## Class10 CHAPTER - 2

## ACIDS, BASES AND SALTS ( Notes)

Acids

- Sour in taste
- Change the blue litmus to red
- eg. Hydrochloric Acid HCl
- SulphuricAcidH ${ }_{2} \mathrm{SO}_{4}$
- NitricAcidHNO 3
- Acetic Acid $\mathrm{CH}_{3} \mathrm{COOH}$

Bases

- Bitter in taste
- Change red litmus to blue eg. Sodium hydroxide NaOH Potassium hydroxide KOH Calcium hydroxide $\mathrm{Ca}(\mathrm{OH})_{2}$ - Ammoniumhydroxide $\mathrm{NH}_{4} \mathrm{OH}$
- Some Naturally occuring acids

| Vinegar | - | Acetic Acid |
| :--- | :--- | :--- |
| Orange | - | Citric Acid |
| Lemon | - | Citric Acid |
| Tamarind | - | Tartaric Acid |
| Tomato | - | Oxalic Acid |
| Sour milk (Curd) | - | Lactic Acid |
| Ant and Nettle sting | - | Methanoic Acid (Formic acid) |

- Acid - Base Indicators - Indicate the presence of an acid or base in a solution.
- Litmus solution - It is a natural indicator. It is a purple day extracted from Lichens. Other examples are Red Cabbage and coloured petals of Petunia and turmeric.
$\square$ Olfactory indicators - Show odour changes in acidic or basic media. eg. onion and clove.
$\square$ Acid - Base Indicators

| S. No. | Name of the <br> Indicator | Colour Change <br> With Acid | Colour Change <br> with Base |
| :--- | :--- | :---: | :---: |
| A. | Blue litmus solution | To red | No change |
| B. | Red litmus solution | No change | To blue |
| C. | Turmeric | No change | To red |
| D. | Methyl orange | To red | To yellow |
| E. | Phenolphthalein <br> (colourless) | No change | To pink |

$\square$ Dilute Acid : Contains only a small amounts of acid and a large amount of water.

- Concentrated Acid : A concentrated acid contains a large amount of acid and a small amount of water.
$\square$ Chemical Properties of Acids and Bases
Acid + Metal ${ }^{\rightarrow}$ Salt + Hydrogen
(Refer activity 2.3 on page No. 19 of NCERT Book)
$2 \mathrm{HCl}+\mathrm{Zn} \xrightarrow{\rightarrow} \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
$2 \mathrm{HNO}_{3}+\mathrm{Zn} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2}$
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Zn} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$
$2 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{Zn} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Zn}+\mathrm{H}_{2}$
- Pop test : When a burning candle is brought near a test tube containing hydrogen gas it burns with a 'Pop' sound. This test is conducted for examining the presence of hydrogen gas.
$\square$ Base + Metal $\rightarrow$ Salt + Hydrogen

$$
\begin{gathered}
\mathrm{NaOH}+\mathrm{Zn} \rightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2} \\
\text { Sodium Zincate } \\
\text { Note - Such reactions are not possible with all the metals. } \\
\text { Action of Acids with metal Carbonates and metal bicarbonates }
\end{gathered}
$$

```
Metal Carbonate + Acid \(\rightarrow\) Salt + Carbon dioxide + Water
\(\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \mathrm{ZD} \rightarrow 2 \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{2(\mathrm{~g})}\)
Metal bicarbonate + Acid \(\rightarrow\) Salt + Carbon dioxide + Water
\(\mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}\)
```

$\square$ Lime water Test (Test for $\mathbf{C O}_{2}$ ) : On passing the $\mathrm{CO}_{2}$ gas evolved through lime water,
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}(l)$
Lime water White precipitate
If we passing excess $\mathrm{CO}_{2}$ for long time milkiness disappears because Calcium hydrogen carbonate will form is soluble in water.

On passing excess $\mathrm{CO}_{2}$ the following reaction takes place

$$
\mathrm{CaCO}_{3(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{CO}_{2(\mathrm{~g})} \rightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \mathrm{aq}
$$

Soluble in water

## $\square$ Neutralisation Reactions

Base + Acid $\rightarrow$ Salt + Water
$\mathrm{NaOH}($ aq $)+\mathrm{HCl}_{(\text {aq })} \rightarrow \mathrm{NaCl}_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}(l)$
Neutralisation reaction takes place when the effect of a base is nullified by an acid and vice versa to give salt and water.

## Reactions of metal oxides with acids

Metal Oxide + Acid $\rightarrow$ Salt + Water
CuO

Copper oxide $\quad$\begin{tabular}{l}
$\mathrm{HCl} \rightarrow$ <br>
Hydrochloric <br>
acid

$\quad$

$\mathrm{CuCl}_{2}$ <br>
\end{tabular}

Note : Appearance of blue green colour of the solution because of formation of $\mathrm{CuCl}_{2}$.

Metallic oxides are said to be basic oxides because they give salt and water on reacting with acids.

## $\square$ Reaction of Non Metallic Oxide with Base

Non metallic oxide + Base $\rightarrow$ Salt + Water
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$
Note : Non Metallic oxides are said to be acidic in nature because on reacting with a base they produce Salt and Water.
$\square$ All acidic solutions conduct electricity
Refer activity 2.3 on page 22 of NCERT Book

- Glowing of bulb indicates that there is a flow of electric current through the solution.


## $\square$ Acids or bases in a Water Solution

Acids produce $\mathrm{H}^{+}$ions in the presence of water
$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
$\mathrm{H}_{3} \mathrm{O}^{+}-$Hydronium ion.

- $\quad \mathrm{H}^{+}$ion cannot exist alone. It exists as $\mathrm{H}^{+}(\mathrm{aq})$ or $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$hydronium ion.

$$
\mathrm{H}_{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}
$$

- Bases provide $\left(\mathrm{OH}^{-}\right)$ions in the presence of water
$\mathrm{NaOH}(\mathrm{s}) \quad{ }^{\mathrm{H}_{2} \mathrm{O}} \rightarrow \mathrm{Na}+(\mathrm{aq})+\mathrm{OH}_{-(\mathrm{aq})}$

$$
\begin{aligned}
& \mathrm{KOH}_{(\mathrm{s})}{ }^{\mathrm{H}_{2} \mathrm{O}} \rightarrow \mathrm{~K}_{+(\mathrm{aq})}+\mathrm{OH}_{-(\mathrm{aq})} \\
& \mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})}{ }^{\mathrm{H}_{2} \mathrm{O}} \rightarrow \quad \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

## - Alkalis

All bases do not dissolve in water. An alkali is a base that dissolves in water.
Common alkalis are
NaOH Sodium hydroxide
KOH Potassium hydroxide
$\mathrm{Ca}(\mathrm{OH})_{2}$ Calcium hydroxide
$\mathrm{NH}_{4} \mathrm{OH}$ :Ammonium hydroxide
Note : All alkalis are bases but all bases are not alkalis.

- Precaution must be taken while mixing acid or base with water. The acid must always be added to water with constant stirring. Otherwise heat generated may cause the mixture to splash out and cause burn. The container may also break due to excessive local heating. It is highly exothermic reaction.

When an acid or a base is mixed with water they become dilute. This results in the decrease in the concentration of $\mathrm{H}_{3} \mathrm{O}+$ or $\mathrm{OH}^{-}$per unit volume in acids and bases respectively.

## $\square$ Strength of an Acid or Base

Strength of acids and bases depends on the no. of $\mathrm{H}^{+}$ions and $\mathrm{OH}^{-}$ions produced respectively.

With the help of a universal indicator we can find the strength of an acid or base. This indicator is called PH scale. $\mathrm{pH}=$ Potenz in German means power.

This scale measures from 0 (very acidic) to 14 (very alkaline) 7 Neutral (water in Neutral).
pH paper: Is a paper which is used for measuring PH .

Variation of PH
S. $\quad \mathrm{pH} \quad$ Colour of the $\quad$ Nature of $\quad \mathbf{H}^{+}$ion $\quad \mathrm{OH}^{-}$ion

| No. | Value | $\mathbf{p H}$ Paper | Solution | Conc. | Conc. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1. | 0 | Dark red | Highly acidic Very high | very low |  |

2. 4 Orange or yellow Acidic high low
3. 7: Green Neutral Equal Equal
4. 10 Bluish green or blue Alkaline low high
5. 14 Dark blue or violet Highly basic very low very high

- Strong Acids give rise to more $\mathrm{H}^{+}$ions.
eg. $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{HNO}_{3}$.
- Weak Acids give rise to less $\mathrm{H}^{+}$ions eg.
$\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{H}_{2} \mathrm{CO}_{3}$ (Carbonic acid)
- $\quad$ Strong Bases - Strong bases give rise to more $\mathrm{OH}^{-}$ions. eg. $\mathrm{NaOH}, \mathrm{KOH}$, $\mathrm{Ca}(\mathrm{OH})_{2}$
- Weak Bases : give rise to less $\mathrm{OH}^{-}$ions.
eg. $\mathrm{NH}_{4} \mathrm{OH}$
$\square$ More about Salts

| Salts and their derivation |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| S. No. | Name of Salt | Formula | Derived from | Derived <br> from |
| 1. | Potassium Sulphate | $\mathrm{K}_{2} \mathrm{SO}_{4}$ | KOH | $\mathrm{H}_{2} \mathrm{SO}_{4}$ |
| 2. | Sodium Sulphate | $\mathrm{Na}_{2} \mathrm{SO}_{4}$ | NaOH | $\mathrm{H}_{2} \mathrm{SO}_{4}$ |
| 3. | Sodium Chloride | $\mathrm{NaCl}^{2}$ | NaOH | HCl |
| 4. | Ammonium Chloride $\mathrm{NH}_{4} \mathrm{Cl}$ | $\mathrm{NH}_{4} \mathrm{OH}$ | HCl |  |

Note : NaCl and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ belong to the family of sodium salts as they have the same radicals. Similarly NaCl and KCl belong to the family of chloride salts.

## Importance of $\mathbf{p H}$ in our daily life

- Importance of pH in our digestive system - pH level of our body regulates our digestive system. In case of indigestion our stomach produces acid in a very large quantity because of which we feel pain and irritation in our stomach. To get relief from this pain antacids are used. These antacids neutralises the excess acid and we get relief.
$\square \mathrm{pH}$ of Acid Rain : When pH of rain water is less than 5.6 it is called Acid Rain. When this acidic rain flows into rivers these also get acidic, which causes a threat to the survival of aquatic life.
$\square \mathrm{pH}$ of Soil : Plants require a specific range of pH for their healthy growth. If pH of soil of any particular place is less or more than normal than the farmers add suitable fertilizers to it.
$\square$ Our body functions between the range of 7.0 to 7.8 living organisms can survive only in the narrow range of pH change.
- Tooth decay and pH : Bacteria present in the mouth produce acids by degredationofsugarandfoodparticlesremaininginthemouth.Usingtoothpas te which is generally basic can neutralise the excess acid and prevent tooth decay.
$\square$ Bee sting or Nettle sting contains methanoic acid which causes pain and irritation. When we use a weak base like baking soda on it we get relief.
Neutral Salts : Strong Acid + Strong base pH
value is 7
eg. $\mathrm{NaCl}, \mathrm{CaSO}_{4}$
Acidic Salts : Strong Acid + weak base pH
value is less than 7 eq. $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NH}_{4} \mathrm{NO}_{3}$

Basic Salts : Strong base + weak acid pH value is more than 7

Salt NaCl

eg.
$\mathrm{CaCO}_{3}, \mathrm{CH}_{3} \mathrm{COONa}$

- Chemicals from Common Salt
- Sodium chloride is called as common salt used in our food. It is derived from seawater.
- Rock Salt is the brown coloured large crystals. This s mined like coal.
- Common Salt is an important raw material for many materials of daily use such as.

Sodium Hydroxide
Washing Soda
Bleaching Power.

## $\square$ Sodium Hydroxide

Preparation : Prepared by the method called chlor-alkali
Called chlor-alkali because we get chlorine and a base in this.

$$
2 \mathrm{NaCl}_{(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}(l) \quad \mathrm{Q} \rightarrow 2 \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

- Bleaching Power

uses in textile, factories and laundry, used as disinfectant (Learn from Text book)
- Baking Soda
- Common name - Sodium Hydrogen Carbonate

Preparation
$\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaHCO}_{3}$
Sodium Chloride Water Carbon dioxide Ammonia Ammonium Chloride Sodium hydrogen carbonate

On heating $\mathrm{NaHCO}_{3}$ produces :

$$
\mathrm{NaHCO}_{3} \rightarrow{ }^{\text {Heat }} \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

$\mathrm{CO}_{2}$ produced causes dough to rise and make cakes, pastries spongy.
Uses: In household, ingredients of antacid
In making baking power

On heating baking powder produces
$\mathrm{NaHCO}_{3}+\mathrm{H}^{+} \xrightarrow{\square \mathrm{D}} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+$ Sodium Salt of acid

- Washing Soda

Preparation : Recrystallization of sodium carbonate

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+10 \mathrm{H}_{2} \mathrm{O} \rightarrow{ }^{\text {Heat }} \quad \mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{O}
$$

Uses

- Used in glass, soap and paper industry - Cleaning agent for domestic purposes.
- Removal of hardness of water. - Manufacture of borax.
- Water of crystallisation : Fixed no. of water molecules present in one formula unit of a salt.
- On heating copper sulphate crystals water droplets appear, formula of hydrated copper sulphate $-\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$.
- gypsum also contains water of crystallisation.
- Formula of gypsum - $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
- On heating gypsum at 373 k it becomes $\mathrm{CaSO}_{4} .1 / 2 \mathrm{H}_{2} \mathrm{O}$ is Plaster of Paris.
- Plaster of Paris is used as plaster for fractured bones.
- When plaster of Paris is mixed with water it changes to gypsum.

$$
\mathrm{CaSO}_{4.1 / 2} \mathrm{H}_{2} \mathrm{O}+1 \text { 1⁄2 } \mathrm{H}_{2} \mathrm{O} \mathrm{Ol} \rightarrow \mathrm{CaSO}_{4} .2 \mathrm{H}_{2} \mathrm{O}
$$

Uses of plaster of Paris : Making toys, decorative material and smooth surfaces.

