by addition, Z ± ΔZ = (A ± ΔA) + (B ± ΔB). 
The maximum possible error in Z = ΔZ = ΔA + ΔB 
For the difference Z = A – B, we have  

Z ± ΔZ  = (A ± ΔA) – (B ± ΔB)  
= (A – B) ± ΔA ± ΔB.  
or 

± ΔZ = ± ΔA ± ΔB 
The maximum value of the error ΔZ is again  ΔA + ΔB. 

• When two quantities are added or subtracted, the absolute error in the final result is the 
sum of the absolute errors in the individual quantities. 
b) Error of a product or a quotient : Suppose Z = AB and the measured values of A and B are A 

± ΔA and B ± ΔB. Then  
Z ± ΔZ  = (A ± ΔA) (B ± ΔB). 
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 = AB ± B ΔA ± A ΔB ± ΔA ΔB. 
Dividing LHS by Z and RHS by AB we have, 1 ± (ΔZ / Z) = 1 ± (ΔA / A) ± (ΔB / B) ± (ΔA / A) 
(ΔB / b). 

Z = ΔZ / Z = (ΔA / A) + (ΔB / B) 
• When two quantities are multiplied or divided, the fractional error in the result is the sum of the 

fractional errors in the multipliers. 
c) Error due to the power of a measured quantity : 

Z = A2, then 
ΔZ / Z = (ΔA / A) + (ΔA / A) = 2 (ΔA / A)  

If Z = Ap Bq / Cr, then 
ΔZ / Z = p (ΔA / A) + q (ΔB / B) + r (ΔC / C) 

• The fractional error in a physical quantity raised to the power is the power times the fractional 
error in the individual quantity. 

SIGNIFICANT FIGURES : 
10. Every measurement involves errors. Thus, the result of measurement should be reported 

in a way that indicates the precision of measurement.  
11. Normally, the reported result of measurement is a number that includes all digits in the 

number that are known reliably plus the first digit that is uncertain. The reliable digits plus 
the first uncertain digit are known as significant digits or significant figures. 

12. If we say the period of oscillation of a simple pendulum is 1.62 s, the digits 1 and 6 are 
reliable and certain, while the digit 2 is uncertain. Thus, the measured value has three 
significant figures. The length of an object reported after measurement to be 287.5 cm 
has four significant figures, the digits 2, 8, 7 are certain while the digit 5 is uncertain.  

13. Then a length of 16.2 cm means l = 16.20 ± 0.05 cm, i.e. it lies between 16.15 cm and 
16.25 cm. 

14. A choice of change of different units does not change the number of significant digits or 
figures in a measurement. 

a) For example, the length 2.308 cm has four significant figures. But in different units, the same value 
can be written as 0.02308 m or 23.08 mm or 23080 μm. 
The example gives the following rules : 
i) All the non-zero digits are significant. 
ii) All the zeros between two non-zero digits are significant, no matter where the decimal point is, 

if at all. 
iii) If the number is less than 1, the zeros on the right of decimal point but to the left of the first 

non-zero digit are not significant. (In 0.002308, the underlined zeros are not significant) 
iv) The terminal or trailing zeros in a number without a decimal point are not significant.  
v) (Thus 123 m = 12300 cm = 123000 mm has three significant figures, the trailing zeroes being 

not significant). However, you can also see the next observation. 
vi) The trailing zeros in a number with a decimal point are significant. (The numbers 3.500 or 

0.06900 have four significant figures each). 
b) There can be some confusion regarding the trailing zeros. Suppose a length is reported to be 4.700 

m. It is evident that the zeros here are meant to convey the precision of measurement and are, 
therefore, significant. (If these were not, it would be superfluous to write them explicitly, the 
reported measurement would have been simply 4.7 m).  
4.700 m = 470.0 cm = 4700 mm = 0.004700 km. Since the last number has trailing zeroes in a 
number with no decimal, we would conclude erroneously from observation (1) above that the 



Measurement and Units & $ dimensions 

12 

number has two significant figures, while infact it has four significant figures and a mere change of 
units cannot change the number of significant figures. 

c) To remove such ambiguities in determining the number of significant figures, the best way is to 
report every measurement m scientific notation (in the power of 10). In this notation, every number 
is expressed as a × 10b, where ‘a’ is a number between 1 and 10, and b is any positive or negative 
exponent of 10.  

4.700 m = 4.700 × 102 cm  
⇒ 4.700 × 103 mm = 4.700 × 10–3 km 
Thus, in the scientific notation, no confusion arises about the trailing zeros in the base number ‘a’. They are 
always significant. 

d) The scientific notation is ideal for reporting measurement. But if this is not adopted, we use the 
rules adopted in the preceding example : 
i) For a number greater than 1, without any decimal, the trailing zeros are not significant. 
ii) For a number with a decimal, the trailing zeros are significant. 

15. Rules for Arithmetic Operations with Significant Figures : 
a) The result of a calculation involving approximate measured values of quantities (i.e. values with 

limited number of significant figures) must reflect the uncertainties in the original measured 
values.  

b) It cannot be more accurate than the original measured values themselves on which the result is 
based. In general, the final result should not have more significant figures than the original data 
from which it was obtained. Thus, if mass of an object is measured to be, say, 4.237 g (four 
significant figures) and its volume is measured to be  
2.51 cm3, then its density, by mere arithmetic division, is 1.68804780876 g/cm3 upto 11 decimal 
places. 

c) It would be clearly absurd and irrelevant to record the calculated value of density to such a 
precision when the measurements on which the value is based, have much less precision. The 
following rules for arithmetic operations with significant figures ensure that the final result of a 
calculation is shown with the precision that is consistent with the precision of the input measured 
values : 
i) In multiplication or division, the final result should retain as many significant figures as are 

there in the original number with the least significant figures. 

Density = 3
3

4.237g 1.69g cm
2.51 cm

−=  

Similarly, if the speed of light is given as 3.00 × 108 ms–1 (three significant figures). 
ii) In addition or subtraction, the final result should retain as many decimal places as are there in 

the number with the least decimal places. 
iii) For example, the sum of the numbers 436.32 g, 227.2 g and 0.301 g by mere arithmetic 

addition, is 663.821 g.  
iv) But the least precise measurement (227.2 g) is correct to only one decimal place. The final 

result should, therefore, be rounded off to  
663.8 g. 

v) Similarly, the difference in length can be expressed as :  
0.307 m – 0.304 m = 0.003 m = 3 × 10–3 m. 

vi) They do not convey the precision of measurement properly. For addition and subtraction, the 
rule is in terms of decimal places. 

16. Rounding off the Uncertain Digits : 
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a) The result of computation with approximate numbers, which contain more than one uncertain 
digit, should be rounded off. 

b) Preceding digit is raised by 1 if the insignificant digit to be dropped (the underlined digit in this 
case) is more than 5, and is left unchanged if the latter is less than 5.  

c) But what if the number is 2.745 in which the insignificant digit is 5. Here the convention is that 
if the preceding digit is even, the insignificant digit is simply dropped and, if it is odd, the 
preceding digit is raised by 1. 

17. Rules for Determining the Uncertainty of Number in Arithmetic Operations : 
a) The uncertainty or error in the measured value, as already mentioned, is normally taken to be half 

of the least count of the measuring instrument. The rules for determining the uncertainty of number 
in arithmetic operations can be understood from the following examples. 
i) If the length and breadth of a thin rectangular sheet are measured as 16.2 cm and 10.1 cm 

respectively, there are three significant figures in each measurement. It means that the true 
length l may be written as 
         l  = 16.20 ± 0.05 cm = 16.20 cm ± 0.3% 
Similarly, the breadth b may be written as 
         b = 10.10 ± 0.05 cm = 10.10 cm ± 0.5% 

To determine the uncertainty of the product of two (or more) experimental values, we often 
following a rule that is founded upon probability. If we assume that uncertainties combine 
randomly, we have the rule : 
When two or more experimentally obtained numbers are multiplied, the percentage uncertainty of 
the final result is equal to the square root of the sum of the squares of the percentage uncertainties 
of the original numbers. 
Following the square root of the sum of the squares rule, we may write for the product of length l 
and breadth b as 

      l b = 163.62 cm2 ± 2 2(0.3%) (0.5%)+  
 = 163.62 cm2

 ± 0.6% 
 = 163.62 ± 1.0 cm2 

The result leads us to quote the final result as  
      l b = 163.62 ± 1.0 cm2 

b) If a set of experimental data is specified to n significant figures, a result obtained by combining the 
data will also be valid to n significant figures. 
i) However, if data are subtracted, the number of significant figures can be reduced. 
ii) For example : 12.9 g – 7.06 g, both specified to three significant figures, cannot properly be 

evaluated as 5.84 g but only as 5.8 g, as uncertainties in subtraction or addition combine in a 
different fashion (smallest number of decimal places rather than the number of significant 
figures in any of the number added or subtracted). 

c) The fractional error of a value of number specified to significant figures depends not only on n but 
also on the number itself. 
i) For example, the accuracy in measurement of mass 1.02 g is ± 0.005 g whereas another 

measurement 9.89 g is also accurate to ± 0.005g. 
ii) The fractional error in 1.02 g is  

= (± 0.005 / 1.02) × 100% ⇒ ± 0.5% 
iii) On the other hand, the fractional error in 9.89 g is = (± 0.005 / 9.89) × 100% ⇒ ± 0.05% 
iv) Finally, remember that intermediate results in a multi-step computation should be 

calculated to one more significant figure in every measurement than the number of digits 
in the least precise measurement.  
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v) Theses should be justified by the data and then the arithmetic operations may be carried out; 
otherwise rounding errors can build up. For example, the reciprocal of 9.58, calculated (after 
rounding off) to the same number of significant figures (three) is 0.104, but the reciprocal of 
0.104 calculated to three significant figures is 9.62. However, if we had written 1/9.58 = 0.1044 
and then taken the reciprocal to three significant figures, we would have retrieved the original 
value of 9.58. 

iv) This example justifies the idea to retain one more extra digit (than the number of digits in the 
least precise measurement) in intermediate steps of the complex multi-step calculations in order 
to avoid additional errors in the process of rounding off the numbers. 

 


