Work of a constant force	$W=F \Delta x \cos \alpha$
(Force is parallel to displacement)	$W=F \Delta x$
(Work of force of friction)	$W=-F_{F R I C} \Delta x$
Kinetic energy	$E_{K}=\frac{1}{2} m v^{2}$
Gravitational potential energy (Near a planet surface)	$E_{P}=m g h$
Gravitational potential energy	$E_{P}=-\mathrm{G} \frac{M m}{r}$
Elastic potential energy	$E_{P}=\frac{1}{2} k \Delta x^{2}$
Mechanical (total) energy	$E_{M}=E_{K}+E_{P}$
Mechanical energy conservation	$\Delta E_{M}=0$ (all forces are conservative) $\Delta E_{M}=W_{\text {NCF }}$ (there are non-conservative forces)
Inelastic collision	$\vec{p}_{\text {BEFORE }}=\vec{p}_{A F T E R} \rightarrow m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}=\left(m_{1}+m_{2}\right) \vec{v}$
Elastic collision	$\vec{p}_{\text {BEFORE }}=\vec{p}_{A F T E R} \rightarrow m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}=m_{1} \vec{v}_{1}^{\prime}+m_{2} \vec{v}_{2}^{\prime}$ $E_{K \text { Before }}=E_{K \text { Affer }}$
Power	$P_{m}=\frac{W}{\Delta t} ; \quad P_{m}=F_{u} v_{m}$
Unit conversions	1 cal $=4.184 \mathrm{~J}$ $1 \mathrm{~J}=0.239$ cal $1 \mathrm{HP}=736 \mathrm{~W}$ (nevertheless there are many definitions) $1 \mathrm{~kW} \cdot \mathrm{~h}=3.6 \cdot 10^{6} \mathrm{~J}$

Symbol	Description	S.I. Unit
W	Work	J
E_{K}	Kinetic energy	J
E_{P}	Potential energy	J
E_{M}	Mechanical energy	J
F	Force	N
Δx	Displacement	m
r	Distance	m
h	Hight	m
M, m	Mass	kg
α	Force-displacement angle	\circ
v	Speed	m / s
v_{m}	Mean speed	m / s
g	Gravitational acceleration $\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right.$ in Earth surface $)$	$\mathrm{m} / \mathrm{s}^{2}$
G	Gravitational constant:	$\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}$
k	Elastic constant of the spring	$\mathrm{N} / 0^{-11}$
p	Momentum	$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$
P_{m}	Mean power	W

[^0]
[^0]: www.vaxasoftware.com

