
CHAPTER FIFTEEN

WAVES

15.1 INTRODUCTION

In the previous Chapter, we studied the motion of objects
oscillating in isolation. What happens in a system, which is
a collection of such objects? A material medium provides
such an example. Here, elastic forces bind the constituents
to each other and, therefore, the motion of one affects that of
the other. If you drop a little pebble in a pond of still water,
the water surface gets disturbed. The disturbance does not
remain confined to one place, but propagates outward along
a circle. If you continue dropping pebbles in the pond, you
see circles rapidly moving outward from the point where the
water surface is disturbed. It gives a feeling as if the water is
moving outward from the point of disturbance. If you put
some cork pieces on the disturbed surface, it is seen that
the cork pieces move up and down but do not move away
from the centre of disturbance. This shows that the water
mass does not flow outward with the circles, but rather a
moving disturbance is created. Similarly, when we speak,
the sound moves outward from us, without any flow of air
from one part of the medium to another. The disturbances
produced in air are much less obvious and only our ears or
a microphone can detect them. These patterns, which move
without the actual physical transfer or flow of matter as a
whole, are called waves. In this Chapter, we will study such
waves.

Waves transport energy and the pattern of disturbance has
information that propagate from one point to another. All our
communications essentially depend on transmission of sig-
nals through waves. Speech means production of sound
waves in air and hearing amounts to their detection. Often,
communication involves different kinds of waves. For exam-
ple, sound waves may be first converted into an electric cur-
rent signal which in turn may generate an electromagnetic
wave that may be transmitted by an optical cable or via a
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PHYSICS364

satellite. Detection of the original signal will usu-
ally involve these steps in reverse order.

Not all waves require a medium for their
propagation. We know that light waves can
travel through vacuum. The light emitted by
stars, which are hundreds of light years away,
reaches us through inter-stellar space, which
is practically a vacuum.

The most familiar type of waves such as waves
on a string, water waves, sound waves, seismic
waves, etc. is the so-called mechanical waves.
These waves require a medium for propagation,
they cannot propagate through vacuum. They
involve oscillations of constituent particles and
depend on the elastic properties of the medium.
The electromagnetic waves that you will learn
in Class XII are a different type of wave.
Electromagnetic waves do not necessarily require
a medium - they can travel through vacuum.
Light, radiowaves, X-rays, are all electromagnetic
waves. In vacuum, all electromagnetic waves
have the same speed c, whose value is :

c = 299, 792, 458 ms–1. (15.1)

A third kind of wave is the so-called Matter
waves. They are associated with constituents of
matter : electrons, protons, neutrons, atoms and
molecules. They arise in quantum mechanical
description of nature that you will learn in your
later studies. Though conceptually more abstract
than mechanical or electro-magnetic waves, they
have already found applications in several
devices basic to modern technology; matter
waves associated with electrons are employed
in electron microscopes.

In this chapter we will study mechanical
waves, which require a material medium for
their propagation.

The aesthetic influence of waves on art and
literature is seen from very early times; yet the
first scientific analysis of wave motion dates back
to the seventeenth century. Some of the famous
scientists associated with the physics of wave
motion are Christiaan Huygens (1629-1695),
Robert Hooke and Isaac Newton. The
understanding of physics of waves followed the
physics of oscillations of masses tied to springs
and physics of the simple pendulum. Waves in
elastic media are intimately connected with
harmonic oscillations. (Stretched strings, coiled
springs, air, etc., are examples of elastic media).

We shall illustrate this connection through
simple examples.

Consider a collection of springs connected to
one another as shown in Fig. 15.1. If the spring
at one end is pulled suddenly and released, the
disturbance travels to the other end. What has

happened? The first spring is disturbed from its
equilibrium length. Since the second spring is
connected to the first, it is also stretched or
compressed, and so on. The disturbance moves
from one end to the other; but each spring only
executes small oscillations about its equilibrium
position. As a practical example of this situation,
consider a stationary train at a railway station.
Different bogies of the train are coupled to each
other through a spring coupling. When an
engine is attached at one end, it gives a push to
the bogie next to it; this push is transmitted from
one bogie to another without the entire train
being bodily displaced.

Now let us consider the propagation of sound
waves in air. As the wave passes through air, it
compresses or expands a small region of air. This
causes a change in the density of that region,
say δρ, this change induces a change in pressure,
δp, in that region. Pressure is force per unit area,
so there is a restoring force proportional to
the disturbance, just like in a spring. In this
case, the quantity similar to extension or
compression of the spring is the change in
density. If a region is compressed, the molecules
in that region are packed together, and they tend
to move out to the adjoining region, thereby
increasing the density or creating compression
in the adjoining region. Consequently, the air
in the first region undergoes rarefaction. If a
region is comparatively rarefied the surrounding
air will rush in making the rarefaction move to
the adjoining region. Thus, the compression or
rarefaction moves from one region to another,
making the propagation of a disturbance
possible in air.

Fig. 15.1 A collection of springs connected to each
other. The end A is pulled suddenly
generating a disturbance, which then
propagates to the other end.
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In solids, similar arguments can be made. In
a crystalline solid, atoms or group of atoms are
arranged in a periodic lattice. In these, each
atom or group of atoms is in equilibrium, due to
forces from the surrounding atoms. Displacing
one atom, keeping the others fixed, leads to
restoring forces, exactly as in a spring. So we
can think of atoms in a lattice as end points,
with springs between pairs of them.

In the subsequent sections of this chapter
we are going to discuss various characteristic
properties of waves.

15.2 TRANSVERSE AND LONGITUDINAL
WAVES

We have seen that motion of mechanical waves
involves oscillations of constituents of the
medium. If the constituents of the medium
oscillate perpendicular to the direction of wave
propagation, we call the wave a transverse wave.
If they oscillate along the direction of wave
propagation, we call the wave a longitudinal
wave.

Fig.15.2 shows the propagation of a single
pulse along a string, resulting from a single up
and down jerk. If the string is very long compared

position as the pulse or wave passes through
them. The oscillations are normal to the
direction of wave motion along the string, so this
is an example of transverse wave.

We can look at a wave in two ways. We can fix
an instant of time and picture the wave in space.
This will give us the shape of the wave as a
whole in space at a given instant. Another way
is to fix a location i.e. fix our attention on a
particular element of string and see its
oscillatory motion in time.

Fig. 15.4 describes the situation for
longitudinal waves in the most familiar example
of the propagation of sound waves. A long pipe
filled with air has a piston at one end. A single
sudden push forward and pull back of the piston
will generate a pulse of condensations (higher
density) and rarefactions (lower density) in the
medium (air). If the  push-pull of the piston is
continuous and periodic (sinusoidal), a

Fig. 15.3 A harmonic (sinusoidal) wave travelling
along a stretched string is an example of a
transverse wave. An element of the string
in the region of the wave oscillates about
its equilibrium position perpendicular to the
direction of wave propagation.

Fig. 15.2 When a pulse travels along the length of a
stretched string (x-direction), the elements
of the string oscillate up and down (y-
direction)

to the size of the pulse, the pulse will damp out
before it reaches the other end and reflection
from that end may be ignored. Fig. 15.3 shows a
similar situation, but this time the external
agent gives a continuous periodic sinusoidal up
and down jerk to one end of the string. The
resulting disturbance on the string is then a
sinusoidal wave. In either case the elements of
the string oscillate about their equilibrium mean

Fig. 15.4 Longitudinal waves (sound) generated in a
pipe filled with air by moving the piston up
and down. A volume element of air oscillates
in the direction parallel to the direction of
wave propagation.
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sinusoidal wave will be generated propagating
in air along the length of the pipe. This is clearly
an example of longitudinal waves.

The waves considered above, transverse or
longitudinal, are travelling or progressive waves
since they travel from one part of the medium
to another. The material medium as a whole
does not move, as already noted. A stream, for
example, constitutes motion of water as a whole.
In a water wave, it is the disturbance that moves,
not water as a whole. Likewise a wind (motion
of air as a whole) should not be confused with a
sound wave which is a propagation of
disturbance (in pressure density) in air, without
the motion of air medium as a whole.

Mechanical waves are related to the elastic
properties of the medium. In transverse waves,
the constituents of the medium oscillate
perpendicular to wave motion causing change
is shape. That is, each element of the medium
in subject to shearing stress. Solids and strings
have shear modulus, that is they sustain
shearing stress. Fluids have no shape of their
own - they yield to shearing stress. This is why
transverse waves are possible in solids and
strings (under tension) but not in fluids.
However, solids as well as fluids have bulk
modulus, that is, they can sustain compressive
strain. Since longitudinal waves involve
compressive stress (pressure), they can be
propagated through solids and fluids. Thus a
steel bar possessing both bulk and sheer elastic
moduli can propagate longitudinal as well as
transverse waves. But air can propagate only
longitudinal pressure waves (sound). When a
medium such as a steel bar propagates both
longitudinal and transverse waves, their speeds
can be different since they arise from different
elastic moduli.

Example 15.1  Given below are some
examples of wave motion. State in each case
if the wave motion is transverse, longitudinal
or a combination of both:
(a) Motion of a kink in a longitudinal spring

produced by displacing one end of the
spring sideways.

(b) Waves produced in a cylinder
containing a liquid by moving its piston
back and forth.

(c) Waves produced by a motorboat sailing
in water.

(d) Ultrasonic waves in air produced by a
vibrating quartz crystal.

Answer
(a) Transverse and longitudinal
(b) Longitudinal
(c) Transverse and longitudinal
(d) Longitudinal

15.3 DISPLACEMENT RELATION IN A
PROGRESSIVE WAVE

For mathematical description of  a travelling
wave, we need a function of both position x and
time t. Such a function at every instant should
give the shape of the wave at that instant. Also
at every given location, it should describe the
motion of the constituent of the medium at that
location. If we wish to describe a sinusoidal
travelling wave (such as the one shown in Fig.
15.3) the corresponding function must also be
sinusoidal. For convenience, we shall take the
wave to be transverse so that if the position of
the constituents of the medium is denoted by x,
the displacement from the equilibrium position
may be denoted by y. A sinusoidal travelling
wave is then described by :

( , ) sin( )     y x t a kx t (15.2)

The term φ in the argument of sine function
means equivalently that we are considering a
linear combination of sine and cosine functions:

( , ) sin( ) cos( )y x t A kx t B kx t      (15.3)

From Equations (15.2) and (15.3),

2 2a A B   and  
1tan

B
A

         
To understand why Equation (15.2)

represents a sinusoidal travelling wave, take a
fixed instant,  say t = t

0
. Then the argument of

the sine function in Equation (15.2) is simply
kx + constant. Thus the shape of the wave (at
any fixed instant) as a function of x  is a sine
wave. Similarly, take a fixed location, say x = x

0
.

Then the argument of the sine function in
Equation (15.2) is constant -ωt. The
displacement y, at a fixed location, thus varies
sinusoidally with time. That is, the constituents
of the medium at different positions execute
simple harmonic motion. Finally, as t increases,
x must increase in the positive direction to keep
kx – ωt + φ  constant. Thus Eq. (15.2) represents
a sinusiodal (harmonic) wave travelling along
the positive direction of the x-axis. On the other
hand, a function
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WAVES 367

( , ) sin( )     y x t a kx t (15.4)

represents a wave travelling in the negative
direction of x-axis. Fig. (15.5) gives the names of
the various physical quantities appearing in Eq.
(15.2) that we now interpret.

crest. In the same manner, we can see the motion
of a particular constituent of the medium at a
fixed location, say at the origin of the x-axis. This
is shown by a solid dot (•) The plots of Fig. 15.6
show that with time, the solid dot (•) at the origin
moves periodically i.e. the particle at the origin
oscillates about its mean position as the wave
progresses. This is true for any other location
also. We also see that during the time the solid
dot (•) has completed one full oscillation, the
crest has moved further by a certain distance.

Using the plots of Fig. 15.6, we now define
the various quantities of Eq. (15.2).

15.3.1  Amplitude and Phase

In Eq. (15.2), since the sine function varies
between 1 and –1, the displacement y (x,t) varies
between a and –a. We can take a to be a positive
constant, without any loss of generality. Then a
represents the maximum displacement of the
constituents of the medium from their
equilibrium position. Note that the displacement
y may be positive or negative, but a is positive.
It is called the amplitude of the wave.

The quantity (kx – ωt + φ) appearing as the
argument of the sine function in Eq. (15.2) is
called the phase of the wave. Given the
amplitude a, the phase determines the
displacement of the wave at any position and at
any instant. Clearly φ is the phase at x = 0 and
t = 0. Hence φ is called the initial phase angle.
By suitable choice of origin on the x-axis and
the intial time, it is possible to have φ = 0. Thus
there is no loss of generality in dropping φ, i.e.,
in taking Eq. (15.2) with φ = 0.

15.3.2  Wavelength and Angular Wave
Number

The minimum distance between two points
having the same phase is called the wave length
of the wave, usually denoted by λ. For simplicity,
we can choose points of the same phase to be
crests or troughs. The wavelength is then the
distance between two consecutive crests or
troughs in a wave. Taking  φ = 0 in Eq. (15.2),
the displacement at  t = 0 is given by

( ,0) sin y x a kx (15.5)

Since the sine function repeats its value after
every 2π change in angle,

2
sin sin( 2 ) sin

n
kx kx n k x

k

            
Fig. 15.6 A harmonic wave progressing along the

positive direction of x-axis at different times.

Fig. 15.5 The meaning of standard symbols in
Eq. (15.2)

Fig. 15.6 shows the plots of Eq. (15.2) for
different values of time differing by equal
intervals of time. In a wave, the crest is the point
of maximum positive displacement, the trough
is the point of maximum negative displacement.
To see how a wave travels, we can fix attention
on a crest and see how it progresses with time.
In the figure, this is shown by a cross () on the

y(x,t) : displacement as a function of
position x and time t

a : amplitude of a wave
ω : angular frequency of the wave
k : angular wave number
(kx–ωt+f : initial phase angle (a+x = 0, t = 0)
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That is the displacements at points x and at

2n
x

k
  

are the same, where n=1,2,3,... The 1east
distance between points with the same
displacement (at any given instant of time) is

obtained by taking n = 1. λ  is then given by

2
k
        or   

2
k

 
 

 (15.6)

k is the angular wave number or propagation
constant; its SI unit is radian per metre or

1 rad m− *

15.3.3 Period, Angular Frequency and
Frequency

Fig. 15.7 shows again a sinusoidal plot. It
describes not the shape of the wave at a certain
instant but the displacement of an element (at
any fixed location) of the medium as a function
of time. We may for, simplicity, take Eq. (15.2)
with φ = 0 and monitor the motion of the element

say at 0x = . We then get

T 2     or   
2
T
   (15.7)

ω  is called the angular frequency of the wave.
Its SI units is rad s –1. The frequency ν is the
number of oscillations per second. Therefore,

1
T 2

  
 

  (15.8)

ν  is usually measured in hertz.
In the discussion above, reference has always

been made to a wave travelling along a string or
a transverse wave. In a longitudinal wave, the
displacement of an element of the medium is
parallel to the direction of propagation of the
wave. In Eq. (15.2), the displacement function
for a longitudinal wave is written as,

s(x, t) = a sin (kx – ωt + φ) (15.9)

where s(x, t ) is the displacement of an element
of the medium in the direction of propagation
of the wave at position x and time t. In Eq. (15.9),
a

 
is the displacement amplitude; other

quantities have the same meaning as in case
of a transverse wave except that the
displacement function y (x, t ) is to be replaced
by the function s (x, t ).

Example 15.2  A wave travelling along a
string is described by,

y(x, t) = 0.005 sin (80.0 x – 3.0 t),

in which the numerical constants are in
SI units (0.005 m, 80.0 rad m–1, and
3.0 rad s–1). Calculate (a) the amplitude,
(b) the wavelength, and (c) the period and
frequency of the wave. Also, calculate the
displacement y of the wave at a distance
x = 30.0 cm and time t = 20 s ?

Answer  On comparing this displacement
equation with Eq. (15.2),

y (x, t ) = a sin (kx –  ωt ),

we find
(a) the amplitude of the wave is 0.005 m = 5 mm.
(b) the angular wave number k and angular

frequency ω are

k = 80.0  m–1 and ω = 3.0 s–1

Fig. 15.7 An element of a string at a fixed location
oscillates in time with amplitude a and
period T, as the wave passes over it.

* Here again, ‘radian’ could be dropped and the units could be written merely as m–1. Thus, k represents 2π
times the number of waves (or the total phase difference) that can be accommodated per unit length, with SI
units m–1.

(0, ) sin( )y t a t   
   sina t   

Now the period of oscillation of the wave is the
time it takes for an element to complete one full
oscillation. That is

sin sin ( T)a t a t      
   sin( T)a t     

Since sine function repeats after every 2π ,
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We then relate the wavelength λ to k through
Eq. (15.6),

λ = 2π/k

   180.0 m

2π
−=

=  7.85 cm

(c) Now we relate T to ω by the relation

T = 2π/ω

                   13.0 s

2π
−=

                    = 2.09 s

and frequency, v  = 1/T = 0.48 Hz

The displacement y at x = 30.0 cm and
time t = 20 s is given by

y  = (0.005 m) sin (80.0  0.3 – 3.0  20)

            = (0.005 m) sin (–36 + 12π)
 = (0.005 m) sin (1.699)

            = (0.005 m) sin (970) j 5 mm   

15.4   THE SPEED OF A TRAVELLING WAVE

To determine the speed of propagation of a
travelling wave, we can fix our attention on any
particular point on the wave (characterized by
some value of the phase) and see how that point
moves in time. It is convenient to look at the
motion of the crest of the wave. Fig. 15.8 gives
the shape of the wave at two instants of time
which differ by a small time internal Δt. The
entire wave pattern is seen to shift to the right
(positive direction of x-axis) by a distance Δx. In
particular the crest shown by a cross () moves

a distance Δx in time Δt, The speed of the wave
is then Δx/Δt. We can put the cross () on a point
with any other phase. It will move with the same
speed v (otherwise the wave pattern will not
remain fixed). The motion of a fixed phase point
on the wave is given by

kx – ωt = constant (15.10)

Thus, as time t changes, the position x of the
fixed phase point must change so that the phase
remains constant. Thus

kx – ωt = k(x+Δx) – ω(t+Δt)

or k Δx – ω Δt =0

Taking Δx, Δt vanishingly small, this gives

d

d

 x
v

t k

  
  (15.11)

Relating ω to T and k to λ, we get

π λλν
π

= = =
2
2

w
v

k T
(15.12)

Eq. (15.12), a general relation for all
progressive waves, shows that in the time
required for one full oscillation by any
constituent of the medium, the wave pattern
travels a distance equal to the wavelength of the
wave. It should be noted that the speed of a
mechanical wave is determined by the inertial
(linear mass density for strings, mass density
in general) and elastic properties (Young’s
modulus for linear media/ shear modulus, bulk
modulus) of the medium. The medium
determines the speed; Eq. (15.12) then relates
wavelength to frequency for the given speed. Of
course, as remarked earlier, the medium can
support both transverse and longitudinal waves,
which will have different speeds in the same
medium. Later in this chapter, we shall obtain
specific expressions for the speed of mechanical
waves in some media.

15.4.1 Speed of a Transverse Wave on
Stretched String

The speed of a mechanical wave is determined
by the restoring force setup in the medium when
it is disturbed and the inertial properties (mass
density) of the medium. The speed is expected to
be directly related to the former and inversely to

Fig. 15.8 Progression of a harmonic wave from time
t  to t + Δt. where Δt is a small interval.
The wave pattern as a whole shifts to the
right. The crest of the wave (or a point with
any fixed phase) moves right by the distance
Δx in time Δt.
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the latter. For waves on a string, the restoring
force is provided by the tension T in the string.
The inertial property will in this case be linear
mass density μ, which is mass m  of the string
divided by its length L. Using Newton’s Laws of
Motion, an exact formula for the wave speed on
a string can be derived, but this derivation is
outside the scope of this book. We shall,
therefore, use dimensional analysis. We already
know that dimensional analysis alone can never
yield the exact formula. The overall
dimensionless constant is always left
undetermined by dimensional analysis.

The dimension of μ is [ML–1] and that of T is
like force, namely [MLT–2]. We need to combine
these dimensions to get the dimension of speed
v [LT–1]. Simple inspection shows that the
quantity T/μ has the relevant dimension

2
2 2

1

MLT
L T

ML

 
 

 

             

Thus if T and μ are assumed to be the only
relevant physical quantities,

v  = C 
T
 

(15.13)

where C is the undetermined constant of
dimensional analysis. In the exact formula, it
turms out, C=1. The speed of transverse waves
on a stretched string is given by

v  = 
μ
T

  
(15.14)

Note the important point that the speed v
depends only on the properties of the medium T
and μ (T is a property of the stretched string
arising due to an external force). It does not
depend on wave length or frequency of the wave
itself. In higher studies, you will come across
waves whose speed is not independent of
frequency of the wave. Of the two parameters λ
and ν the source of disturbance determines the
frequency of the wave generated. Given the
speed of the wave in the medium and the
frequency Eq. (15.12) then fixes the wavelength

v 
 

    (15.15)

Example 15.3 A steel wire 0.72 m long has
a mass of 5.0 10–3 kg. If the wire is under
a tension of 60 N, what is the speed of
transverse waves on the wire ?

Propagation of a pulse on a rope
You can easily see the motion of a pulse on a rope. You can also see
its reflection from a rigid boundary and measure its velocity of travel.
You will need a rope of diameter 1 to 3 cm, two hooks and some
weights. You can perform this experiment in your classroom or
laboratory.

Take a long rope or thick string of diameter 1 to 3 cm, and tie it to
hooks on opposite walls in a hall or laboratory. Let one end pass on
a hook and hang some weight (about 1 to 5 kg) to it. The walls may
be about 3 to 5 m apart.

Take a stick or a rod and strike the rope hard at a point near one
end. This creates a pulse on the rope which now travels on it. You
can see it reaching the end and reflecting back from it. You can
check the phase relation between the incident pulse and reflected
pulse. You can easily watch two or three reflections before the pulse
dies out. You can take a stopwatch and find the time for the pulse
to travel the distance between the walls, and thus measure its

velocity. Compare it with that obtained from Eq. (15.14).
This is also what happens with a thin metallic string of a musical instrument. The major difference is

that the velocity on a string is fairly high because of low mass per unit length, as compared to that on a
thick rope. The low velocity on a rope allows us to watch the motion and  make measurements beautifully.
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Answer Mass per unit length of the wire,

m 72.0
kg 100.5 3−×=μ

   = 6.9 10–3 kg m–1

Tension, T = 60 N
The speed of wave on the wire is given by

 
1

13
m  93

mkg 109.6

N 60 −
−− =

×
== s

T
  v μ   

15.4.2 Speed of a Longitudinal Wave (Speed
of Sound)

In a longitudinal wave the constituents of the
medium oscillate forward and backward in the
direction of propagation of the wave.  We have
already seen that the sound waves travel in the
form of compressions and rarefactions of small
volume elements of air.  The elastic property that
determines the stress under compressional
strain is the bulk modulus of the medium defined
by (see chapter 9)

P
B  

V/V
   

 (15.16)

Here the change in pressure ΔP produces a

volumetric strain 
V

V

 
. B has the same dimension

as pressure and given in SI units in terms of
pascal (Pa). The inertial property relevant for the
propagation of wave in the mass density ρ, with
dimensions [ML–3]. Simple inspection reveals
that quantity B/ρ has the relevant dimension:

–1 –2
2 –2

–3

M L  T
L   T

M L
 

            
(15.17)

Thus if B and ρ  are considered to be the only
relevant physical quantities,

v  = C B

 
(15.18)

where, as before, C is the undetermined constant
from dimensional analysis. The exact derivation
shows that C=1. Thus the general formula for
longitudinal waves in a medium is:

v  = B
ρ

(15.19)

For a linear medium like a solid bar, the lateral
expansion of the bar is negligible and we may
consider it to be only under longitudinal strain.
In that case, the relevant modulus of elasticity
in Young’s modulus, which has the same
dimension as the Bulk modulus. Dimensional
analysis for this case is the same as before and
yields a relation like Eq. (15.18), with an
undetermined C which the exact derivation
shows to be unity. Thus the speed of longitudinal
waves in a solid bar is given by

 v  = 
ρ
Y (15.20)

where Y is the Young’s modulus of the material
of the bar. Table 15.1 gives the speed of sound
in some media.

Table 15.1 Speed of Sound in some Media

Liquids and solids generally have higher
speeds of sound than in gases. [Note for solids,
the speed being referred to is the speed of
longitudinal waves in the solid]. This happens
because they are much more difficult to
compress than gases and so have much higher
values of bulk modulus. This factor more than
compensates for their higher densities than
gases.
We can estimate the speed of sound in a gas in
the ideal gas approximation. For an ideal gas,
the pressure P, volume V and temperature T are
related by (see Chapter 11).
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PV = Nk
B
T (15.21)

where N is the number of molecules in volume
V, k

B
 is the Boltzmann constant and T the

temperature of the gas (in Kelvin). Therefore, for
an isothermal change it follows from Eq.(15.21)
that

VΔP + PΔV  = 0

or P
V/V

P
 =

Δ
Δ

−

Hence, substituting in Eq. (15.16), we have
B = P

Therefore, from Eq. (15.19) the speed of a
longitudinal wave in an ideal gas is given by,

v  = 
ρ
P (15.22)

This relation was first given by Newton and
is known as Newton’s formula.

Example 15.4  Estimate the speed of
sound in air at standard temperature and
pressure. The mass of 1 mole of air is
29.0 10–3 kg.

Answer We know that 1 mole of any gas
occupies 22.4 litres at STP. Therefore, density
of air at STP is :
 ρ

o
 = (mass of one mole of air)/ (volume of one

mole of air at STP)

3

3 3

29.0 10 kg

22.4 10 m
 

 

 

 
 

 

=  1.29 kg  m–3

According to Newton’s formula for the speed
of sound in a medium, we get for the speed of
sound in air at STP,

 

1/25 2
 

–3

1.01 10 N m
1.29 kg m

v  = 280 m s–1   (15.23)

The result shown in Eq.(15.23) is about 15%
smaller as compared to the experimental value
of 331 m s–1 as given in Table 15.1. Where
did we go wrong ? If we examine the basic
assumption made by Newton that the pressure
variations in a medium during propagation of
sound are isothermal, we find that this is not
correct. It was pointed out by Laplace that the
pressure variations in the propagation of sound

waves are so fast that there is little time for the
heat flow to maintain constant temperature.
These variations, therefore, are adiabatic and
not isothermal. For adiabatic processes the ideal
gas satisfies the relation,

PV γ  = constant

i.e. Δ(PV γ )  = 0

or P γ V γ –1 ΔV + V γ ΔP = 0

Thus, for an ideal gas the adiabatic bulk
modulus is given by,

B
ad

 = 
V/V

P
 
Δ

Δ
−

  =  γP

where γ is the ratio of two specific heats,
C

p
/C

v
. The speed of sound is, therefore, given by,

v = 
ρ

γ P (15.24)

This modification of Newton’s formula is referred
to as the Laplace correction. For air
γ = 7/5. Now using Eq. (15.24) to estimate the speed
of sound in air at STP, we get a value 331.3 m s–1,
which agrees with the measured speed.

15.5 THE PRINCIPLE OF SUPERPOSITION OF
WAVES

What happens when two wave pulses travelling
in opposite directions cross each other? It turns
out that wave pulses continue to retain their
identities after they have crossed. However,
during the time they overlap, the wave pattern
is different from either of the pulses. Figure 15.9
shows the situation when two pulses of equal
and opposite shapes move towards each other.
When the pulses overlap, the resultant
displacement is the algebraic sum of the
displacement due to each pulse. This is known
as the principle of superposition of waves.
According to this principle, each pulse moves
as if others are not present. The constituents of
the medium therefore suffer displacments due
to both and since displacements can be positive
and negative, the net displacement is an
algebraic sum of the two. Fig. 15.9 gives graphs
of the wave shape at different times. Note the
dramatic effect in the graph (c); the
displacements due to the two pulses have exactly
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WAVES 373

cancelled each other and there is zero
displacement throughout.
To put the principle of superposition
mathematically, let y

1
 (x,t) and y

2
 (x,t) be the

displacements due to two wave disturbances in
the medium. If the waves arrive in a region
simultaneously and therefore, overlap, the net
displacement. y (x,t) is given by

y     (x, t) =  y
1
(x, t) +  y

2
(x, t) (15.25)

If we have two or more waves moving in the
medium the resultant waveform is the sum of
wave functions of individual waves. That is, if
the wave functions of the moving waves are

y
1
 = f

1
(x–vt),

y
2
 = f

2
(x–vt),

..........

           ..........

           y
n
 = f

n
 (x–vt)

then the wave funct ion descr ib ing the
disturbance in the medium is

y = f
1
(x – vt)+ f

2
(x – vt)+  ...+ f

n
(x – vt)

   ( )
=1i

n
 f  x vti= −∑ (15.26)

The principle of superposition is basic to the
phenomenon of interference.

For simplicity, consider two harmonic
travelling waves on a stretched string, both with
the same ω (angular frequens) and k (wave
number), and, therefore, the same wavelength
λ. Their wave speeds will be identical. Let us
further assume that their amplitudes are equal
and they are both travelling in the positive
direction of x-axis. The waves only differ in their
initial phase. According to Eq. (15.2), the two
waves are described by the functions:

y
1
(x, t) = a sin (kx – ωt) (15.27)

and y
2
(x, t) =  a sin (kx – ωt + φ ) (15.28)

The net displacement is then, by the principle
of superposition, given by

y  (x, t ) = a sin (kx – ωt) + a sin (kx – ωt + φ )
(15.29)

( ) ( )2sin cos
2 2

kx t kx t
a

ω ω φ φ⎡ ⎤− + − +⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦⎣ ⎦
(15.30)

where we have used the familiar trignometric

identity for sin sinA B+ . We then have

( ), 2 cos sin
2 2

y x t a kx t
φ φω⎛ ⎞= − +⎜ ⎟

⎝ ⎠
(15.31)

Eq. (15.31) is also a harmonic travelling wave in
the positive direction of x-axis, with the same
frequency and wave length. However, its initial

phase angle is 2
φ

. The significant thing is that

its amplitude is a function of the phase difference
φ between the constituent two waves:

A(φ)  =  2a cos �φ (15.32)
For φ = 0, when the waves are in phase,

( ) ( ), 2 siny x t a kx tω= − (15.33)

i.e. the resultant wave has amplitude 2a, the

largest possible value for A. For φ π= , the

Fig. 15.9 Two pulses having equal and opposite
displacements moving in opposite
directions. The overlapping pulses add up
to zero displacement in curve (c).
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reflected. The phenomenon of echo is an example
of reflection by a rigid boundary. If the boundary
is not completely rigid or is an interface between
two different elastic media, the situation is some
what complicated. A part of the incident wave is
reflected and a part is transmitted into the
second medium. If a wave is incident obliquely
on the boundary between two different media
the transmitted wave is called the refracted
wave. The incident and refracted waves obey
Snell’s law of refraction, and the incident and
reflected waves obey the usual laws of
reflection.

Fig. 15.11 shows a pulse travelling along a
stretched string and being reflected by the
boundary. Assuming there is no absorption of
energy by the boundary, the reflected wave has
the same shape as the incident pulse but it
suffers a phase change of π or 1800 on reflection.
This is because the boundary is rigid and the
disturbance must have zero displacement at all
times at the boundary. By the principle of
superposition, this is possible only if the reflected
and incident waves differ by a phase of π, so that
the resultant displacement is zero. This
reasoning is based on boundary condition on a
rigid wall. We can arrive at the same conclusion
dynamically also. As the pulse arrives at the wall,
it exerts a force on the wall. By Newton’s Third
Law, the wall exerts an equal and opposite force
on the string generating a reflected pulse that
differs by a phase of π.

Fig. 15.11 Reflection of a pulse meeting a rigid boundary.

Fig. 15.10 The resultant of two harmonic waves of
equal amplitude and wavelength
according to the principle of superposition.
The amplitude of the resultant wave
depends on the phase difference φ, which
is zero  for (a) and π for (b)

waves are completely, out of phase and the
resultant wave has zero displacement
everywhere at all times

y   (x, t )  = 0 (15.34)
Eq. (15.33) refers to the so-called constructive
interference of the two waves
where the amplitudes add up in
the resultant wave. Eq. (15.34)
is the case of destructive
intereference where the
amplitudes subtract out in the
resultant wave. Fig. 15.10
shows these two cases of
interference of waves arising
from the principle of
superposition.

15.6 REFLECTION OF
WAVES

So far we considered waves
propagating in an unbounded
medium. What happens if a
pulse or a wave meets a
boundary? If the boundary is
rigid, the pulse or wave gets
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If on the other hend, the boundary point is
not rigid but completely free to move (such as in
the case of a string tied to a freely moving ring
on a rod), the reflected pulse has the same phase
and amplitude (assuming no energy dissipation)
as the incident pulse. The net maximum
displacement at the boundary is then twice the
amplitude of each pulse. An example of non- rigid
boundary is the open end of an organ pipe.

To summarize, a travelling wave or pulse
suffers a phase change of π on reflection at a
rigid boundary and no phase change on
reflection at an open boundary. To put this
mathematically, let the incident travelling wave
be

( ) ( )2 , sin ω= −y x t a kx t

At a rigid boundary, the reflected wave is given
by

y
r
(x, t) = a sin (kx – ωt + π).

   = – a sin (kx – ωt) (15.35)
At an open boundary, the reflected wave is given
by

y
r
(x, t) = a sin (kx – ωt + 0).

   = a sin (kx – ωt) (15.36)

Clearly, at the rigid boundary, 2 0= + =ry y y
at all times.

15.6.1   Standing Waves and Normal Modes

We considered above reflection at one boundary.
But there are familiar situations (a string fixed
at either end or an air column in a pipe with
either end closed) in which reflection takes place
at two or more boundaries. In a string, for
example, a wave going to the right will get
reflected at one end, which in turn will travel
and get reflected from the other end. This will
go on until there is a  steady wave pattern set
up on the string. Such wave patterns are called
standing waves or stationary waves. To see this
mathematically, consider a wave travelling
along the positive direction of x-axis and a
reflected wave of the same amplitude and
wavelength in the negative direction of x-axis.
From Eqs. (15.2) and (15.4), with φ = 0, we get:

y
1
(x, t) = a sin (kx – ωt)

y
2
(x, t) = a sin (kx + ωt)

 The resultant wave on the string is, according
to the principle of superposition:

y (x, t) =  y
1
(x, t) + y

2
(x, t)

= a [sin (kx – ωt) + sin (kx + ωt)]

Using the familiar trignometric identity
Sin (A+B) + Sin (A–B) = 2 sin A cosB we get,

y (x, t) = 2a sin kx cos ωt (15.37)

Note the important difference in the wave
pattern described by Eq. (15.37) from that
described by Eq. (15.2) or Eq. (15.4). The terms
kx and ωt appear separately, not in the
combination kx - ωt. The amplitude of this wave
is 2a sin kx. Thus in this wave pattern, the
amplitude varies from point to point, but each
element of the string oscillates with  the same
angular frequency ω or time period. There is no
phase difference between oscillations of different
elements of the wave. The string as a whole
vibrates in phase with differing amplitudes at
different points. The  wave pattern is neither
moving to the right nor to the left. Hence they
are called standing or stationary waves. The
amplitude is fixed at a given location but, as
remarked earlier, it is different at different
locations. The points at which the amplitude is
zero (i.e., where there is no motion at all) are
nodes; the points at which the amplitude is the
largest are called antinodes. Fig. 15.12 shows
a stationary wave pattern resulting from
superposition of two travelling waves in opposite
directions.

The most significant feature of stationary
waves is that the boundary conditions constrain
the possible wavelengths or frequencies of
vibration of the system. The system cannot
oscillate with any arbitrary frequency (contrast
this with a harmonic travelling wave), but is
characterized by a set of natural frequencies or
normal modes of oscillation. Let us determine
these normal modes for a stretched string fixed
at both ends.

First, from Eq. (15.37), the positions of nodes
(where the amplitude is zero) are given by
sin kx = 0 .
which implies

kx = nπ;   n = 0, 1, 2, 3, ...

Since k = 2π/λ , we get

x = 
 

2
n

 ; n = 0, 1, 2, 3, ...        (15.38)

Clearly, the distance between any two

successive nodes is  
2

. 
In the same way, the
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positions of antinodes (where the amplitude is
the largest) are given by the largest value of sin
kx :

⎢sin k x
 
⎢= 1

which implies

kx = (n + �) π ; n = 0, 1, 2, 3, ...

With k = 2π/λ, we get

 x = (n + �)
2
λ  ; n = 0, 1, 2, 3, ...                (15.39)

Again the distance between any two consecutive

antinodes is 
2
λ . Eq. (15.38) can be applied to

the case of a stretched string of length L fixed
at both ends. Taking one end to be at x = 0, the
boundary conditions are that x = 0 and x = L
are positions of nodes. The x = 0 condition is
already satisfied. The x = L node condition
requires that the length L is related to λ by

L = n 
2
λ

;     n = 1, 2, 3, ...      (15.40)

Thus, the possible wavelengths of stationary
waves are constrained by the relation

λ  = 2L

n
;    n = 1, 2, 3, … (15.41)

with corresponding frequencies

v =  
2L
nv , for  n = 1, 2, 3, (15.42)

We have thus obtained the natural frequencies
- the normal modes of oscillation of the system.
The lowest possible natural frequency of a
system is called its fundamental mode or the
first harmonic. For the stretched string fixed

at either end it is given by v = 
v

L2
, corresponding

to n = 1 of Eq. (15.42). Here v is the speed of
wave determined by the properties of the
medium. The n = 2 frequency is called the
second harmonic; n = 3 is the third harmonic

Fig. 15.12 Stationary waves arising from superposition of two harmonic waves travelling in opposite directions.
Note that the positions of zero displacement (nodes) remain fixed at all times.
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and so on. We can label the various
harmonics by the symbol ν

n
 ( n = 1,

2, ...).
Fig. 15.13 shows the first six
harmonics of a stretched string
fixed at either end. A string need
not vibrate in one of these modes
only. Generally, the vibration of a
string will be a superposition of
different modes; some modes may
be more strongly excited and some
less. Musical instruments like sitar
or violin are based on this
principle. Where the string is
plucked or bowed, determines
which modes are more prominent
than others.
Let us next consider normal modes
of oscillation of an air column with
one end closed and the other open.
A glass tube partially filled with
water illustrates this system. The
end in contact with water is a node,
while the open end is an antinode.
At the node the pressure changes
are the largest, while the
displacement is minimum (zero). At
the open end - the antinode, it is
just the other way - least pressure
change and maximum amplitude of
displacement. Taking the end in
contact with water to be x = 0, the
node condition (Eq. 15.38) is
already satisfied. If the other end x
= L is an antinode, Eq. (15.39) gives

L =  (n + 
1
2

) 
2
 

, for n = 0, 1, 2, 3, …

The possible wavelengths are then restricted by
the relation :

λ  = 
( )

2

1 2

L

n  + /
,  for n = 0, 1, 2, 3,... (15.43)

The normal modes – the natural frequencies –
of the system are

ν  =  (n + 
1
2

)
2
v
L

; n = 0, 1, 2, 3, ... (15.44)

The fundamental frequency corresponds to n =

0, and is given by 
v

L4
 . The higher frequencies

are odd harmonics, i.e., odd multiples  of the

fundamental frequency : 3
v

L4
, 5

v

L4
, etc.

Fig. 15.14 shows the first six odd harmonics of
air column with one end closed and the other
open. For a pipe open at both ends, each end is
an antinode. It is then easily seen that an open
air column at both ends generates all harmonics
(See Fig. 15.15).

The systems above, strings and air columns,
can also undergo forced oscillations (Chapter
14). If the external frequency is close to one of
the natural frequencies, the system shows
resonance.

Fig. 15.13  The first six harmonics of vibrations of a stretched
string fixed at both ends.
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Normal modes of a circular membrane rigidly
clamped to the circumference as in a tabla are
determined by the boundary condition that no
point on the circumference of the membrane
vibrates. Estimation of the frequencies of normal
modes of this system is more complex. This
problem involves wave propagation in two
dimensions. However, the underlying physics is
the same.

Example 15.5  A pipe, 30.0 cm long, is
open at both ends. Which harmonic mode
of the pipe resonates a 1.1 kHz source?  Will
resonance with the same source be
observed if one end of the pipe is closed ?
Take the speed of sound in air as
330 m s–1.

Answer  The first harmonic frequency is given
by

                ν
1
 = 

L
vv

2
  

1
=λ      (open pipe)

where L is the length of the pipe. The frequency
of its nth harmonic is:

ν
n
 = 

L
nv
2

, for n = 1, 2, 3, ... (open pipe)

First few modes of an open pipe are shown in
Fig. 15.14.

For L = 30.0 cm, v = 330 m s–1,

ν
n
 = 

1  330 (m s )
0.6 (m)

n
 = 550 n s–1

Clearly, a source of frequency 1.1 kHz will
resonate at v

2
, i.e. the second harmonic.

Now if one end of the pipe is closed (Fig. 15.15),
it follows from Eq. (14.50) that the fundamental
frequency is

ν
1
 =  L

vv
4

  
1

=λ  (pipe closed at one end)

and only the odd numbered harmonics are
present :

ν
3
 = 

3
4

v

L
,  ν

5
 = 

5
4

v

L
, and so on.

For L = 30 cm and v = 330 m s–1, the
fundamental frequency of the pipe closed at one
end is 275 Hz and the source frequency
corresponds to its fourth harmonic. Since this
harmonic is not a possible mode, no resonance
will be observed with the source, the moment
one end is closed.

15.7   BEATS

‘Beats’ is an interesting phenomenon arising
from interference of waves. When two harmonic
sound waves of close (but not equal) frequencies

Fig. 15.14 Normal modes of an air column open at
one end and closed at the other end. Only
the odd harmonics are seen to be possible.

Fundamental
or third fifth

first harmonic harmonic harmonic

seventh ninth eleventh
harmonic harmonic harmonic
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are heard at the same time, we hear a sound of
similar frequency (the average of two close
frequencies), but we hear something else also.
We hear audibly distinct waxing and waning of
the intensity of the sound, with a frequency
equal to the difference in the two close
frequencies. Artists use this phenomenon often
while tuning their instruments with each other.
They go on tuning until their sensitive ears do
not detect any beats.

To see this mathematically, let us consider
two harmonic sound waves of nearly equal
angular frequency ω

1
 and ω

2
 and fix the location

to be x = 0 for convenience. Eq. (15.2) with a
suitable choice of phase (φ = π/2 for each) and,
assuming equal amplitudes, gives
 s

1
 = a 

 
cos ω

1
t   and  s

2
 = a 

 
cos ω

2
t         (15.45)

Here we have replaced the symbol y by s,
since we are referring to longitudinal not
transverse displacement. Let ω

1
 be the (slightly)

greater of the two frequencies. The resultant
displacement is, by the principle of
superposition,

s =  s
1
 + s

2
 = a (cos

 
ω

1 
t + cos ω

2 
t)

Using the familiar trignometric identity for
cos A + cosB, we get

1 2 1 2 2 cos  cos
2 2

t t
a

      
(15.46)

which may be written as :
s = [2 a  cos ω

b 
t ] cos ω

a
t (15.47)

If |ω
1 
– ω

2
| <<ω

1
, ω

2
, ω

a
 >> ω

b
, th

where

ω
b
 = ( )1 2

2

ω ω −  and  ω
a
 = ( )1 2

2

ω ω +

Now if we assume |ω
1 
– ω

2
| <<ω

1
, which means

ω
a
 >> ω

b
, we can interpret Eq. (15.47) as follows.

The resultant wave is oscillating with the average
angular frequency ω

a
; however its amplitude is

not constant in time, unlike a pure harmonic
wave. The amplitude is the largest when the
term cos ω

b 
t takes its limit +1 or –1. In other

words, the intensity of the resultant wave waxes
and wanes with a frequency which is 2ω

b
 = ω

1
 –

Fig. 15.15 Standing waves in an open pipe, first four
harmonics are depicted.

Musical Pillars
Temples often have
some pillars
portraying human
figures playing
musical instru-
ments, but seldom
do these pillars
themselves produce
music. At the
Nellaiappar temple
in Tamil Nadu,
gentle taps on a

cluster of pillars carved out of a single piece
of rock produce the basic notes of Indian
classical music, viz. Sa, Re, Ga, Ma, Pa, Dha,
Ni, Sa. Vibrations of these pillars depend on
elasticity of the stone used, its density and
shape.

Musical pillars are categorised into three
types: The first is called the Shruti Pillar,
as it can produce the basic notes —  the
“swaras”. The second type is the Gana
Thoongal, which generates the basic tunes
that make up the “ragas”. The third variety
is the Laya Thoongal pillars that produce
“taal” (beats) when tapped. The pillars at the
Nellaiappar temple are a combination of the
Shruti and Laya types.

Archaeologists date the Nelliappar
temple to the 7th century and claim it was
built by successive rulers of the Pandyan
dynasty.

The musical pillars of Nelliappar and
several other temples in southern India like
those at Hampi (picture), Kanyakumari, and
Thiruvananthapuram are unique to the
country and have no parallel in any other
part of the world.
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decreases as it recedes away. When we
approach a stationary source of sound with high
speed, the pitch of the sound heard appears to
be higher than that of the source. As the
observer recedes away from the source, the
observed pitch (or frequency) becomes lower
than that of the source. This motion-related
frequency change is called Doppler effect. The
Austrian physicist Johann Christian Doppler
first proposed the effect in 1842. Buys Ballot in
Holland tested it experimentally in 1845.
Doppler effect is a wave phenomenon, it holds
not only for sound waves but also for
electromagnetic waves. However, here we shall
consider only sound waves.

We shall analyse changes in frequency under
three different situations: (1) observer is

Reflection of sound in an open
pipe

When a high
pressure pulse of
air travelling down
an open pipe
reaches the other
end, its momentum
drags the air out
into the open, where
pressure falls
rapidly to the
a t m o s p h e r i c
pressure. As a

result the air following after it in the tube is
pushed out. The low pressure at the end of
the tube draws air from further up the tube.
The air gets drawn towards the open end
forcing the low pressure region to move
upwards. As a result a pulse of high pressure
air travelling down the tube turns into a
pulse of low pressure air travelling up the
tube. We say a pressure wave has been
reflected at the open end with a change in
phase of 1800. Standing waves in an open
pipe organ like the flute is a result of this
phenomenon.

Compare this with what happens when
a pulse of high pressure air arrives at a
closed end: it collides and as a result pushes
the air back in the opposite direction. Here,
we say that the pressure wave is reflected,
with no change in phase.

Fig. 15.16 Superposition of two harmonic waves, one
of frequency 11 Hz (a), and the other of
frequency 9Hz (b), giving rise to beats of
frequency 2 Hz, as shown in (c).

ω
2
. Since  ω = 2πν, the beat frequency ν

beat
, is

given by
ν

beat
 = ν

1
 – ν

2
(15.48)

Fig. 15.16 illustrates the phenomenon of
beats for two harmonic waves of frequencies 11
Hz and 9 Hz. The amplitude of the resultant wave
shows beats at a frequency of 2 Hz.

 Example 15.6  Two sitar strings A and B
playing the note ‘Dha’ are slightly out of
tune and produce beats of frequency 5 Hz.
The tension of the string B is slightly
increased and the beat frequency is found
to decrease to 3 Hz. What is the original
frequency of B if the frequency of A is
427 Hz ?

Answer Increase in the tension of a string
increases its frequency. If the original frequency
of B (ν

B
) were greater than that of A (ν

A 
), further

increase in ν
B
 should have resulted in an

increase in the beat frequency. But the beat
frequency is found to decrease. This shows that
ν

B
 < ν

A
. Since ν

A
 – ν

B
 = 5 Hz, and ν

A
 = 427 Hz, we

get ν
B
 = 422 Hz.       

15.8    DOPPLER EFFECT

It is an everyday experience that the pitch (or
frequency) of the whistle of a fast moving train
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stationary but the source is moving, (2) observer
is moving but the source is stationary, and (3)
both the observer and the source are moving.
The situations (1) and (2) differ from each other
because of the absence or presence of relative
motion between the observer and the medium.
Most waves require a medium for their
propagation; however, electromagnetic waves do
not require any medium for propagation. If there
is no medium present, the Doppler shifts are
same irrespective of whether the source moves
or the observer moves, since there is no way of
distinction between the two situations.

15.8.1    Source Moving ; Observer Stationary

Let us choose the convention to take the
direction from the observer to the source as
the positive direction of velocity. Consider a
source S moving with velocity vs and an observer
who is stationary in a frame in which the
medium is also at rest. Let the speed of a wave
of angular frequency ω and period To, both
measured by an observer at rest with respect to
the medium, be v. We assume that the observer
has a detector that counts every time a wave
crest reaches it. As shown in
Fig. 15.17, at time t = 0 the source is at point S1,
located at a distance L from the observer,  and
emits a crest.  This reaches the observer at time
t1 = L/v. At time t = To the source has moved a
distance vsTo and is at point S2, located at a
distance (L + vsTo) from the observer. At S2, the
source emits a second crest. This reaches the
observer at

( )s 0
2 0

 
   

L T
t T

v

υ +
= +

At time n To, the source emits its (n+1)th crest
and this reaches the observer at time

  s 0
+1 0

 
    n

L n T
t n T

v

   
  

Hence, in a time interval

  0
0

 
 sL nv T L

nT
v v

    
    

  
the observer’s detector counts n crests and the
observer records the period of the wave as T
given by

  s 0
0

 
  /  

L nv T L
T nT n

v v

    
     

  

   =  
s 0

0

v T
T

v
+

=  
s

0 1
v

T
v

⎛ ⎞+⎜ ⎟
⎝ ⎠

(15.49)

Equation (15.49) may be rewritten in terms
of the frequency vo that would be measured if
the source and observer were stationary, and
the frequency v observed when the source is
moving, as

v  = 
1

s
0 1

v

v

−
⎛ ⎞+⎜ ⎟
⎝ ⎠

v (15.50)

If vs is small compared with the wave speed v,
taking binomial expansion to terms in first order
in vs/v and neglecting higher power, Eq. (15.50)
may be approximated, giving

v  = 0 1 – sv

v
⎛ ⎞
⎜ ⎟
⎝ ⎠

v (15.51)

For a source approaching the observer, we
replace vs by  – vs to get

v  = 0 1 sv

v
⎛ ⎞+⎜ ⎟
⎝ ⎠

v (15.52)

The observer thus measures a lower frequency
when the source recedes from him than he does
when it is at rest. He measures a higher
frequency when the source approaches him.

15.8.2 Observer Moving; Source
Stationary

Now to derive the Doppler shift when the
observer is moving with velocity vo towards the
source and the source is at rest, we have to
proceed in a different manner. We work in the

Fig. 15.17 Doppler effect (change in frequency of
wave) detected when the source is moving
and the observer is at rest in the medium.
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reference frame of the moving observer. In this
reference frame the source and medium are
approaching at speed vo and the speed with
which the wave approaches is vo + v. Following
a similar procedure as in the previous case, we
find that the time interval between the arrival
of the first and the (n+1) th crests is

0 0
+1 1 0

0

    n

nv T
t t n T

v v

The observer thus, measures the period of the
wave to be

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
vv

v
T

0

0
0 –1

–1
0

0 1  
v

T
v

        
giving

v  = 0
0 1

v

v
(15.53)

If 0v

v
 is small, the Doppler shift is almost same

whether it is the observer or the source moving
since Eq. (15.53) and the approximate relation
Eq. (15.51 ) are the same.

15.8.3  Both Source and Observer Moving

We will now derive a general expression for
Doppler shift when both the source and the
observer are moving. As before, let us take the
direction from the observer to the source as the
positive direction. Let the source and the
observer be moving with velocities vs and vo
respectively as shown in Fig.15.18. Suppose at
time t = 0, the observer is at O1 and the source
is at S1, O1 being to the left of S1. The source
emits a wave of velocity v, of frequency v and
period T0 all measured by an observer at rest
with respect to the medium. Let L be the
distance between O1 and S1 at t = 0, when the
source emits the first crest. Now, since the
observer is moving, the velocity of the wave
relative to the observer is v +v0.

 Therefore, the
first crest reaches the observer at time t1 = L/
(v+v0 ). At time t = T0, both the observer and the
source have moved to their new positions O2 and
S2 respectively. The new distance between the
observer and the source, O2 S2, would be L+(vs–
v0) T0]. At S2, the source emits a second crest.

Application of Doppler effect

The change in frequency caused by a moving object
due to Doppler effect is used to measure their
velocities in diverse areas such as military,
medical science, astrophysics, etc. It is also used
by police to check over-speeding of vehicles.

A sound wave or electromagnetic wave of
known frequency is sent towards a moving object.
Some part of the wave is reflected from the object
and its frequency is detected by the monitoring
station. This change in frequency is called Doppler
shift.

It is used at airports to guide aircraft, and in
the military to detect enemy aircraft.
Astrophysicists use it to measure the velocities
of stars.

Doctors use it to study heart beats and blood
flow in different parts of the body. Here they use
ulltrasonic waves, and in common practice, it is
called sonography. Ultrasonic waves enter the
body of the person, some of them are reflected
back, and give information about motion of blood
and pulsation of heart valves, as well as pulsation
of the heart of the foetus. In the case of heart,
the picture generated is called echocardiogram.

Fig. 15.18 Doppler effect when both the source and
observer are moving with different
velocities.

This reaches the observer at time.

t2 = To + [L + (vs – vo)To)] /(v + vo )

At time nTo the source emits its (n+1) th crest
and this reaches the observer at time

tn+1 = nTo + [L + n (vs – vo)To)] /(v + vo )

Hence, in a time interval tn+1 –t1, i.e.,

nTo + [L + n (vs – vo)To)] /(v + vo) – L /(v + vo),
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the observer counts n crests and the observer
records the period of the wave as equal to T given by

0 0
0 0

-
  1

  
s o sv v v v

T T T
v v v v

⎛ ⎞ ⎛ ⎞+
= + =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

(15.54)

The frequency v observed by the observer is
given by

0
0

s

v v

v v
v v (15.55)

Consider a passenger sitting in a train moving
on a straight track. Suppose she hears a whistle
sounded by the driver of the train.  What
frequency will she measure or hear? Here both
the observer and the source are moving with
the same velocity, so there will be no shift in
frequency and the passenger will note the
natural frequency. But an observer outside who
is stationary with respect to the track will note
a higher frequency if the train is approaching
him and a lower frequency when it recedes from
him.

Note that we have defined the direction from
the observer to the source as the positive
direction. Therefore, if the observer is moving
towards the source, v0 has a positive (numerical)
value whereas if O is moving away from S, v0
has a negative value. On the other hand, if S is
moving away from O, vs has a positive value
whereas if it is moving towards O, vs has a
negative value. The sound emitted by the source
travels in all directions. It is that part of sound
coming towards the observer which the  observer
receives and detects. Therefore, the relative
velocity of sound with respect to the observer is
v + v

0
 in all cases.

Example 15.7  A rocket is moving at a
speed of 200 m s–1 towards a stationary
target. While moving, it emits a wave of
frequency 1000 Hz. Some of the sound
reaching the target gets reflected back to the
rocket as an echo. Calculate (1) the
frequency of the sound as detected by the
target and (2) the frequency of the echo as
detected by the rocket.

Answer (1) The observer is at rest and the
source is moving with a speed of 200 m s–1. Since
this is comparable with the velocity of sound,
330 m s–1, we must use Eq. (15.50) and not the
approximate Eq. (15.51). Since the source is
approaching a stationary target, v

o
 = 0, and v

s

must be replaced by –v
s
.
 
Thus, we have

1
1

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

v
sv

  0vv

 v = 1000 Hz  [1 – 200 m s–1/330 m s–1]–1

     j  2540 Hz

(2) The target is now the source (because it is
the source of echo) and the rocket’s detector is
now the detector or observer (because it detects
echo). Thus, v

s
 = 0 and v

o
 has a positive value.

The frequency of the sound emitted by the source
(the target) is v, the frequency intercepted by
the target and not v

o
. Therefore, the frequency

as registered by the rocket is

v′ = 0 
v v

v

+⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

v 

–1 –1

–1

200 m s +330 m s
=2540Hz ×

330 m s

  
    

j 4080 Hz  
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SUMMARY

1. Mechanical waves can exist in material media and are governed by Newton’s Laws.

2. Transverse waves are waves in which the particles of the medium oscillate perpendicular
to the direction of wave propagation.

3. Longitudinal waves are waves in which the particles of the medium oscillate along the
direction of wave propagation.

4. Progressive wave is a wave that moves from one point of medium to another.

5. The displacement in a sinusoidal wave propagating in the positive x direction is given
by

y (x, t) = a sin (kx – ωt + φ)

where a is the amplitude of the wave, k is the angular wave number, ω is the angular
frequency, (kx – ωt + φ) is the phase, and φ is the phase constant or phase angle.

6. Wavelength λ of a progressive wave is the distance between two consecutive points of
the same phase at a given time. In a stationary wave, it is twice the distance between
two  consecutive nodes or antinodes.

7. Period T of oscillation of a wave is defined as the time any element of the medium
takes to move through one complete oscillation. It is related to the angular frequency ω
through the relation

T =
2π

ω

8. Frequency v of a wave is defined as 1/T and is related to angular frequency by

2

   
 

9. Speed of a progressive wave is given by 
k T

v
       

10.  The speed of a transverse wave on a stretched string is set by the properties of the
string. The speed on a string with tension T and linear mass density μ is

v =
T

μ

11. Sound waves are longitudinal mechanical waves that can travel through solids, liquids,
or gases. The speed v of sound wave in a fluid having bulk modulus B and density ρ is

v
B

=
ρ

The speed of longitudinal waves in a metallic bar is

v
Y

=
ρ

For  gases,  since B = γP, the speed of sound is

v
P

=
γ

ρ
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12. When two or more waves traverse the same medium, the displacement of any element
of the medium is the algebraic sum of the displacements due to each wave.  This is
known as the principle of superposition of waves

1

(   )
n

i
i

y f x vt
=

= −∑
13. Two sinusoidal waves on the same string exhibit interference, adding or cancelling

according to the principle of superposition. If the two are travelling in the same
direction and have the same amplitude a and frequency but differ in phase by a phase
constant φ, the result is a single wave with the same frequency ω :

y     (x, t)  = 1 1
2 cos  sin t 

2 2
a kx                 

If φ = 0 or an integral multiple of 2π, the waves are exactly in phase and the interference
is constructive; if φ = π, they are exactly out of phase and the interference is destructive.

14. A travelling wave, at a rigid boundary or a closed end, is reflected with a phase reversal
but the reflection at an open boundary takes place without any phase change.

For an incident wave

                           y
i 
(x, t) = a sin (kx – ωt )

the reflected wave at a rigid boundary is

                         y
r 
(x, t) = – a sin (kx + ωt )

For reflection at an open boundary

                       y
r 
(x,t ) = a sin (kx + ωt)

15. The interference of two identical waves moving in opposite directions produces standing
waves. For a string with fixed ends, the standing wave is given by

y (x, t) = [2a sin kx ] cos ωt

Standing waves are characterised by fixed locations of zero displacement called nodes
and fixed locations of maximum displacements called antinodes. The separation between
two consecutive nodes or antinodes is λ/2.

A stretched string of length L fixed at both the ends vibrates with frequencies given by

v  
1

 ,
2 2

v

L
     n = 1, 2, 3, ...

The set of frequencies given by the above relation are called the normal modes of
oscillation of the system. The oscillation mode with lowest frequency is called the
fundamental mode or the first harmonic. The second harmonic is the oscillation mode
with n = 2 and so on.

A pipe of length L with one end closed and other end open (such as air columns)
vibrates with frequencies given by

v   n ½  
2L
v  ,       n = 0, 1, 2, 3, ...

The set of frequencies represented by the above relation are the normal modes of
oscillation of such a system. The lowest frequency given by v/4L is the fundamental
mode or the first harmonic.

16. A string of length L fixed at both ends or an air column closed at one end and open at
the other end, vibrates with frequencies called its normal modes. Each of these
frequencies is a resonant frequency of the system.

17. Beats arise when two waves having slightly different frequencies, ν
1
 and ν

2
 and

comparable amplitudes, are superposed. The beat frequency is

ν
beat

 = ν
1
 ~ ν

2
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18. The Doppler effect is a change in the observed frequency of a wave when the source
and the observer O moves relative to the medium. For sound the observed frequency
ν is given in terms of the source frequency ν

o
 by

v = v
o
 0

 s

v v

v v

⎛ ⎞+
⎜ ⎟
⎜ ⎟+⎝ ⎠

here v is the speed of sound through the medium, v
o
 is the velocity of observer relative

to the medium, and v
s
 is the source velocity relative to the medium. In using this

formula, velocities in the direction OS should be treated as positive and those opposite
to it should be taken to be negative.

POINTS TO PONDER

1. A wave is not motion of matter as a whole in a medium.  A wind is different from the
sound wave in air.  The former involves motion of air from one place to the other.  The
latter involves compressions and rarefactions of layers of air.

2. In a wave, energy and not the matter is transferred from one point to the other.

3. Energy transfer takes place because of the coupling through elastic forces between
neighbouring oscillating parts of the medium.

4. Transverse waves can propagate only in medium with shear modulus of elasticity,
Longitudinal waves need bulk modulus of elasticity and are therefore, possible in all
media, solids, liquids and gases.

5. In a harmonic progressive wave of a given frequency all particles have the same
amplitude but different phases at a given instant of time.  In a stationary wave, all
particles between two nodes have the same phase at a given instant but have different
amplitudes.

6. Relative to an observer at rest in a medium the speed of a mechanical wave in that
medium (v) depends only on elastic and other properties (such as mass density) of
the medium. It does not depend on the velocity of the source.

7. For an observer moving with velocity v
o
 relative to the medium, the speed of a wave is

obviously different from v and is given by v ± v
o
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EXERCISES

15.1 A string of mass 2.50 kg is under a tension of 200 N. The length of the stretched
string is 20.0 m. If the transverse jerk is struck at one end of the string, how long
does the disturbance take to reach the other end?

15.2 A stone dropped from the top of a tower of height 300 m high splashes into the
water of a pond near the base of the tower. When is the splash heard at the top
given that the speed of sound in air is 340 m s–1 ? (g = 9.8 m s–2)

15.3 A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the
tension in the wire so that speed of a transverse wave on the wire equals the speed
of sound in dry air at 20 °C = 343 m s–1.

15.4 Use the formula v  
P

=
γ

ρ
to explain why the speed of sound in air

(a) is independent of pressure,

(b) increases with temperature,

(c) increases with humidity.

15.5 You have learnt that a travelling wave in one dimension is represented by a function
y = f (x, t) where x and t must appear in the combination x – v t or x + v t, i.e.
y = f (x ± v t). Is the converse true? Examine if the following functions for y can
possibly represent a travelling wave :

(a) (x – vt )2

(b) log [(x + vt)/x
0
]

(c) 1/(x + vt)

15.6 A bat emits ultrasonic sound of frequency 1000 kHz in air. If the sound meets a
water surface, what is the wavelength of (a) the reflected sound, (b) the transmitted
sound? Speed of sound in air is 340 m s –1 and in water 1486 m s–1.

15.7 A hospital uses an ultrasonic scanner to locate tumours in a tissue. What is the
wavelength of sound in the tissue in which the speed of sound is 1.7 km s–1 ? The
operating frequency of the scanner is 4.2 MHz.

15.8 A transverse harmonic wave on a string is described by

                    y(x, t) = 3.0 sin (36  t + 0.018 x + π/4)

where x and y are in cm and t in s. The positive direction of x is from left to right.

(a) Is this a travelling wave or a stationary wave ?

If it is travelling, what are the speed and direction of its propagation ?

(b) What are its amplitude and frequency ?

(c) What is the initial phase at the origin ?

(d) What is the least distance between two successive crests in the wave ?

15.9 For the wave described in Exercise 15.8, plot the displacement (y) versus (t) graphs
for x = 0, 2 and 4 cm. What are the shapes of these graphs? In which aspects does
the oscillatory motion in travelling wave differ from one point to another: amplitude,
frequency or phase ?

15.10   For the travelling harmonic wave

y(x, t) = 2.0 cos 2π (10t – 0.0080 x + 0.35)
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where x and y are in cm and t in s. Calculate the phase difference between oscillatory
motion of two points separated by a distance of

(a) 4 m,

(b) 0.5 m,

(c) λ/2,

(d) 3λ/4

15.11 The transverse displacement of a string (clamped at its both ends) is given by

y(x, t) = 0.06 sin 
2
3

x
   

     cos (120 πt)

where x and y are in m and t in s. The length of the string is 1.5 m and its mass is
3.0 10–2 kg.

Answer the following :

(a) Does the function represent a travelling wave or a stationary wave?

(b) Interpret the wave as a superposition of two waves travelling in opposite
directions. What is the wavelength, frequency, and speed of each wave ?

(c) Determine the tension in the string.

15.12 (i) For the wave on a string described in Exercise 15.11, do all the points on the
string oscillate with the same (a) frequency, (b) phase, (c) amplitude? Explain
your answers. (ii) What is the amplitude of a point 0.375 m away from one end?

15.13 Given below are some functions of x and t to represent the displacement (transverse
or longitudinal) of an elastic wave. State which of these represent (i) a travelling
wave, (ii) a stationary wave or (iii) none at all:

(a) y = 2 cos (3x) sin (10t)

(b) y x  vt  = −2

(c) y = 3 sin (5x – 0.5t) + 4 cos (5x – 0.5t)

(d) y = cos x sin t + cos 2x sin 2t

15.14 A wire stretched between two rigid supports vibrates in its fundamental mode with
a frequency of 45 Hz. The mass of the wire is 3.5  10–2  kg and its linear mass density
is 4.0  10–2 kg m–1. What is (a) the speed of a transverse wave on the string, and
(b) the tension in the string?

15.15 A metre-long tube open at one end, with a movable piston at the other end, shows
resonance with a fixed frequency source  (a tuning fork of frequency 340 Hz) when
the tube length is 25.5 cm or 79.3 cm. Estimate the speed of sound in air at the
temperature of the experiment. The edge effects may be neglected.

15.16 A steel rod 100 cm long is clamped at its middle. The fundamental frequency of
longitudinal vibrations of the rod are given to be 2.53 kHz. What is the speed of
sound in steel?

15.17 A pipe 20 cm long is closed at one end. Which harmonic mode of the pipe is
resonantly excited by a 430 Hz source ? Will the same source be in resonance with
the pipe if both ends are open? (speed of sound in air is 340 m s–1).

15.18 Two sitar strings A and B playing the note ‘Ga’ are slightly out of tune and produce
beats of frequency 6 Hz. The tension in the string A is slightly reduced and the
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beat  frequency is found to reduce to 3 Hz. If the original frequency of A is 324 Hz,
what is the frequency of B?

15.19 Explain why (or how):

(a) in a sound wave, a displacement node is a pressure antinode and vice versa,

(b) bats can ascertain distances, directions, nature, and sizes of the obstacles
without any “eyes”,

(c) a violin note and sitar note may have the same frequency, yet we can
distinguish between the two notes,

(d) solids can support both longitudinal and transverse waves, but only
longitudinal waves can propagate in gases, and

(e) the shape of a pulse gets distorted during propagation in a dispersive medium.

15.20 A train, standing at the outer signal of a railway station blows a whistle of frequency
400 Hz in still air. (i) What is the frequency of the whistle for a platform observer
when the train (a) approaches the platform with a speed of 10 m s–1, (b) recedes
from the platform with a speed of 10 m s–1? (ii) What is the speed of sound in each
case ? The speed of sound in still air can be taken as 340 m s–1.

15.21 A train, standing in a station-yard, blows a whistle of frequency 400 Hz in still
air. The wind starts blowing in the direction from the yard to the station with a
speed of 10 m s–1. What are the frequency, wavelength, and speed of sound for an
observer standing on the station’s platform? Is the situation exactly identical to
the case when the air is still and the observer runs towards the yard at a speed of
10 m s–1? The speed of sound in still air can be taken as 340 m s–1

Additional Exercises

15.22 A travelling harmonic wave on a string is described by

y(x, t) = 7.5 sin (0.0050x +12t + π/4)

(a)what are the displacement and velocity of oscillation of a point at
x = 1 cm, and t = 1 s? Is this velocity equal to the velocity of wave propagation?

(b)Locate the points of the string which have the same transverse displacements
and velocity as the x = 1 cm point at t = 2 s, 5 s and 11 s.

15.23 A narrow sound pulse (for example, a short pip by a whistle) is sent across a
medium. (a) Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed
of propagation? (b) If the pulse rate is 1 after every 20 s, (that is the whistle is
blown for a split of second after every 20 s), is the frequency of the note produced
by the whistle equal to 1/20 or 0.05 Hz ?

15.24 One end of a long string of linear mass density 8.0  10–3 kg m–1 is connected to an
electrically driven tuning fork of frequency 256 Hz. The other end passes over a
pulley and is tied to a pan containing a mass of 90 kg. The pulley end absorbs all
the incoming energy so that reflected waves at this end have negligible amplitude.
At t = 0, the left end (fork end) of the string x = 0 has zero transverse displacement
(y = 0) and is moving along positive y-direction. The amplitude of the wave is 5.0
cm. Write down the transverse displacement y as function of x and t that describes
the wave on the string.

15.25 A SONAR system fixed in a submarine operates at a frequency 40.0 kHz. An enemy
submarine moves towards the SONAR with a speed of 360 km h–1. What is the
frequency of sound reflected by the submarine ? Take the speed of sound in  water
to be 1450 m s–1.
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15.26 Earthquakes generate sound waves inside the earth. Unlike a gas, the earth can
experience both transverse (S) and longitudinal (P) sound waves. Typically the speed
of S  wave is about 4.0 km s–1, and that of P wave is 8.0 km s–1. A seismograph
records P and S waves from an earthquake. The first P wave arrives 4 min before the
first S wave. Assuming the waves travel in straight line, at what distance does the
earthquake occur ?

15.27 A bat is flitting about in a cave, navigating via ultrasonic beeps. Assume that the
sound emission frequency of the bat is 40 kHz. During one fast swoop directly
toward a flat wall surface, the bat is moving at 0.03 times the speed of sound in air.
What frequency does the bat hear reflected off the wall ?
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