

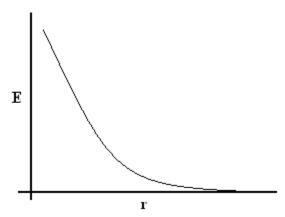
Revision Notes

PHYSICS

Electric Charges and Fields

Top Formulae

Formula	Description
Quantisation of charge	Q = total charge (coulomb)
Q = ±ne	e = charge on one electron (coulomb)
	n = number of electrons
The force between two charges q ₁ and q ₂ at a distance r from each	F = force (newton)
other	q_1 and q_2 = charges (coulomb)
$\vec{F} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$	r = distance between charges (metre)
Superposition principle $\vec{F} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \dots$	\vec{F} = net force on the system (newton)
	\vec{F}_1, \vec{F}_2 and \vec{F}_3 = different forces working on the system (newton)
Electric field strength \vec{E} at a point r distance away from a point charge q $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$	E = electric field strength (volt/metre)
	r = distance from a point charge (metre)
	q = point charge (coulomb)
Electrostatic force \vec{F} on a charge q inside the electric field \vec{E} $\vec{F} = q \ \vec{E}$	E = electric field strength (volt/metre)
	\vec{F} = electrostatic force (newton)
	q = point charge (coulomb)
Dipole moment $p = q \times 2a$	p = dipole moment (coulomb metre)
	q = one of the charges (coulomb)
	2a = separation between two charges (metre)
Dipole field intensity on the axial line of the dipole $\left \vec{E}_1\right = \frac{2pr}{4\pi\epsilon_0(r^2-a^2)^2}$	$\left \vec{E}_1 \right $ = electric field strength (volt/metre)
	p = dipole moment (coulomb metre)
	2a = separation between two charges (metre)
	r = distance of the point from the centre of the dipole (metre)


www.topperlearning.com

Dipole field intensity on the equatorial line of the dipole	$\left \vec{E}_2 \right $ = electric field strength (volt/metre)
$\left \vec{E}_{2}\right = \frac{p}{4\pi\varepsilon_{0}(r^{2} + a^{2})^{3/2}}$	p = dipole moment (coulomb metre)
	2a = separation between two charges (metre)
	r = distance of the point from the centre of the dipole (metre)
Torque on dipole inside the electric field is $\vec{\tau} = \vec{p} \times \vec{E}$	E E E E E E E E E E E E E
Held is $t = \mathbf{p} \times \mathbf{E}$	p = dipole moment (coulomb metre)
-	$\vec{\tau}$ = torque (newton metre)
Flux $\Delta \phi = \vec{E} \cdot \Delta \vec{S}$	\vec{E} = electric field strength (volt/metre)
·	$\Delta \vec{S} = \Delta S \hat{n} = \text{area element (metre}^2)$
	$\Delta \phi = \text{flux (weber)}$
Gauss's law:	φ = electric flux through a closed surface
$\phi = \frac{q}{\varepsilon_0}$	(weber)
ϵ_0	S = area of closed surface (metre ²)
	q = total charge enclosed by S (coulomb)
Application of Gauss's law:	λ = linear charge density (coulomb/metre)
Electric field due to a thin infinitely long straight wire of uniform linear charge density	r = perpendicular distance of the point from the wire (metre)
$\vec{E} = \frac{1}{1 - \lambda} \hat{n}$	\vec{E} = electric field intensity (volt/metre)
$2\pi\epsilon_0$ r	n̂ = radial unit vector
Electric field due to an infinite thin	σ = surface charge density (coulomb/metre ²)
plane sheet of uniform surface charge density	\vec{E} = electric field intensity (volt/metre)
$\vec{E} = \frac{\sigma}{2\varepsilon_0} \hat{n}$	\hat{n} = unit vector normal to the plane
Ĭ	·
Electric field due to a thin spherical shell uniform surface charge	σ = surface charge density (coulomb/metre ²)
density	\vec{E} = electric field intensity (volt/metre)
$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r} \qquad (r \ge R)$	r = distance of the point from the centre of the shell
$\vec{E} = 0$ $(r < R)$	R = radius of the shell
	q = total charge on the shell

www.topperlearning.com

Top Concepts

- Like charges repel and unlike charges attract.
- Conductors allow movement of electric charge through them, while insulators do not.
- Quantisation of electric charge means that total charge (q) of a body is always an integral multiple of a basic quantum of charge (e), i.e. q = ne, where $n = 0, \pm 1, \pm 2, \pm 3...$
- Additivity of electric charges: Total charge of a system is the algebraic sum of all individual charges in the system.
- Conservation of electric charges: Total charge of an isolated system remains unchanged with time.
- Superposition principle: The forces with which two charges attract or repel each other are not affected by the presence of a third (or more) additional charge(s).
- The electric field E at a point due to a charge configuration is the force on a small positive test charge q placed at the point divided by a magnitude $|q|/4\pi\epsilon_0 r^2$; it is radially outwards from q, if q is positive, and radially inwards, if q is negative.
- E at a point varies inversely as the square of its distance from charge Q. The plot of E v/s r will appear like the figure given below.

Coulomb's law: The mutual electrostatic force between two point charges q₁ and q₂ is proportional to the product q_1q_2 and inversely proportional to the square of the distance r_{21} separating them.

$$\vec{F}_{21}$$
 (force on q_2 due to q_1) = $\frac{k(q_1q_2)}{r_{21}^2}$ \hat{r}_{21}

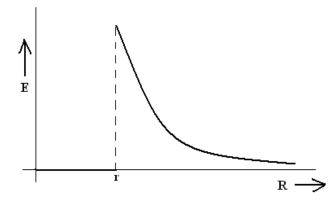
where \hat{r}_{21} is a unit vector in the direction from q_1 to q_2 and $k = \frac{1}{\pi \epsilon_0}$ is the constant of proportionality.

An electric field line is a curve drawn in such a way that the tangent at each point on the curve gives the direction of electric field at that point.

PHYSICS **ELECTRIC CHARGES AND FIELDS**

- Important properties of field lines are
 - (i) Field lines are continuous curves without any breaks.
 - (ii) Two field lines cannot cross each other.
 - (iii) Electrostatic field lines start at positive charges and end at negative charges. They cannot form closed loops.
- The electric flux $\phi = \int d\phi = \int \vec{E} \cdot d\vec{S}$ is a dot product, and hence, it is scalar.

 $\Delta \phi$ is positive for all values of $\theta < \frac{\pi}{2}$.


 $\Delta \phi$ is negative for all values of $\theta > \frac{\pi}{2}$.

• Gauss's law: The flux of the electric field through any closed surface S is $1/\epsilon_0$ times the total charge enclosed by S.

$$\phi = \int \vec{\mathsf{E}}.\mathsf{d}\vec{\mathsf{S}} = \frac{\mathsf{q}}{\varepsilon_0}$$

• The electric field outside the charged shell is as though the total charge is concentrated at the centre. The same result is true for a solid sphere of uniform volume charge density. The electric field is zero at all points inside a charged shell.

Graphical plot of \overrightarrow{E} versus R inside the spherical shell:

