electric potential and capacitance

electric potential energy

\rightarrow consider a uniform electric field (e.g. from parallel plates)
\rightarrow note the analogy to gravitational force near the surface of the Earth
Object moving in a
uniform gravitational
field:
$W=-\Delta U_{\text {grav }}=m g h$

Charge moving in a uniform electric field:

potential between parallel plates

$$
\begin{gathered}
W=F\left(x_{b}-x_{a}\right)=q E\left(x_{b}-x_{a}\right) \\
W=U_{a}-U_{b} \\
\begin{array}{c}
\text { potential } \\
\text { energy }
\end{array} U=-q E x+c
\end{gathered}
$$

define a quantity that depends only upon the field and not the value of the test charge
the 'potential' $V=\frac{U}{q} \quad \begin{gathered}\text { measured in } \\ \text { Volts, } V=J / C\end{gathered}$

$$
V=V_{0}-E x
$$

actually only differences of potential are meaningful, we can add a constant to V if we like

potential between parallel plates

equipotential lines
lines of equal value of potential

$$
V=V_{0}-E x
$$

arbitrarily choose $V=0$ at the right-hand plate

a capacitor

conservation of energy using potential

A 9 V battery is connected across two large parallel plates that are separated by 9.0 mm of air, creating a potential difference of 9.0 V . An electron is released from rest at the negative plate - how fast is it moving just before it hits the positive plate?

$$
K_{a}+U_{a}=K_{b}+U_{b}
$$

$$
U=q V
$$

potential energy between point charges

potential from a point charge

depend only on distance
from the charge Q

$$
F=k \frac{|q Q|}{r^{2}} \longrightarrow \vec{E}=\frac{\vec{F}}{q} \longrightarrow E=k \frac{|Q|}{r^{2}}
$$

$$
U=k \frac{q Q}{r} \rightarrow V=\frac{U}{q} \rightarrow V=k \frac{Q}{r}
$$

arbitrarily choose $V=0$
infinitely far from the charge

a set of point charges

q_{3}

P
,
at the point \mathbf{P} there is an electric field \mathbf{E} and an electric potential V

electric field from a set of point charges

$$
\begin{aligned}
& E_{1}=k \frac{\left|q_{1}\right|}{r_{1}^{2}} \\
& E_{2}=k \frac{\left|q_{2}\right|}{r_{2}^{2}} \\
& E_{3}=k \frac{\left|q_{3}\right|}{r_{3}^{2}}
\end{aligned}
$$

electric field from a set of point charges

$\vec{E}=\vec{E}_{1}+\vec{E}_{2}+\vec{E}_{3}$

electric field from a set of point charges

q1

electric potential from a set of point charges

just scalar addition
- easy!

for example

find the electric potential

what potential energy would a charge of 2.0 nC have at this position?

equipotential diagrams

equipotentials are defined as the surfaces on which the potential takes a constant value hence different equipotentials never intersect
usually draw them with equal potential separations

\rightarrow Electric field lines

- Cross sections of equipotential surfaces at 20 V intervals

(a) A single positive charge

equipotentials for a point charge

equipotentials from a dipole

equipotentials from a dipole

(b) An electric dipole
notice that the field lines are always perpendicular to the equipotentials

equipotentials from two equal point charges

(c) Two equal positive charges
notice that the field lines are always perpendicular to the equipotentials

a capacitor

notice that the field lines are always perpendicular to the equipotentials

equipotentials and field lines

we can use some logical deduction to see that electric fields must be perpendicular to equipotentials
\rightarrow we can move a test charge along an equipotential without changing potential
\rightarrow hence the potential energy does not change
\rightarrow thus no work is done
\rightarrow if the \boldsymbol{E}-field had a component parallel to the equipotential we would do work
\rightarrow hence there can be no component of \boldsymbol{E} parallel to an equipotential

electric field as the gradient of the potential

consider two adjacent equipotential surfaces separated by a small distance, Δs
potential difference between the surfaces is ΔV

for a small distance, the E-field is approximately constant, so the work done per unit charge in moving from one surface to the other is $E \Delta s$
this equals the change in potential, $-\Delta V$
hence we can express the \boldsymbol{E}-field as a potential gradient

$$
E=-\frac{\Delta V}{\Delta s}
$$

"electric fields point downhill"

electric field as the gradient of the potential

$$
E=-\frac{\Delta V}{\Delta s}
$$

topological maps

electric fields at the surface of conductors

electric fields meet the surface of conductors at right angles

This doesn't happen!
If the electric field at the surface of a conductor had a tangential component $E_{\|}$, the electron could move in a loop with net work done.

\rightarrow the electric field in a conductor is zero
\rightarrow means the potential can't have a gradient
\rightarrow potential in a conductor is constant

capacitors \& capacitance

consider two conductors, separated in space, carrying equal and opposite charge
\rightarrow this is a capacitor
\rightarrow electric fields will fill the space between the conductors
\rightarrow a potential difference will be set up between the conductors
\rightarrow electrostatic energy is stored in the fields
the potential difference between a and b is proportional to the charge Q

$$
V_{a b} \propto Q
$$

the constant of proportionality that tells us "how much charge do I need per unit potential" is called the capacitance, C

$$
C=\frac{Q}{V_{a b}}
$$

parallel plate capacitors

two parallel metal plates, of area A, separated by a distance d
we can show that the electric field between large plates is uniform and of magnitude

$$
E=\frac{Q}{\epsilon_{0} A}
$$

(a) A basic parallel-plate capacitor

(b) Electric field due to a parallel-plate capacitor

what's this ε_{0} thing ?

$$
E=\frac{Q}{\epsilon_{0} A}
$$

it's a property of the vacuum of empty space that tell us how strong electric fields should be

$$
\epsilon_{0}=8.854 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}
$$

it was in Coulomb's law, but we hid it in the constant k

$$
k=\frac{1}{4 \pi \epsilon_{0}}
$$

parallel plate capacitors

two parallel metal plates, of area A, separated by a distance d
we can show that the electric field between large plates is uniform and of magnitude

$$
E=\frac{Q}{\epsilon_{0} A}
$$

(a) A basic parallel-plate capacitor

$$
V=E d=\frac{Q d}{\epsilon_{0} A}
$$

hence

$$
\frac{Q}{V}=\frac{\epsilon_{0} A}{d}
$$

so the capacitance is $C=\frac{\epsilon_{0} A}{d}$
(b) Electric field due to a parallel-plate capacitor which depends only on the geometry of the capacitor

$$
C=\frac{Q}{V} \quad C=\frac{\epsilon_{0} A}{d}
$$

Adjustable Capacitor with Dielectric

MIT Department of Physics Technical Services Group

circuit diagrams and 'rules'

'wires' are treated as being resistance-less, they act as equipotentials

potential changes occur when electrical components are attached to the wires
e.g. a battery

- keeps two wires at fixed potential difference

e.g. a capacitor
- potential drop

so we can build a legitimate circuit out of these two components and wires

circuit diagrams and 'rules'

net charge doesn't accumulate, a circuit starts with total charge of zero and always has total charge of zero

circuit diagrams and 'rules'

net charge doesn't accumulate, a circuit starts with total charge of zero and always has total charge of zero

but where do the 'pushed-off' positive charges go ?
remember we have to make a circuit !

they moved all the way around the circuit and formed the first set of positive charges !

capacitors in series

imagine removing the 'inner' plates and the wire joining them :

capacitors in series

we can derive a formula for C in terms of C_{1} and C_{2} :

capacitors in series - using the formula
many students use this formula wrongly
it is NOT the same as $C=C_{1}+C_{2}$

$$
\begin{aligned}
\text { e.g. } C_{1} & =1 \mathrm{~F}, C_{2}=1 \mathrm{~F} \\
& \text { then } C_{1}+C_{2}=2 \mathrm{~F} \\
& \text { but } \frac{1}{C_{1}}+\frac{1}{C_{2}}=\frac{1}{1 \mathrm{~F}}+\frac{1}{1 \mathrm{~F}}=2 \mathrm{~F}^{-1} \\
& \text { so } \frac{1}{C}=2 \mathrm{~F}^{-1} \quad \text { and hence } C=\frac{1}{2} \mathrm{~F}
\end{aligned}
$$

capacitors in parallel

$$
\begin{aligned}
Q_{1} & =C_{1} V \\
Q_{2} & =C_{2} V
\end{aligned}
$$

total charge on the left-hand plates

$$
Q=Q_{1}+Q_{2}
$$

capacitors in parallel

suppose we joined the plates together

capacitors in parallel

$Q_{1}=C_{1} V$
$Q_{2}=C_{2} V$
total charge on the left-hand plates
$Q=Q_{1}+Q_{2}$

$$
Q=C_{1} V+C_{2} V
$$

$$
\begin{gathered}
Q=C V \\
C V=C_{1} V+C_{2} V \\
C=C_{1}+C_{2}
\end{gathered}
$$

combining capacitors

Two capacitors, one with capacitance 12.0 nF and the other of 6.0 nF are connected to a potential difference of 18 V . Find the equivalent capacitance and find the charge and potential differences for each capacitor when the two capacitors are connected in
(a) series
(b) parallel

stored energy in a capacitor

getting the charges in place on the plates requires work - this work ends up as energy 'stored' in the electric fields
\rightarrow consider charging up a capacitor from zero charge to a charge Q
\rightarrow if at some time the charge is q, the potential is $v=q / C$
\rightarrow to add another small amount of charge Δq, will need to do work of $\Delta W=v \Delta q$

stored energy in a capacitor

getting the charges in place on the plates requires work - this work ends up as energy 'stored' in the electric fields
\rightarrow consider charging up a capacitor from zero charge to a charge Q
\rightarrow if at some time the charge is q, the potential is $v=q / C$
\rightarrow to add another small amount of charge Δq, will need to do work of $\Delta W=v \Delta q$

the total work required is the area under the curve

$$
\begin{aligned}
& W=\frac{1}{2} \times Q \times \frac{Q}{C}=\frac{Q^{2}}{2 C} \\
& W=\frac{1}{2} C V^{2}
\end{aligned}
$$

energy stored in electric fields

capacitors store energy - this can be thought of as residing in the field between the plates
\rightarrow define energy density as the energy per unit volume

$$
u \equiv \frac{U}{\mathrm{vol}}
$$

\rightarrow for a parallel plate capacitor $U=\frac{1}{2} C V^{2}$

$$
C=\frac{\epsilon_{0} A}{d}
$$

$$
\mathrm{vol}=A d
$$

$$
\begin{aligned}
& u=\frac{1}{2} \epsilon_{0}\left(\frac{V}{d}\right)^{2} \\
& E=\frac{V}{d}
\end{aligned}
$$

$$
u=\frac{1}{2} \epsilon_{0} E^{2}
$$

this formula turns out to be true for all electric field configurations

dielectrics

\rightarrow so far we've assumed that the gap between the plates is filled with vacuum (or air)
\rightarrow it doesn't have to be - suppose we place some nonconducting material in there

adding a dielectric

dielectrics

\rightarrow the voltage changes - reflects a change in the capacitance

$C_{\text {di. }}=$	$K C_{0}$
capacitance	
with dielectric	

constant}}^{capacitance}\)| without dielectric |
| :--- |

\rightarrow if the voltage goes down (for fixed charge) when a dielectric is added, what can we say about K ?

1. K is negative
2. K is less than 1
3. K is greater than 1
4. K is zero

dielectrics

\rightarrow the voltage drop corresponds to a reduction of the electric field in the gap

$$
E_{\text {di. }}=\frac{E_{0}}{K}
$$

\rightarrow the reason is induced charges on the surface of the dielectric

For a given charge density σ_{i}, the induced charges on the dielectric's surfaces reduce the electric field between the plates.

(a)

(b)

dielectrics

\rightarrow the voltage drop corresponds to a reduction of the electric field in the gap
\rightarrow the reason is induced charges on the surface of the dielectric

dielectrics

\rightarrow the induced charge is caused by the polarization of electric dipoles in the dielectric

(b)

dielectrics

\rightarrow the induced charge is caused by the polarization of electric dipoles in the dielectric

cancellation of charges in the bulk

