Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

Exercise 16.1

Question 1:

Find the values of the letters in the following and give reasons for the steps involved.
3 A
25
+2
B 2
Answer:
The addition of A and 5 is giving 2 i.e., a number whose ones digit is 2 . This is possible only when digit A is 7 . In that case, the addition of $A(7)$ and 5 will give 12 and thus, 1 will be the carry for the next step. In the next step,
$1+3+2=6$
Therefore, the addition is as follows.
37
$+25$
62
Clearly, B is 6.
Hence, A and B are 7 and 6 respectively.

Question 2:

Find the values of the letters in the following and give reasons for the steps involved.

$$
\begin{array}{r}
4 \mathrm{~A} \\
+98 \\
\hline \mathrm{CB} 3 \\
\hline
\end{array}
$$

Answer:
The addition of A and 8 is giving 3 i.e., a number whose ones digit is 3 . This is possible only when digit A is 5 . In that case, the addition of A and 8 will give 13 and thus, 1 will be the carry for the next step. In the next step, $1+4+9=14$

Therefore, the addition is as follows.

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper

45
98
$+\quad 9$
143
Clearly, B and C are 4 and 1 respectively.
Hence, A, B, and C are 5, 4, and 1 respectively.

Question 4:

Find the values of the letters in the following and give reasons for the steps involved.

$A B$
$+3 \quad 7$
6 A

Answer:
The addition of A and 3 is giving 6 . There can be two cases.

(1) First step is not producing a carry

In that case, A comes to be 3 as $3+3=6$. Considering the first step in which the addition of B and 7 is giving A (i.e., 3), B should be a number such that the units digit of this addition comes to be 3 . It is possible only when $B=6$. In this case, $A=$ $6+7=13$. However, A is a single digit number. Hence, it is not possible.

(2) First step is producing a carry

In that case, A comes to be 2 as $1+2+3=6$. Considering the first step in which the addition of B and 7 is giving A (i.e., 2), B should be a number such that the units digit of this addition comes to be 2 . It is possible only when $B=5$ and $5+7=12$.

25
$+\quad 3 \quad 7$
$6 \quad 2$

Hence, the values of A and B are 2 and 5 respectively.

Question 5:

Find the values of the letters in the following and give reasons for the steps involved.
A B
$\begin{array}{r} \\ \times \quad 3 \\ \hline\end{array}$
C A B
Answer:
The multiplication of 3 and B gives a number whose ones digit is B again.
Hence, B must be 0 or 5 .
Let B is 5 .
Multiplication of first step $=3 \times 5=15$
1 will be a carry for the next step.
We have, $3 \times \mathrm{A}+1=\mathrm{CA}$
This is not possible for any value of A.
Hence, B must be 0 only. If $B=0$, then there will be no carry for the next step.
We should obtain, $3 \times \mathrm{A}=\mathrm{CA}$
That is, the one's digit of $3 \times A$ should be A. This is possible when $A=5$ or 0 .
However, A cannot be 0 as $A B$ is a two-digit number.
Therefore, A must be 5 only. The multiplication is as follows.
50
$\times \quad 3$
150
Hence, the values of A, B, and C are 5,0 , and 1 respectively.

Question 6:

Find the values of the letters in the following and give reasons for the steps involved.
A B
$\times 5$
C A B
Answer:

The multiplication of B and 5 is giving a number whose ones digit is B again. This is possible when $B=5$ or $B=0$ only.
In case of $B=5$, the product, $B \times 5=5 \times 5=25$
2 will be a carry for the next step.
We have, $5 \times A+2=C A$, which is possible for $A=2$ or 7
The multiplication is as follows.
$25 \quad 75$
$\times 5 \times 5$
125375

If $B=0$,
$B \times 5=B \Rightarrow 0 \times 5=0$
There will not be any carry in this step.
In the next step, $5 \times \mathrm{A}=\mathrm{CA}$
It can happen only when $A=5$ or $A=0$
However, A cannot be 0 as $A B$ is a two-digit number.
Hence, A can be 5 only. The multiplication is as follows.
$\times 5$
250
Hence, there are 3 possible values of A, B, and C.
(i) 5, 0, and 2 respectively
(ii) 2, 5, and 1 respectively
(iii) 7, 5, and 3 respectively

Question 7:

Find the values of the letters in the following and give reasons for the steps involved.
A B
$\times 6$
B B B

Answer:

The multiplication of 6 and B gives a number whose one's digit is B again.
It is possible only when $B=0,2,4,6$, or 8
If $B=0$, then the product will be 0 . Therefore, this value of B is not possible.
If $B=2$, then $B \times 6=12$ and 1 will be a carry for the next step.
$6 A+1=B B=22 \Rightarrow 6 A=21$ and hence, any integer value of A is not possible.
If $B=6$, then $B \times 6=36$ and 3 will be a carry for the next step.
$6 A+3=B B=66 \Rightarrow 6 A=63$ and hence, any integer value of A is not possible.
If $B=8$, then $B \times 6=48$ and 4 will be a carry for the next step.
$6 A+4=B B=88 \Rightarrow 6 A=84$ and hence, $A=14$. However, A is a single digit
number. Therefore, this value of A is not possible.
If $B=4$, then $B \times 6=24$ and 2 will be a carry for the next step.
$6 A+2=B B=44 \Rightarrow 6 A=42$ and hence, $A=7$
The multiplication is as follows.
74
$\times 6$
444
Hence, the values of A and B are 7 and 4 respectively.

Question 8:

Find the values of the letters in the following and give reasons for the steps involved.
A 1
$\begin{array}{r}\mathrm{A} \\ +1 \mathrm{~B} \\ \hline\end{array}$
B 0
Answer:
The addition of 1 and B is giving 0 i.e., a number whose ones digits is 0 . This is possible only when digit B is 9 . In that case, the addition of 1 and B will give 10 and thus, 1 will be the carry for the next step. In the next step,
$1+A+1=B$

Clearly, A is 7 as $1+7+1=9=B$
Therefore, the addition is as follows.
71
19
90
Hence, the values of A and B are 7 and 9 respectively.

Question 9:

Find the values of the letters in the following and give reasons for the steps involved.
2 A B
AB 1
+
B 18

Answer:

The addition of B and 1 is giving 8 i.e., a number whose ones digits is 8 . This is possible only when digit B is 7 . In that case, the addition of B and 1 will give 8 . In
the next step,
$A+B=1$
Clearly, A is 4.
$4+7=11$ and 1 will be a carry for the next step. In the next step,
$1+2+A=B$
$1+2+4=7$
Therefore, the addition is as follows.
247
$+471$
718
Hence, the values of A and B are 4 and 7 respectively.

Question 10:

Find the values of the letters in the following and give reasons for the steps involved.

12 A
+6 AB
A 09

Answer:
The addition of A and B is giving 9 i.e., a number whose ones digits is 9 . The sum can be 9 only as the sum of two single digit numbers cannot be 19. Therefore, there will not be any carry in this step.
In the next step, $2+A=0$
It is possible only when $A=8$
$2+8=10$ and 1 will be the carry for the next step.
$1+1+6=A$
Clearly, A is 8 . We know that the addition of A and B is giving 9. As A is 8 , therefore, B is 1 .
Therefore, the addition is as follows.
128
$+681$
809
Hence, the values of A and B are 8 and 1 respectively.

Exercise 16.2

Question 1:

If $21 y 5$ is a multiple of 9 , where y is a digit, what is the value of y ?
Answer:
If a number is a multiple of 9 , then the sum of its digits will be divisible by 9 .
Sum of digits of $21 y 5=2+1+y+5=8+y$
Hence, $8+y$ should be a multiple of 9 .
This is possible when $8+y$ is any one of these numbers $0,9,18,27$, and so on ...
However, since y is a single digit number, this sum can be 9 only. Therefore, y should be 1 only.

Question 2:

If $31 z 5$ is a multiple of 9 , where z is a digit, what is the value of z ?
You will find that there are two answers for the last problem. Why is this so?
Answer:
If a number is a multiple of 9 , then the sum of its digits will be divisible by 9 .
Sum of digits of $31 z 5=3+1+z+5=9+z$
Hence, $9+z$ should be a multiple of 9 .
This is possible when $9+z$ is any one of these numbers $0,9,18,27$, and so on ... However, since z is a single digit number, this sum can be either 9 or 18. Therefore, z should be either 0 or 9 .

Question 3:

If $24 x$ is a multiple of 3 , where x is a digit, what is the value of x ?
(Since $24 x$ is a multiple of 3 , its sum of digits $6+x$ is a multiple of 3 ; so $6+x$ is one of these numbers: $0,3,6,9,12,15,18 \ldots$. But since x is a digit, it can only be that 6 $+x=6$ or 9 or 12 or 15 . Therefore, $x=0$ or 3 or 6 or 9 . Thus, x can have any of four different values)

Answer:
Since $24 x$ is a multiple of 3 , the sum of its digits is a multiple of 3 .
Sum of digits of $24 x=2+4+x=6+x$

Hence, $6+x$ is a multiple of 3 .
This is possible when $6+x$ is any one of these numbers $0,3,6,9$, and so on ...
Since x is a single digit number, the sum of the digits can be 6 or 9 or 12 or 15 and thus, the value of x comes to 0 or 3 or 6 or 9 respectively.
Thus, x can have its value as any of the four different values $0,3,6$, or 9 .
Question 4:
If $31 z 5$ is a multiple of 3, where z is a digit, what might be the values of z ?
Answer:
Since $31 z 5$ is a multiple of 3 , the sum of its digits will be a multiple of 3 .
That is, $3+1+z+5=9+z$ is a multiple of 3 .
This is possible when $9+z$ is any one of $0,3,6,9,12,15,18$, and so on ...
Since z is a single digit number, the value of $9+z$ can only be 9 or 12 or 15 or 18 and thus, the value of x comes to 0 or 3 or 6 or 9 respectively.

Thus, z can have its value as any one of the four different values $0,3,6$, or 9 .

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

