Work of a constant force	$W = F \Delta x \cos \alpha$	
(Force is parallel to displacement)	$W = F \Delta x$	
(Work of force of friction)	$W = -F_{FRIC} \Delta x$	
Kinetic energy	$E_K = \frac{1}{2} m v^2$	
Gravitational potential energy (Near a planet surface)	$E_P = m g h$	
Gravitational potential energy	$E_P = -G \frac{M m}{r}$ $E_P = \frac{1}{2} k \Delta x^2$	
Elastic potential energy	$E_P = \frac{1}{2} k \Delta x^2$	
Mechanical (total) energy	$E_M = E_K + E_P$	
Mechanical energy conservation	$\Delta E_M = 0$ (all forces are conservative)	
	$\Delta E_M = W_{NCF}$ (there are non-conservative forces)	
Inelastic collision	$\vec{p}_{BEFORE} = \vec{p}_{AFTER} \rightarrow m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{v}$	
Elastic collision	$\vec{p}_{BEFORE} = \vec{p}_{AFTER} \rightarrow m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_1 + m_2 \vec{v}_2$ $E_{K Before} = E_{K After}$	
Power	$P_m = \frac{W}{\Delta t}; P_m = F_u v_m$	
Unit conversions	1 cal = 4.184 J 1 J = 0.239 cal 1 HP = 736 W (nevertheless there are many definitions) 1 kW·h = $3.6 \cdot 10^6$ J	

Symbol	Description	S.I. Unit
\overline{W}	Work	J
E_K	Kinetic energy	J
E_P	Potential energy	J
E_M	Mechanical energy	J
F	Force	N
Δx	Displacement	m
r	Distance	m
h	Hight	m
<i>M</i> , <i>m</i>	Mass	kg
α	Force-displacement angle	0
v	Speed	m/s
ν_m	Mean speed	m/s
g	Gravitational acceleration (9.8 m/s² in Earth surface)	m/s^2
G	Gravitational constant: $6.67 \cdot 10^{-11}$	$N \cdot m^2/kg^2$
k	Elastic constant of the spring	N/m
p	Momentum	kg·m/s
P_m	Mean power	W