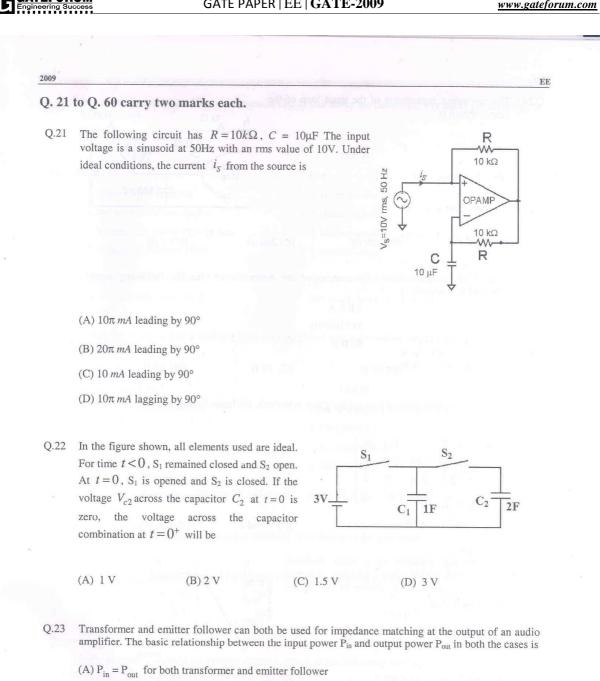

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. Discuss this question paper at <u>www.gatementor.com</u>.

GATEFORUM Engineering Success

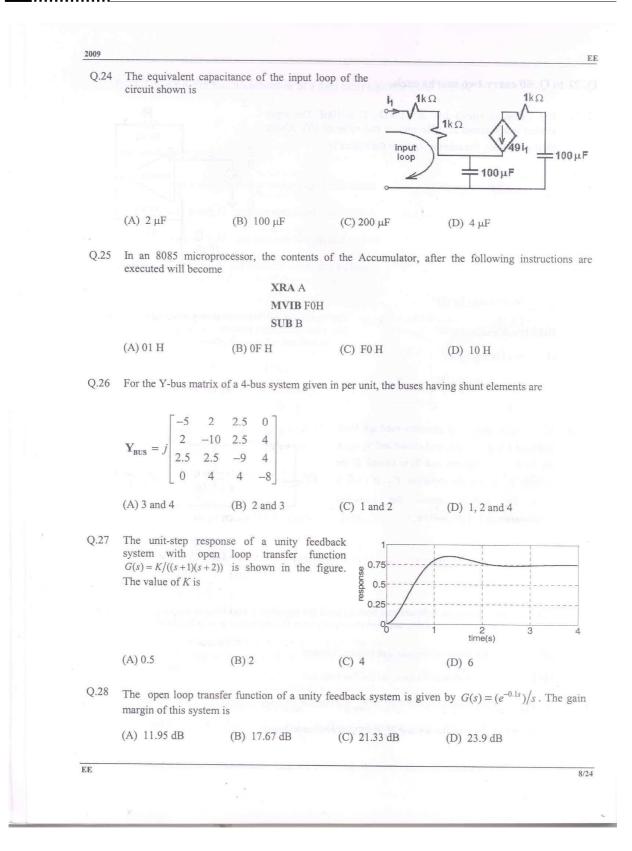
(i) Cache Memory (ii) CDROM (iii) Dynamic RAM (iv) Processor Registers (v) Magnetic Tape (A) (v), (ii), (iii), (iv), (i) (B) (v), (i), (ii), (iii), (iv) (C) (ii), (j), (iii), (iv), (v) (D) (v), (ii), (i), (iii), (iv) Q.6 A field excitation of 20 A in a certain alternator results in an armature current of 400 A in short circuit and a terminal voltage of 2000 V on open circuit. The magnitude of the internal voltage drop within the machine at a load current of 200 A is (A) 1 V (B) 10 V (C) 100 V (D) 1000 V Q.7 The current through the 2 k Ω resistance in the circuit shown is (A) 0 mA (B) 1 mA (C) 2 mA (D) 6 mA Q.8 Out of the following plant categories (i) Nuclear (ii) Run-of-river (iii) Pump Storage (iv) Diesel the base load power plants are (A) (i) and (ii) (B) (ii) and (iii) (C) (i), (ii) and (iv) (D) (i), (iii) and (iv) Q.9 For a fixed value of complex power flow in a transmission line having a sending end voltage V, the real power loss will be proportional to (A) V (B) V^2 (C) $1/V^2$ (D) $1/V$	09 Q.4	The two inputs of a CRO are fed with two stationary periodic signals. In the X-Y mode, the screen shows a figure which changes from ellipse to circle and back to ellipse with its major axis changing orientation slowly and repeatedly. The following inference can be made from this.						
(C) The signals are sinusoidal with their frequencies very close but not equal (D) There is a constant but small phase difference between the signals Q.5 The increasing order of speed of data access for the following devices is (i) Cache Memory (ii) CDROM (iii) Dynamic RAM (iv) Processor Registers (v) Magnetic Tape (A) (v), (ii), (iii), (iv), (i) (B) (v), (ii), (iii), (ii), (iv) (C) (ii), (i), (iii), (iv), (v) (D) (v), (ii), (iii), (ii), (iv) Q.6 A field excitation of 20 A in a certain alternator results in an armature current of 400 A in short circuit and a terminal voltage of 2000 V on open circuit. The magnitude of the internal voltage drop within the machine at a load current of 200 A is (A) 1 V (B) 10 V (C) 100 V (D) 1000 V Q.7 The current through the 2 k Ω resistance in the circuit shown is (A) 0 mA (B) 1 mA (C) 2 mA (D) 6 mA Q.8 Out of the following plant categories (i) Nuclear (ii) Run-of-river (iii) Pump Storage (iv) Diesel the base load power plants are (A) (i) and (ii) (B) (ii) and (iii) (C) (i), (ii) and (iv) (D) (i), (iii) and (iv) Q.9 For a fixed value of complex power flow in a transmission line having a sending end voltage V, the real power loss will be proportional to (A) V (B) V^2 (C) $1/V^2$ (D) $1/V$		(A) The signals are	not sinusoidal					
(D) There is a constant but small phase difference between the signals Q.5 The increasing order of speed of data access for the following devices is (i) Cache Memory (ii) CDROM (iii) Dynamic RAM (iv) Processor Registers (v) Magnetic Tape (A) (v), (ii), (iii), (iv), (v) (B) (v), (ii), (iii), (i), (iv) (C) (i), (i), (iii), (iv), (v) (D) (v), (ii), (i), (iii), (iv) Q.6 A field excitation of 20 A in a certain alternator results in an armature current of 400 A in short circuit and a terminal voltage of 2000 V on open circuit. The magnitude of the internal voltage drop within the machine at a load current of 200 A is (A) 1 V (B) 10 V (C) 100 V (D) 1000 V Q.7 The current through the 2 kΩ resistance in the circuit shown is (A) 0 mA (B) 1 mA (C) 2 mA (D) 6 mA Q.8 Out of the following plant categories (i) Nuclear (ii) Run-of-river (iii) Pump Storage (iv) Diesel the base load power plants are (A) (i) and (ii) (B) (ii) and (iii) (C) (i), (ii) and (iv) (D) (i), (iii) and (iv) Q.9 For a fixed value of complex power flow in a transmission line having a sending end voltage V, the real power loss will be proportional to (A) V (B) V^2 (C) $1/V^2$ (D) $1/V$		(B) The amplitudes	of the signals are very cl	lose but not equal				
Q.5 The increasing order of speed of data access for the following devices is (i) Cache Memory (ii) CDROM (iii) Dynamic RAM (iv) Processor Registers (v) Magnetic Tape (A) (v), (ii), (iii), (iv), (i) (B) (v), (ii), (iii), (iv), (v) (C) (ii), (i), (iii), (iv), (v) (D) (v), (ii), (iii), (iv), (v) Q.6 A field excitation of 20 A in a certain alternator results in an armature current of 400 A in short circuit and a terminal voltage of 2000 V on open circuit. The magnitude of the internal voltage drop within the machine at a load current of 200 A is (A) 1 V (B) 10 V (C) 100 V (D) 1000 V Q.7 The current through the 2 kΩ resistance in the circuit shown is $\frac{140}{10000000000000000000000000000000000$		(C) The signals are	sinusoidal with their free	quencies very close but no	t equal			
(i) Cache Memory (ii) CDROM (iii) Dynamic RAM (iv) Processor Registers (v) Magnetic Tape (A) (v), (ii), (iii), (iv), (v) (B) (C) (B) (v), (ii), (iii), (i), (iv) (C) (ii), (i), (iii), (iv), (v) (D) (D) (v), (ii), (i), (iv) Q.6 A field excitation of 20 A in a certain alternator results in an armature current of 400 A in short circuit and a terminal voltage of 2000 V on open circuit. The magnitude of the internal voltage drop within the machine at a load current of 200 A is (A) 1 V (B) 10 V (C) 100 V (D) 1000 V Q.7 The current through the 2 k Ω resistance in the circuit shown is (A) 0 mA (B) 1 mA (C) 2 mA (D) 6 mA Q.8 Out of the following plant categories (i) Nuclear (ii) Run-of-river (iii) Pump Storage (iv) Diesel the base load power plants are (A) (i) and (ii) (B) (ii) and (iii) (C) (i), (ii) and (iv) (D) (i), (iii) and (iv) Q.9 For a fixed value of complex power flow in a transmission line having a sending end voltage V, the real power loss will be proportional to (A) V (B) V^2 (C) $1/V^2$ (D) $1/V$		(D) There is a const	ant but small phase diffe	erence between the signals				
(i) Cache Memory (ii) CDROM (iii) Dynamic RAM (iv) Processor Registers (v) Magnetic Tape (A) (v), (ii), (iii), (iv), (i) (B) (i) (B) (v), (ii), (iii), (iv) (C) (ii), (i), (iii), (iv), (v) (D) (v) (D) (v), (ii), (i), (iv) Q.5 A field excitation of 20 A in a certain alternator results in an armature current of 400 A in short circuit and a terminal voltage of 2000 V on open circuit. The magnitude of the internal voltage drop within the machine at a load current of 200 A is (A) 1 V (B) 10 V (C) 100 V (D) 1000 V Q.7 The current through the 2 k Ω resistance in the circuit shown is (A) 0 mA (B) 1 mA (C) 2 mA (D) 6 mA Q.8 Out of the following plant categories (i) Nuclear (ii) Run-of-river (iii) Pump Storage (iv) Diesel the base load power plants are (A) (i) and (ii) (B) (ii) and (iii) (C) (i), (ii) and (iv) (D) (i), (iii) and (iv) Q.9 For a fixed value of complex power flow in a transmission line having a sending end voltage V, the real power loss will be proportional to (A) V (B) V^2 (C) $1/V^2$ (D) $1/V$	0.5	The increasing orde	er of speed of data access	for the following devices	is			
(C) (ii), (i), (iii), (iv), (v) (D) (v), (ii), (i), (iii), (iv) (Q.6 A field excitation of 20 A in a certain alternator results in an armature current of 400 A in short circuit and a terminal voltage of 2000 V on open circuit. The magnitude of the internal voltage drop within the machine at a load current of 200 A is (A) 1 V (B) 10 V (C) 100 V (D) 1000 V Q.7 The current through the 2 k Ω resistance in the circuit shown is (A) 0 mA (B) 1 mA (C) 2 mA (D) 6 mA Q.8 Out of the following plant categories (i) Nuclear (ii) Run-of-river (iii) Pump Storage (iv) Diesel the base load power plants are (A) (i) and (ii) (B) (ii) and (iii) (C) (i), (ii) and (iv) (D) (i), (iii) and (iv) Q.9 For a fixed value of complex power flow in a transmission line having a sending end voltage V, the real power loss will be proportional to (A) V (B) V^2 (C) $1/V^2$ (D) $1/V$								
Q.6A field excitation of 20 A in a certain alternator results in an armature current of 400 A in short circuit and a terminal voltage of 2000 V on open circuit. The magnitude of the internal voltage drop within the machine at a load current of 200 A is(A) $1 V$ (B) $10 V$ (C) $100 V$ (D) $1000 V$ Q.7The current through the $2 k\Omega$ resistance in the circuit shown is $1 k\Omega \leftarrow 0 + $		(A) (v), (ii), (iii), (i	v), (i)	(B) (v), (ii), (iii), (i	i), (iv)			
and a terminal voltage of 2000 V on open circuit. The magnitude of the internal voltage drop within the machine at a load current of 200 A is (A) 1 V (B) 10 V (C) 100 V (D) 1000 V Q.7 The current through the 2 kΩ resistance in the circuit shown is (A) 0 mA (B) 1 mA (C) 2 mA (D) 6 mA Q.8 Out of the following plant categories (i) Nuclear (ii) Run-of-river (iii) Pump Storage (iv) Diesel the base load power plants are (A) (i) and (ii) (B) (ii) and (iii) (C) (i), (ii) and (iv) (D) (i), (iii) and (iv) Q.9 For a fixed value of complex power flow in a transmission line having a sending end voltage V, the real power loss will be proportional to (A) V (B) V^2 (C) $1/V^2$ (D) $1/V$		(C) (ii), (i), (iii), (iv	r), (v)	(D) (v), (ii), (i), (ii	i) , (iv)			
Q.7 The current through the 2 kΩ resistance in the circuit shown is $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Q.6	and a terminal volta	age of 2000 V on open ci					
(A) 0 mA (B) 1 mA (C) 2 mA (D) 6 mA (A) 0 mA (B) 1 mA (C) 2 mA (D) 6 mA Q.8 Out of the following plant categories (i) Nuclear (ii) Run-of-river (iii) Pump Storage (iv) Diesel the base load power plants are (A) (i) and (ii) (B) (ii) and (iii) (C) (i), (ii) and (iv) (D) (i), (iii) and (iv) Q.9 For a fixed value of complex power flow in a transmission line having a sending end voltage V, the real power loss will be proportional to (A) V (B) V^2 (C) $1/V^2$ (D) $1/V$		(A) 1 V	(B) 10 V	(C) 100 V	(D) 1000 V			
(A) 0 mA (B) 1 mA (C) 2 mA (D) 6 mA Q.8 Out of the following plant categories (i) Nuclear (ii) Run-of-river (iii) Pump Storage (iv) Diesel the base load power plants are (A) (i) and (ii) (B) (ii) and (iii) (C) (i), (ii) and (iv) (D) (i), (iii) and (iv) Q.9 For a fixed value of complex power flow in a transmission line having a sending end voltage V, the real power loss will be proportional to (A) V (B) V^2 (C) $1/V^2$ (D) $1/V$	Q.7	The current through	the 2 k Ω resistance in t					
Q.8Out of the following plant categories (i) Nuclear (ii) Run-of-river (iii) Pump Storage (iv) Diesel the base load power plants are (A) (i) and (ii)(B) (ii) and (iii)(C) (i), (ii) and (iv)(D) (i), (iii) and (iv)Q.9For a fixed value of complex power flow in a transmission line having a sending end voltage V, the real power loss will be proportional to (A) V (B) V^2 (C) $1/V^2$ (D) $1/V$				united frogen Constanting But	6V			
(i) Nuclear (ii) Run-of-river (iii) Pump Storage (iv) Dieselthe base load power plants are(A) (i) and (ii)(B) (ii) and (iii)(C) (i), (ii) and (iv)(D) (i), (iii) and (iv)Q.9For a fixed value of complex power flow in a transmission line having a sending end voltage V, the real power loss will be proportional to(A) V(B) V^2 (C) $1/V^2$ (D) $1/V$		(A) 0 mA	(B) 1 mA	(C) 2 mA	(D) 6 mA			
(i) Nuclear (ii) Run-of-river (iii) Pump Storage (iv) Dieselthe base load power plants are(A) (i) and (ii)(B) (ii) and (iii)(C) (i), (ii) and (iv)(D) (i), (iii) and (iv)Q.9For a fixed value of complex power flow in a transmission line having a sending end voltage V, the real power loss will be proportional to(A) V(B) V^2 (C) $1/V^2$ (D) $1/V$	0.8	Out of the followin	g plant categories					
the base load power plants are(A) (i) and (ii)(B) (ii) and (iii)(C) (i), (ii) and (iv)(D) (i), (iii) and (iv)Q.9For a fixed value of complex power flow in a transmission line having a sending end voltage V, the real power loss will be proportional to(A) V(B) V^2 (C) $1/V^2$ (D) $1/V$	2.0			Storage (iv) Diesel				
(A) (i) and (ii)(B) (ii) and (iii)(C) (i), (ii) and (iv)(D) (i), (iii) and (iv)Q.9For a fixed value of complex power flow in a transmission line having a sending end voltage V, the real power loss will be proportional to(A) V (B) V^2 (C) $1/V^2$ (D) $1/V$								
real power loss will be proportional to (A) V (B) V^2 (C) $1/V^2$ (D) $1/V$				(C) (i), (ii) and (iv)	(D) (i), (iii) and (iv)			
the second particular first and	Q.9							
		(A) V	(B) V^2	(C) $1/V^2$	(D) 1/V			
EE 3/2	EE				3/24			


Q.10	How many 200W/220V incandescent lamps connected in series would consume the same total power as a single 100W/220V incandescent lamp?						
	The same long provide rates		and a grant man assess man a second of the second				
	(A) not possible	(B) 4	(C) 3 (D) 2				
0.11							
Q.11	A Linear Time Invar x(t) is applied. When output will be	$x(t)$ is applied. When the input $x(t-\tau)$ is applied to a system with impulse response $h(t)$ produces output $y(t)$ when input					
	(A) $y(t)$	(B) $y(2(t-\tau))$	(C) $y(t-\tau)$ (D) $y(t-2\tau)$				
Q.12	The nature of feedback	in the opamp circu	it shown is				
			vin				
	(A) Current – Current		(B) Voltage – Voltage feedback				
	(C) Current – Voltage	feedback	(D) Voltage – Current feedback				
Q.13	The complete set of 1						
Q.15	The complete set of oni	y those Logic Gates	designated as Universal Gates is				
	(A) NOT, OR and AND	Gates	(B) XNOR, NOR and NAND Gates				
	(C) NOR and NAND G	ates	(D) XOR, NOR and NAND Gates				
			en a foto tada a foto da la consecutor				
14	The simely larger						
2.14		n^2 . If the two winding	rmer in the circuit has both the and both the horizontal arms of ngs shown were wound instead actance will				
	(A) double						
	(C) be halved		(B) remain same				
			(D) become one quarter				
			C. M. Stranger				
			4/24				

GATEFORUM
Engineering Success

GATEFORUM Engineering Success

2009	
Q.18	The first two rows of Routh's tabulation of a third order equation are as follows. $\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(A) two roots at $s = \pm j$ and one root in right half s-plane
	(B) two roots at $s = \pm j2$ and one root in left half s-plane
	(C) two roots at $s = \pm j2$ and one root in right half s-plane
	(D) two roots at $s = \pm j$ and one root in left half s-plane
Q.19	The asymptotic approximation of the log-magnitude vs frequency plot of a system containing only real poles and zeros is shown. Its transfer function is $80 \ dB - 40 \ dB/dec$
	(A) $\frac{10(s+5)}{s(s+2)(s+25)}$
	1000(s+5)
	(B) $\frac{1000(s+5)}{s^2(s+2)(s+25)}$
	(C) $\frac{100(s+5)}{s(s+2)(s+25)}$
	s(s+2)(s+25)
	(D) $\frac{80(s+5)}{s^2(s+2)(s+25)}$
	$s^{2}(s+2)(s+25)$
Q.20	The trace and determinant of a 2×2 matrix are known to be -2 and -35 respectively. I eigenvalues are
	(A) $-30 \text{ and } -5$ (B) $27 \text{ and } 1$
	(C) -7 and 5 (D) 17.5 and -2
	in the best point in the RH argument
EE	


(B) $P_{in} > P_{out}$ for both transformer and emitter follower

(C) $P_{in} < P_{out}$ for transformer and $P_{in} = P_{out}$ for emitter follower

(D) $P_{in} = P_{out}$ for transformer and $P_{in} < P_{out}$ for emitter follower

7/24

GATEFORUM Engineering Success

Q.29	Match the items in List-I with the items in List-II and select the correct answer using the codes given below the lists.					
	List I			List II		
	То			Use		
	a. improve powe	er factor		1. shunt reactor		
	b. reduce the cu	rrent ripples		2. shunt capacitor		
	c. increase the p	ower flow in li	ne	3. series capacitor		
	d. reduce the Fe	rranti effect		4. series reactor		
	(A) $a \rightarrow 2, b \rightarrow 3, c$	c→4, d→1		(B) $a \rightarrow 2, b \rightarrow 4, c \rightarrow 3, c \rightarrow 3$	$d \rightarrow 1$	
	(C) $a \rightarrow 4, b \rightarrow 3, c$	$r \rightarrow 1, d \rightarrow 2$		(D) $a \rightarrow 4, b \rightarrow 1, c \rightarrow 3, c \rightarrow 3$	d→2	
Q.30	Match the items below the lists.	in List-I with t	he items in List-I	I and select the correct a	nswer using the codes given	
	List	I		List II		
	Type of transm	ission line		Type of distance relay	preferred	
	a. Short Line			1. Ohm Relay		
	b. Medium Line			2. Reactance Relay		
	c. Long Line			3. Mho Relay		
	(A) $a \rightarrow 2, b \rightarrow 1, c$	c→3 (B) a-	\rightarrow 3, b \rightarrow 2, c \rightarrow 1	(C) $a \rightarrow 1$, $b \rightarrow 2$, $c \rightarrow 3$	(D) $a \rightarrow 1$, $b \rightarrow 3$, $c \rightarrow 2$	
Q.31	Three generators	are feeding a k	and of 100 MW	The details of the generate		
2.51	Three generators	are recoming a re		The details of the generation		
	F	Rating(MW)	Efficiency (%)	Regulation(p.u.) on 1	00 MVA base	
	Generator-1	100	20	0.02		
	Generator-2	100	. 30	0.04		
	Generator-3	100	- 40	0.03		
	In the event of increased load power demand, which of the following will happen ?					
	(A) All the generators will share equal power					
	(B) Generator-3 will share more power compared to Generator-1					
	(C) Generator-1 will share more power compared to Generator-2					
	(D) Generator-2 will share more power compared to Generator-3					

EE

10/24

2009

Q.32 A 500 MW, 21 kV, 50 Hz, 3-phase, 2-pole synchronous generator having a rated p.f.=0.9, has a moment of inertia of 27.5 × 10³ kg-m². The inertia constant (H) will be

(A) 2.44 s (B) 2.71 s (C) 4.88 s (D) 5.42 s

Q.33 f(x, y) is a continuous function defined over $(x, y) \in [0,1] \times [0,1]$. Given the two constraints, $x > y^2$ and $y > x^2$, the volume under f(x, y) is

(A)
$$\int_{y=0}^{y=1} \int_{x=y^2}^{x=\sqrt{y}} f(x, y) dx dy$$

(B) $\int_{y=x^2}^{y=1} \int_{x=y^2}^{x=1} f(x, y) dx dy$
(C) $\int_{y=0}^{y=1} \int_{x=0}^{x=1} f(x, y) dx dy$
(D) $\int_{y=0}^{y=\sqrt{x}} \int_{x=0}^{x=\sqrt{y}} f(x, y) dx dy$

Q.34 Assume for simplicity that N people, all born in April (a month of 30 days), are collected in a room. Consider the event of at least two people in the room being born on the same date of the month, even if in different years, e.g. 1980 and 1985. What is the smallest N so that the probability of this event exceeds 0.5 ?

(A) 20 (B) 7 (C) 15 (D) 16

Q.35 A cascade of 3 Linear Time Invariant systems is causal and unstable. From this, we conclude that

(A) each system in the cascade is individually causal and unstable

(B) at least one system is unstable and at least one system is causal

(C) at least one system is causal and all systems are unstable

(D) the majority are unstable and the majority are causal

n of but the Card) to delay his Card of the second

Q.36 The Fourier Series coefficients, of a periodic signal x(t), expressed as $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi kt/T}$ are given by $a_{-2} = 2 - j1$; $a_{-1} = 0.5 + j0.2$; $a_0 = j2$; $a_1 = 0.5 - j0.2$; $a_2 = 2 + j1$; and

 $a_k = 0$; for |k| > 2. Which of the following is true ?

- (A) x(t) has finite energy because only finitely many coefficients are non-zero
- (B) x(t) has zero average value because it is periodic
- (C) The imaginary part of x(t) is constant
- (D) The real part of x(t) is even

permission. Discuss this question paper at www.gatementor.com.

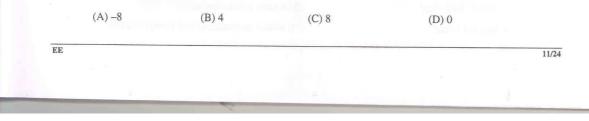
EE

2009

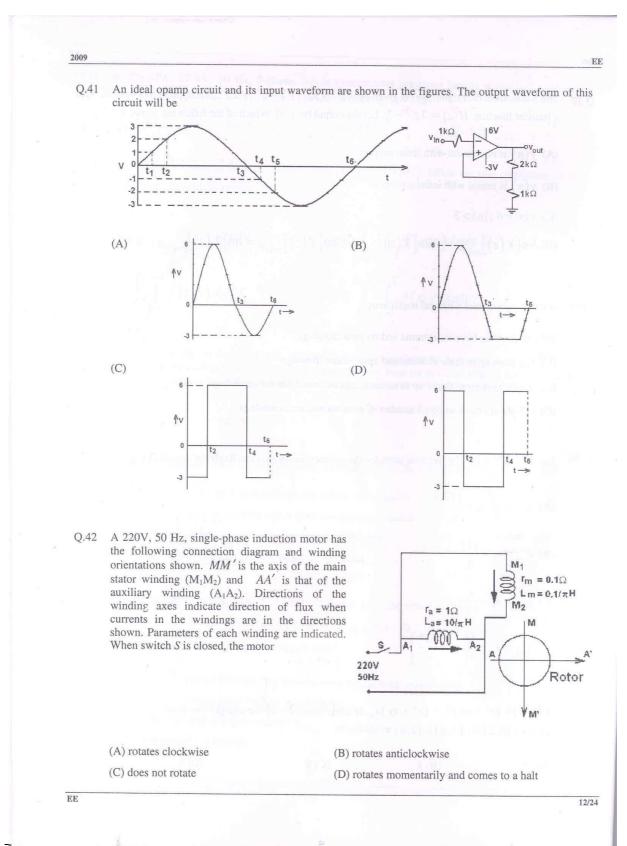
- Q.37 The z-transform of a signal x[n] is given by $4z^{-3} + 3z^{-1} + 2 6z^2 + 2z^3$. It is applied to a system, with a transfer function $H(z) = 3z^{-1} 2$. Let the output be y(n). Which of the following is true ?
 - (A) y(n) is non causal with finite support
 - (B) y(n) is causal with infinite support
 - (C) y(n) = 0; |n| > 3
 - (D) $\operatorname{Re}\left[Y(z)\right]_{z=e^{j\theta}} = -\operatorname{Re}\left[Y(z)\right]_{z=e^{-j\theta}}$; $\operatorname{Im}\left[Y(z)\right]_{z=e^{j\theta}} = \operatorname{Im}\left[Y(z)\right]_{z=e^{-j\theta}}$; $-\pi \le \theta < \pi$
- Q.38 A cubic polynomial with real coefficients

(A) can possibly have no extrema and no zero crossings

(B) may have up to three extrema and upto 2 zero crossings

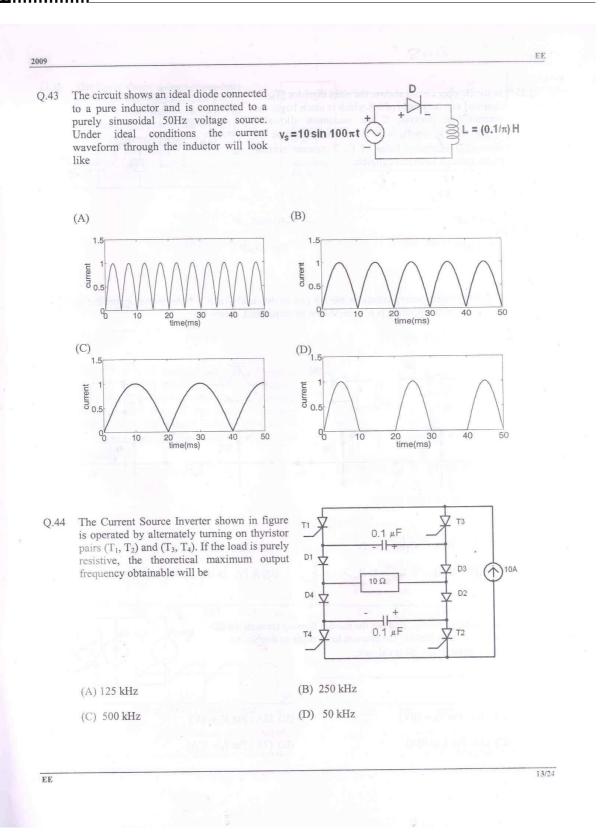

(C) cannot have more than two extrema and more than three zero crossings

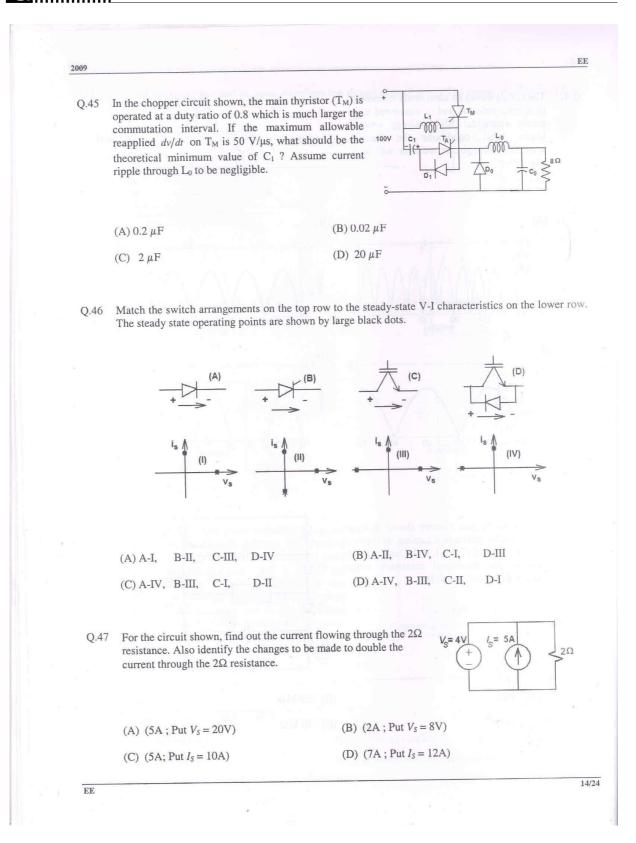
(D) will always have an equal number of extrema and zero crossings

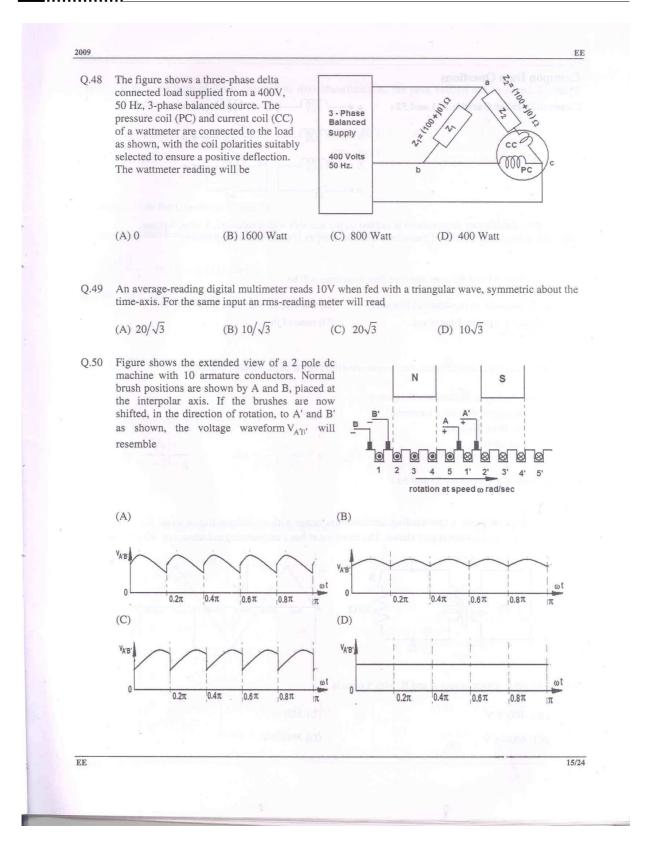

Q.39 Let $x^2 - 117 = 0$. The iterative steps for the solution using Newton-Raphson's method is given by

(A)
$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{117}{x_k} \right)$$

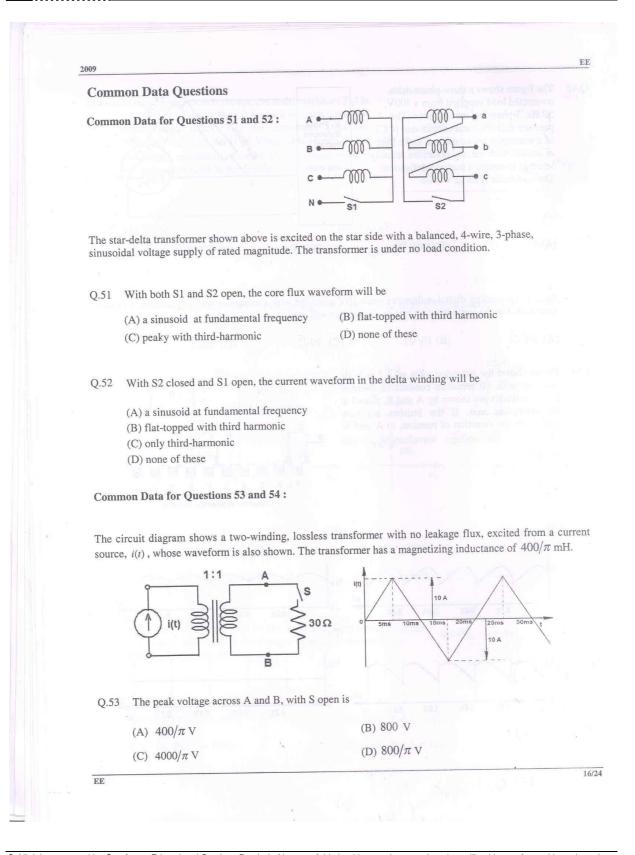
(B) $x_{k+1} = x_k - \frac{117}{x_k}$
(C) $x_{k+1} = x_k - \frac{x_k}{117}$
(D) $x_{k+1} = x_k - \frac{1}{2} \left(x_k + \frac{117}{x_k} \right)$


Q.40 $\mathbf{F}(x, y) = (x^2 + xy)\hat{\mathbf{a}}_x + (y^2 + xy)\hat{\mathbf{a}}_y$. It's line integral over the straight line from (x, y) = (0, 2) to (x, y) = (2, 0) evaluates to


GATEFORUM Engineering Success



GATEFORUM



GATEFORUM

© All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. Discuss this question paper at <u>www.gatementor.com</u>.

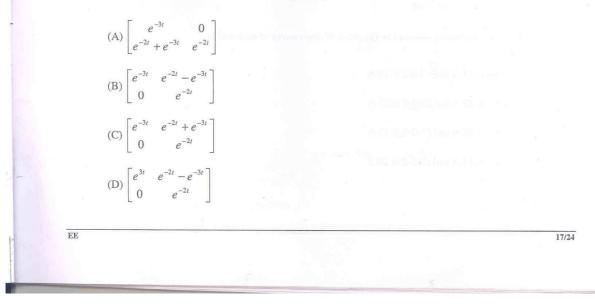
RUM

Q.54	If the waveform of $i(t)$ is changed to $i(t) = 10\sin(100\pi t) A$, the peak voltage across A and B with				
	closed is		nder for for each		
	(A) 400 V	(B) 240 V			
	(A) 400 V	(D) 160 V			

Common Data for Questions 55 and 56:

(C) 320 V

A system is described by the following state and output equations


$$\frac{dx_{1}(t)}{dt} = -3x_{1}(t) + x_{2}(t) + 2u(t)$$
$$\frac{dx_{2}(t)}{dt} = -2x_{2}(t) + u(t)$$
$$y(t) = x_{1}(t)$$

where u(t) is the input and y(t) is the output

Q.55 The system transfer function is

(Λ) $s+2$	(\mathbf{P}) $s+3$	(C) 2s + 5	(D) 2s - 5
$(A) \frac{1}{s^2 + 5s - 6}$	(B) $\frac{1}{s^2 + 5s + 6}$	$\frac{(C)}{s^2 + 5s + 6}$	(D) $\frac{1}{s^2 + 5s - 6}$

Q.56 The state-transition matrix of the above system is

2009 Linked Answer Questions 57 and 58: A Coll Coll Coll 2 B Coll Coll 2

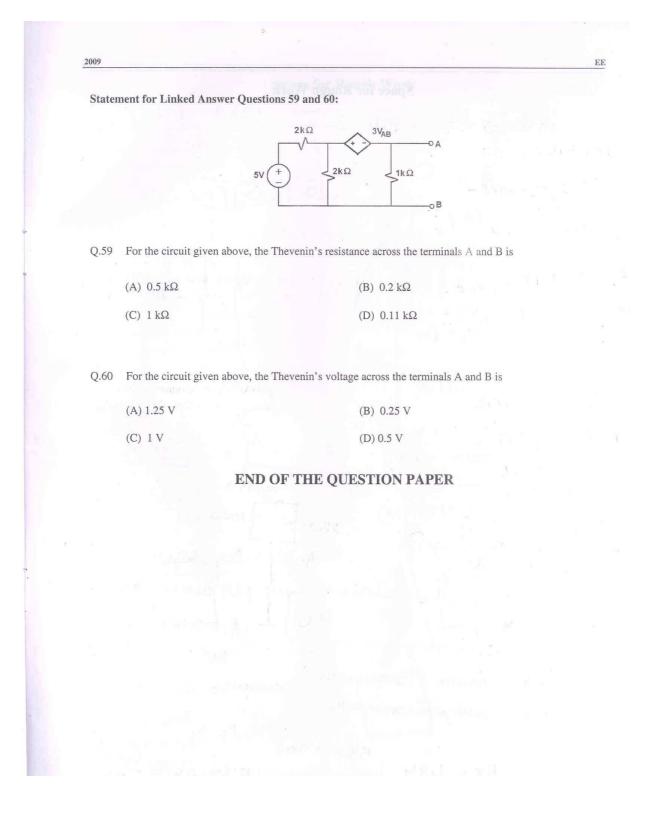
The figure above shows coils 1 and 2, with dot markings as shown, having 4000 and 6000 turns respectively. Both the coils have a rated current of 25 A. Coil 1 is excited with single phase, 400 V, 50 Hz supply.

- Q.57 The coils are to be connected to obtain a single phase, 400/1000 V, auto-transformer to drive a load of 10kVA. Which of the options given should be exercised to realize the required auto-transformer ?
 - (A) Connect A and D; Common B
 - (B) Connect B and D; Common C
 - (C) Connect A and C; Common B
 - (D) Connect A and C; Common D

Q.58 In the autotransformer obtained in Question 57, the current in each coil is

(A) Coil-1 is 25 A and Coil-2 is 10 A

(B) Coil-1 is 10 A and Coil-2 is 25 A


(C) Coil-1 is 10 A and Coil-2 is 15 A

(D) Coil-1 is 15 A and Coil-2 is 10 A

EE

18/24

