Answer keys

1	C	2	B	3	B	4	A	5	C	6	D	7	D
8	D	9	B	10	D	11	B	12	B	13	B	14	C
15	A	16	B	17		18	B	19		20	D	21	D
22	B	23	B	24	C	25		26	A	27	D	28	C
29	A	30		31	D	32	B	33	B	34	B	35	B
36		37	D	38		39	D	40	A	41	B	42	
43	A	44	C	45	C	46	A	47	A	48	C	49	C
50	D	51	A	52		53		54	C	55		56	D
57	C	58	D	59		60	C	61	C	62		63	B
64	D	65		66		67	B	68	B	69	D	70	
71		72		73		74	A	75	A	76		77	
78		79		80		81		82	D	83	B	84	
85													

Explanation:-
3. $\operatorname{Lt}_{x \rightarrow 8} \frac{x^{1 / 3}-2}{x-8}$, Applying L-Hospital's Rule, we get, $\operatorname{Lt}_{x \rightarrow 8} \frac{\frac{1}{3} x^{\frac{-2}{3}}}{1}=\frac{1}{12}$
4. Required probability $=4_{\mathrm{C}_{3}}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{1}=\frac{1}{4}$
5. Given matrix is $\left[\begin{array}{lll}1 & 2 & 4 \\ 3 & 0 & 6 \\ 1 & 1 & \mathrm{P}\end{array}\right]$

Let λ_{1}, λ_{2} and λ_{3} be the Eigen values of the above matrix Let $\lambda_{1}=3$ (Given) Now, $\lambda_{1}+\lambda_{2}+\lambda_{3}=$ sum of diagonal elements $=1+P$

$$
\therefore \lambda_{2}+\lambda_{3}=P+1-3=P-2
$$

6. Given vector is $F=(x-y) \hat{i}+(y-x) \hat{j}+(x+y+z) \hat{k}$ Divergence $=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}+\frac{\partial F}{\partial z}=1+1+1=3$
7. Both young's Modulus and shear Modulus are required as linear strain will be calculated by young modulus. Change in diameter can be calculated from Poisson's ratio which depends on young's modulus and shear modulus.
8. Let W be the weight of counterweight.

Taking moment about Q
$75 \times 2=\mathrm{W} \times 0.5, \mathrm{~W}=300 \mathrm{Kg}$

11. Grubler's criterion is applied to mechanism with only single degree of freedom. Given conditions satisfy Grubler's criterion i.e. $3 \ell-2 \mathrm{j}-4=0$ where,
$\ell=$ link, $\mathrm{j}=$ No. of joints
13. Since the final temperature is same as that of initial temperature
14. Prandtl Number, $\operatorname{Pr}=\frac{\mu C_{p}}{\mathrm{~K}}=\frac{0.001 \times 1 \times 10^{3}}{1}$

Given $\delta=$ Hydroxynamic Boundary layer $=1$
$\delta_{\mathrm{t}}=$ Thermal boundary layer $=$?
$\frac{\delta}{\delta_{\mathrm{t}}}=\operatorname{Pr}^{1 / 3} \Rightarrow \delta_{\mathrm{t}}=1$
18. Job with higher Processing time will be taken first since it will minimize the total holding cost.
21. $I=\int_{0}^{2} \int_{0}^{1} x y d x d x$

$$
=\int_{0}^{2}\left[\frac{y^{2}}{2}\right]_{0}^{1} x d x=\int_{0}^{2} \frac{x}{2} d x=\left[\frac{x^{2}}{4}\right]_{0}^{2}=1
$$

22. Gradient will $\nabla f=\hat{i} \frac{\partial F}{\partial x}+\hat{j} \frac{\partial F}{\partial y}+\hat{k} \frac{\partial F}{\partial z}$
$\nabla f=2 x \hat{i}+4 y \hat{j}+\hat{k}$
Now ∇f at the point $(1,1,2)$
$\nabla f=2 \hat{i}+4 \hat{j}+\hat{k}$
Directonal derivative of f in the direction $3 \hat{i}+4 \hat{k}$ is
$=(2 i+4 j+k) \cdot \frac{(3 \hat{i}-4 \hat{j})}{\sqrt{3^{2}+(-4)^{2}}}=\frac{6-16}{5}=\frac{-10}{5}=-2$
$28 \quad f=y^{x}$
ℓ nf = x ℓ ny
differentiating with respect to x
$\frac{1}{f} \frac{\partial f}{\partial x}=\ell n y \Rightarrow \frac{\partial f}{\partial x}=f \ell n y$
$\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial y}$ (f $\ell n y$) $=\frac{\partial}{\partial y}$ ($y^{x} \ell n y$)
$=y^{x} \frac{1}{y}+\ell n y x y^{x-1} \Rightarrow y^{x-1}(x \ell n y+1)$
Now $x=2, y=1$
So $\frac{\partial^{2} f}{\partial x \partial y}=1$
29. $y^{\prime \prime}+2 y^{\prime}+y=0 \Rightarrow D^{2}+2 D+1=0$
i.e. $(D+1)^{2}=0, \quad D=-1,-1$

So solution will be $y=\left(C_{1}+C_{2}\right) e^{-x}$
Now given, $y=0$ at $x=0$ and $y=0$ at $x=1$
So we get $C_{1}=C_{2}=0$
$y=$ constant
$y(0.5)=0$
32. Let F_{S} be the shear stress
$T=\frac{\pi}{16} \times f_{s} \times d^{3} \Rightarrow f_{s}=51 \mathrm{MPa}, \quad f_{t}=$ Tensile stress $=50 \mathrm{MPa}$
Maximum principal stress, $\sigma_{\max }=\frac{\mathrm{f}_{\mathrm{t}}}{2}+\sqrt{\left(\frac{\mathrm{f}_{\mathrm{t}}}{2}\right)^{2}+\mathrm{f}_{\mathrm{s}}{ }^{2}} \square 82 \mathrm{MPa}$
34. At node P
$T_{P Q} \cos 45^{\circ}+T_{P R} \cos 60^{\circ}+F=0$.
$T_{P Q} \sin 45^{\circ}=T_{P R} \sin 60^{\circ}$
from these two equations
we can find out
$T_{P Q}$ and $T_{P R}$ in terms of F.
Now, At node Q.
$\mathrm{T}_{\mathrm{QR}}=\mathrm{T}_{\mathrm{PQ}} \cos 45^{\circ}$

On solving we get, $T_{Q R}=0.63 \mathrm{~F}$
35. Given spring system forms a parallel combination
$K_{e q}=K_{1}+K_{2}=4000+1600=5600 \mathrm{~N} / \mathrm{m}$
Natural frequency $f=\frac{1}{2 \pi} \sqrt{\frac{K}{m}}=10 \mathrm{~Hz}$
39. $\quad \mathrm{K}_{1}=\frac{{\mathrm{G} \cdot \mathrm{d}_{1}}^{4}}{8 \mathrm{D}_{1}^{3} \cdot \mathrm{n}_{1}} \& \mathrm{~K}_{2}=\frac{{\mathrm{G} \cdot \mathrm{d}_{2}}^{4}}{8 \mathrm{D}_{2}^{3} \cdot \mathrm{n}_{2}}$
$\mathrm{d}_{1}=\mathrm{d}_{2}=2 \mathrm{~mm}[$ dia of spring wire $]$
$\mathrm{G}=80 \mathrm{GPa}$
$\mathrm{n}_{1}=\mathrm{n}_{2}=10$
$D_{1}=20 \mathrm{~mm}, D_{2}=10 \mathrm{~mm}$
$\therefore \frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\left(\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}\right)^{3}=\frac{1}{8} \Rightarrow \mathrm{~K}_{2}=8 \mathrm{~K}_{1}$
56. Direction of heat flow is always normal to surface of constant temperature.

So, for surface $P, \frac{d T}{d x}=0$
From energy conservation, heat rate at $P=$ Heat rate at Q
$0.1 \times 1 \times\left.\frac{d T}{d y}\right|_{P}=0.1 \times 2 \times\left.\frac{d T}{d x}\right|_{Q}$
$\therefore \quad \frac{\mathrm{dT}}{\mathrm{dy}}=20 \mathrm{~K} / \mathrm{m}$
63. Riser takes care of solidification/contraction in liquid state and phase transition. So volume of metal compensated from the riser $=3 \%+4 \%=7 \%$
67. Heat supplied by power source $=$ Heat required melting efficiency \times transfer efficiency \times welding power
$=$ cross sectional area \times welding speed $\times 10$
$.5 \times .7 \times 2 \times 10^{3}=5 \times 10 \times V \Rightarrow \mathrm{~V}=14 \mathrm{~mm} / \mathrm{s}$
41. Torque carrying capacity, $T=\frac{2}{3} \mu \mathrm{w} \frac{\mathrm{R}_{0}{ }^{3}-\mathrm{R}_{\mathrm{i}}{ }^{3}}{\mathrm{R}_{0}{ }^{2}-\mathrm{R}_{\mathrm{i}}{ }^{2}}$
$\mathrm{w}=\mathrm{P} \times \pi\left(\mathrm{R}_{0}{ }^{2}-\mathrm{R}_{\mathrm{i}}{ }^{2}\right)$
Given $\mathrm{R}_{0}=50 \mathrm{~mm}, \mathrm{R}_{\mathrm{i}}=20 \mathrm{~mm}, \mathrm{P}=2 \mathrm{MPa}$ and $\mu=0.4$
So, $T=196 \mathrm{NM}$
45. Given $m_{c}=2 m_{h}$ [Mass flow rate]

$$
c_{h}=2 c_{c}[\text { specific heat }]
$$

So, we get
$[\text { Heat capacity }]_{\text {Hot fluid }}=[\text { Heat capacity }]_{\text {cold fluid }}$
$\therefore \quad$ LMTD $=\Delta T_{1}=T_{h, i}-T_{c, o}$

$$
20=100-T_{c, o} \Rightarrow T_{c, o}=80^{\circ} \mathrm{C}
$$

82. $\tau_{\mathrm{s}}=250 \mathrm{MPa} . \mathrm{V}=180 \mathrm{~m} / \mathrm{min}, \mathrm{F}=0.20 \mathrm{~mm} / \mathrm{rev}$
$r=0.5, \alpha=$ rake angle $=70$
$\phi=$ shear angle
$\tan \phi=\frac{r \cos \alpha}{1-r \sin \alpha} \Rightarrow \phi=28^{\circ}$
Now shear force
$F_{s}=\frac{w t_{1} \tau_{s}}{\sin \phi} \quad w=$ depth of cut $=3 \mathrm{~mm}, \mathrm{t}_{1}=$ feed $=0.02 \mathrm{~mm}$
$\therefore \mathrm{F}_{\mathrm{s}}=320 \mathrm{KN}$
83. From Merchant's theory
$2 \phi+\lambda-\alpha=90^{\circ} \therefore \lambda=$ Friction Angle $=90^{\circ}+7{ }^{\circ}-2 \times 28^{\circ}=41^{\circ}$
$\mu=\tan \lambda=.87$
Form Merchant circle
$F_{C}=R \cos (\lambda-\alpha) \ldots \ldots(1)$ and $R=\frac{F_{S}}{\cos (\phi+\lambda-\alpha)} \ldots \ldots$.
$\mathrm{R}=$ Resultant force $\therefore \mathrm{F}_{\mathrm{C}}=\frac{\mathrm{F}_{\mathrm{S}} \cos (\lambda-\alpha)}{\cos (\phi+\lambda-\alpha)}, \mathrm{F}_{\mathrm{C}}=565 \mathrm{~N}$
