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Definitions and some problems
Basic algorithms

Questions

Graph notations and definitions

A graph G = (V ,E ) consists of a finite set V , called the vertex set and a
finite, binary relation E on V , called the edge set.

Three standard graph models

Undirected graph: The edges are unordered pair of vertices, i.e.,
{u, v} ∈ E for some u, v ∈ V .

Directed graph: The edges are ordered pair of vertices, that is, (u, v) and
(v , u) are two different edges.

Bipartite graph: G = (U ∪ V ,E ) consists of two disjoint vertex sets U
and V such that for each edge (u, v) ∈ E , u ∈ U and v ∈ V .

An ordering or labelling of G = (V ,E ) having n vertices, i.e., |V | = n, is
a mapping of V onto 1, 2, . . . , n.
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Matrices and graphs: Rectangular matrices

The rows/columns and nonzeros of a given sparse matrix correspond (with
natural labelling) to the vertices and edges, respectively, of a graph.

Rectangular matrices

A =

0@
1 2 3 4

1 × ×
2 × ×
3 × ×

1A

Bipartite graph

1

r2

r3

1c

2c

3c

4c

r

The set of rows corresponds to one of the vertex set R, the set of columns

corresponds to the other vertex set C such that for each aij 6= 0, (ri , cj) is an

edge.
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Matrices and graphs: Square unsymmetric pattern

The rows/columns and nonzeros of a given sparse matrix correspond (with
natural labelling) to the vertices and edges, respectively, of a graph.

Square unsymmetric
pattern matrices

A =

0@
1 2 3

1 × ×
2 × ×
3 ×

1A

Graph models

Bipartite graph as before.

Directed graph

v2 3v

1v

The set of rows/cols corresponds the vertex set V such that for each aij 6= 0,

(vi , vj) is an edge. Transposed view possible too, i.e., the edge (vi , vj) directed

from column i to row j . Usually self-loops are omitted.
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Matrices and graphs: Square unsymmetric pattern

A special subclass

Directed acyclic graphs (DAG):
A directed graphs with no loops
(maybe except for self-loops).

DAGs

We can sort the vertices such that
if (u, v) is an edge, then u appears
before v in the ordering.

Question: What kind of matrices have a DAG?
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Matrices and graphs: Symmetric pattern

The rows/columns and nonzeros of a given sparse matrix correspond (with
natural labelling) to the vertices and edges, respectively, of a graph.

Square symmetric
pattern matrices

A =

0@
1 2 3

1 ×
2 × × ×
3 × ×

1A

Graph models

Bipartite and directed graphs as before.

Undirected graph

v2 3v

1v

The set of rows/cols corresponds the vertex set V such that for each

aij , aji 6= 0, {vi , vj} is an edge. No self-loops; usually the main diagonal is

assumed to be zero-free.
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Definitions: Edges, degrees, and paths

Many definitions for directed and undirected graphs are the same. We
will use (u, v) to refer to an edge of an undirected or directed graph to
avoid repeated definitions.

An edge (u, v) is said to incident on the vertices u and v .

For any vertex u, the set of vertices in adj(u) = {v : (u, v) ∈ E} are
called the neighbors of u. The vertices in adj(u) are said to be
adjacent to u.

The degree of a vertex is the number of edges incident on it.

A path p of length k is a sequence of vertices 〈v0, v1, . . . , vk〉 where
(vi−1, vi ) ∈ E for i = 1, . . . , k . The two end points v0 and vk are
said to be connected by the path p, and the vertex vk is said to be
reachable from v0.
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Definitions: Components

An undirected graph is said to be connected if every pair of vertices
is connected by a path.

The connected components of an undirected graph are the
equivalence classes of vertices under the “is reachable” from
relation.

A directed graph is said to be strongly connected if every pair of
vertices are reachable from each other.

The strongly connected components of a directed graph are the
equivalence classes of vertices under the “are mutually reachable”
relation.
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Definitions: Trees and spanning trees

A tree is a connected, acyclic, undirected graph. If an undirected graph is
acyclic but disconnected, then it is a forest.

Properties of trees

Any two vertices are connected by a unique path.

|E | = |V | − 1

A rooted tree is a tree with a distinguished vertex r , called the root.

There is a unique path from the root r to every other vertex v . Any
vertex y in that path is called an ancestor of v . If y is an ancestor of v ,
then v is a descendant of y .

The subtree rooted at v is the tree induced by the descendants of v ,
rooted at v .

A spanning tree of a connected graph G = (V ,E ) is a tree T = (V ,F ),
such that F ⊆ E .
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Ordering of the vertices of a rooted tree

A topological ordering of a rooted tree is an ordering that numbers
children vertices before their parent.

A postorder is a topological ordering which numbers the vertices in
any subtree consecutively.

u w

x

y

z

v

with topological ordering

1 3

2

4

5

6

Rooted spanning tree

w

yz

xu

v

Connected graph G

u w

x

y

z

v

1

6

54

3

2

Rooted spanning tree
with postordering
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Postordering the vertices of a rooted tree – I

The following recursive algorithm will do the job:

[porder ]=PostOrder(T , r)

for each child c of r do
porder ← [porder , PostOrder(T , c)]

porder ← [porder , r ]

We need to run the algorithm for each root r when T is a forest.

Usually recursive algorithms are avoided, as for a tree with large number
of vertices can cause stack overflow.
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Postordering the vertices of a rooted tree – II

[porder ]=PostOrder(T , r)

porder ← [·]
seen(v)← False for all v ∈ T
seen(r)← True
Push(S , r)
while NotEmpty(S) do

v ←Pop(S)
if ∃ a child c of v with seen(c) = False then

seen(c)← True
Push(S , c)

else
porder ← [porder , v ]

Again, have to run for each root, if T is a forest.

Both algorithms run in O(n) time for a tree with n nodes.
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Permutation matrices

A permutation matrix is a square (0, 1)-matrix where each row and
column has a single 1.

If P is a permutation matrix, PPT = I , i.e., it is an orthogonal matrix.
Let,

A =


1 2 3

1 × ×
2 × ×
3 ×


and suppose we want to permute columns as [2, 1, 3]. Define p2,1 = 1,
p1,2 = 1, p3,3 = 1, and B = AP (if column j to be at position i , set
pji = 1)

B =


2 1 3

1 × ×
2 × ×
3 ×

 =


1 2 3

1 × ×
2 × ×
3 ×

 
1 2 3

1 1
2 1
3 1


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Matching in bipartite graphs and permutations

A matching in a graph is a set of edges no two of which share a common
vertex. We will be mostly dealing with matchings in bipartite graphs.

In matrix terms, a matching in the bipartite graph of a matrix
corresponds to a set of nonzero entries no two of which are in the same
row or column.

A vertex is said to be matched if there is an edge in the matching
incident on the vertex, and to be unmatched otherwise. In a perfect
matching, all vertices are matched.

The cardinality of a matching is the number of edges in it. A maximum
cardinality matching or a maximum matching is a matching of maximum
cardinality. Solvable in polynomial time.
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Matching in bipartite graphs and permutations

Given a square matrix whose bipartite graph has a perfect matching, such
a matching can be used to permute the matrix such that the matching
entries are along the main diagonal.

1

r2

r3 3c

2c

1cr 
1 2 3

1 × ×
2 × ×
3 ×




2 1 3

1 × ×
2 × ×
3 ×

 =


1 2 3

1 × ×
2 × ×
3 ×

 
1 2 3

1 1
2 1
3 1


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Definitions: Reducibility

Reducible matrix: An n × n square matrix is reducible if there exists an
n × n permutation matrix P such that

PAPT =

(
A11 A12

O A22

)
,

where A11 is an r × r submatrix, A22 is an (n − r)× (n − r) submatrix,
where 1 ≤ r < n.

Irreducible matrix: There is no such a permutation matrix.

Theorem: An n × n square matrix is irreducible iff its directed graph is
strongly connected.

Proof: Follows by definition.
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Definitions: Fully indecomposability

Fully indecomposable matrix: There is no permutation matrices P and Q
such that

PAQ =

(
A11 A12

O A22

)
,

with the same condition on the blocks and their sizes as above.

Theorem: An n × n square matrix A is fully indecomposable iff for some
permutation matrix P, the matrix PA is irreducible and has a zero-free
main diagonal.

Proof: We will come later in the semester to the “if” part.

Only if part (by contradiction): Let B = PA be an irreducible matrix with
zero-free main diagonal. B is fully indecomposable iff A is (why?).
Therefore we may assume that A is irreducible and has a zero-free
diagonal. Suppose, for the sake of contradiction, A is not fully
indecomposable.
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Fully indecomposable matrices

Fully indecomposable matrix

There is no permutation matrices P and Q such that

PAQ =

(
A11 A12

O A22

)
,

with the same condition on the blocks and their sizes as above.

Proof cont.: Let P1AQ1 be of the form above with A11 of size r × r . We
may write P1AQ1 = A′Q ′, where A′ = P1AP1

T with zero-free diagonal
(why?), and Q ′ = P1Q1 is a permutation matrix which has to permute
(why?) the first r columns among themselves, and similarly the last n− r
columns among themselves. Hence, A′ is in the above form, and A is
reducible: contradiction. 2
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Definitions: Cliques and independent sets

Clique

In an undirected graph G = (V , E), a set of vertices S ⊆ V is a clique if for all
s, t ∈ S , we have (s, t) ∈ E .

Maximum clique: A clique of maximum cardinality (finding a maximum clique
in an undirected graph is NP-complete).

Maximal clique: A clique is a maximal clique, if it is not contained in another
clique.

In a symmetric matrix A, a clique corresponds to a subset of rows R and the
corresponding columns such that the matrix A(R, R) is full.

Independent set

A set of vertices is an independent set if none of the vertices are adjacent to
each other. Can we find the largest one in polynomial time?

In a symmetric matrix A, an independent set corresponds to a subset of rows R
and the corresponding columns such that the matrix A(R, R) is either zero, or
diagonal.
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Definitions: More on cliques

Clique: In an undirected graph G = (V ,E ), a set of vertices S ⊆ V is a
clique if for all s, t ∈ S , we have (s, t) ∈ E .

In a symmetric matrix A corresponds to a subset of rows R and the
corresponding columns such that the matrix A(R,R) is full.

Cliques in bipartite graphs: Bi-cliques

In a bipartite graph G = (U ∪ V ,E ), a pair of sets 〈R,C 〉 where R ⊆ U
and C ⊆ V is a bi-clique if for all a ∈ R and b ∈ C , we have (a, b) ∈ E .

In a matrix A, corresponds to a subset of rows R and a subset of columns
C such that the matrix A(R,C ) is full.

The maximum node bi-clique problem asks for a bi-clique of maximum
size (e.g., |R|+ |C |), and it is polynomial time solvable, whereas
maximum edge bi-clique problem (e.g., asks for a maximum |R| × |C |) is
NP-complete.

21/124 CR09



Definitions and some problems
Basic algorithms

Questions

Definitions: Hypergraphs

Hypergraph: A hypergraph H = (V , N) consists of a finite set V called the
vertex set and a set of non-empty subsets of vertices N called the hyperedge
set or the net set. A generalization of graphs.

For a matrix A, define a hypergraph whose vertices correspond to the rows and
whose nets correspond to the columns such that vertex vi is in net nj iff aij 6= 0
(the column-net model).

A sample matrix

0@
1 2 3 4

1 × × ×
2 × ×
3 × × ×

1A
The column-net hypergraph model

4
3n

1n

1v

2v

3v

n

n2
v

2n

4n

3n

1n

1

2

3

v

v
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Definitions and some problems
Basic algorithms

Questions

Breadth-first search
Depth-first search
Topological sort
Strongly connected components

Basic graph algorithms

Searching a graph: Systematically following the edges of the graph so as
to visit all the vertices.

Breadth-first search,

Depth-first search.

Topological sort (of a directed acyclic graph): It is a linear ordering of all
the vertices such that if (u, v) directed is an edge, then u appears before
v in the ordering.

Strongly connected components (of a directed graph; why?): Recall that
a strongly connected component is a maximal set of vertices for which
every pair its vertices are reachable. We want to find them all.

We will use some of the course notes by Cevdet Aykanat
(http://www.cs.bilkent.edu.tr/~aykanat/teaching.html)
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Definitions and some problems
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Breadth-first search
Depth-first search
Topological sort
Strongly connected components

Breadth-first search: Idea

CS473 – Lecture 14 Cevdet Aykanat - Bilkent University

Computer Engineering Department

2

Graph Searching: Breadth-First Search

Graph G =(V, E), directed or undirected with adjacency list repres.

GOAL: Systematically explores edges of G to

• discover every vertex reachable from the source vertex s

• compute the shortest path distance of every vertex             
from the source vertex s

• produce a breadth-first tree (BFT) G! with root s

" BFT contains all vertices reachable from s

" the unique path from any vertex v to s in G!

constitutes a shortest path from s to v in G

IDEA: Expanding frontier across the breadth -greedy-

• propagate a wave 1 edge-distance at a time

• using a FIFO queue: O(1) time to update pointers to both ends
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Breadth-first search
Depth-first search
Topological sort
Strongly connected components

Breadth-first search: Key components

CS473 – Lecture 14 Cevdet Aykanat - Bilkent University

Computer Engineering Department

3

Breadth-First Search Algorithm

Maintains the following fields for each u ! V

• color[u]: color of u

"WHITE : not discovered yet

"GRAY  : discovered and to be or being processed

" BLACK: discovered and processed

• #[u]: parent of u (NIL of u = s or u is not discovered yet)

• d[u]: distance of u from s

Processing a vertex = scanning its adjacency list
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Basic algorithms

Questions

Breadth-first search
Depth-first search
Topological sort
Strongly connected components

Breadth-first search: Algorithm

CS473 – Lecture 14 Cevdet Aykanat - Bilkent University

Computer Engineering Department

4

Breadth-First Search Algorithm

BFS(G, s)

for each u ! V" {s} do
color[u] # WHITE
$[u] # NIL; d [u] #%

color[s] # GRAY
$[s] # NIL; d [s] # 0
Q # {s}
while Q & ' do

u # head[Q]
for each v in Adj[u] do

if color[v] = WHITE then
color[v] # GRAY
$[v] # u
d [v] # d [u] + 1
ENQUEUE(Q, v)

DEQUEUE(Q)
color[u] # BLACK
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Breadth-first search
Depth-first search
Topological sort
Strongly connected components

Breadth-first search: Example

CS473 – Lecture 14 Cevdet Aykanat - Bilkent University

Computer Engineering Department

5

Breadth-First Search

Sample Graph:

 

 a 

 b 

 g 

 c 

 f 

 d 

 e 

 h 

 i 

 0 

 s 
FIFO               just after

queue Q processing vertex

!a" -
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Breadth-First Search

 

 a 

 b 

 g 
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 f 

 d 

 e 

 h 

 i 

 0 

 1 

 1 

 s 
FIFO               just after

queue Q processing vertex

!a" -

!a,b,c" a
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Breadth-First Search

 

 a 

 b 

 g 
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 f 

 d 

 e 

 h 

 i 

 0 

 1 

 1 

 2 

 s 
FIFO               just after

queue Q processing vertex

!a" -

!a,b,c" a

!a,b,c,f" b

29/124 CR09



Definitions and some problems
Basic algorithms

Questions

Breadth-first search
Depth-first search
Topological sort
Strongly connected components

Breadth-first search: Example

CS473 – Lecture 14 Cevdet Aykanat - Bilkent University

Computer Engineering Department

8

Breadth-First Search

 

 a 

 b 

 g 

 c 

 f 

 d 

 e 

 h 

 i 

 0 

 1 

 1 

 2 

 2 

 s 
FIFO               just after

queue Q processing vertex

!a" -

!a,b,c" a

!a,b,c,f" b

!a,b,c,f,e" c
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Breadth-First Search
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 h 
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 1 
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 2 

 s 

 3  3 

FIFO               just after

queue Q processing vertex

!a" -

!a,b,c" a

!a,b,c,f" b

!a,b,c,f,e" c

!a,b,c,f,e,g,h" f
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Breadth-First Search

 

 a 

 b 

 g 
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 f 
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 e 

 h 

 i 
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 1 

 1 

 2 

 2 

 s 

 3  3 

 3 

 3 

FIFO               just after

queue Q processing vertex

!a" -

!a,b,c" a

!a,b,c,f" b

!a,b,c,f,e" c

!a,b,c,f,e,g,h" f

!a,b,c,f,e,g,h,d,i" e

all distances are filled in after processing e
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Breadth-First Search
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 3 

 3 

FIFO               just after

queue Q processing vertex

!a" -

!a,b,c" a

!a,b,c,f" b

!a,b,c,f,e" c

!a,b,c,f,e,g,h" f

!a,b,c,f,e,g,h,d,i" g
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Breadth-First Search
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 3 

 3 

FIFO               just after

queue Q processing vertex

!a" -

!a,b,c" a

!a,b,c,f" b

!a,b,c,f,e" c

!a,b,c,f,e,g,h" f

!a,b,c,f,e,g,h,d,i" h
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Breadth-First Search
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FIFO               just after

queue Q processing vertex

!a" -

!a,b,c" a

!a,b,c,f" b

!a,b,c,f,e" c

!a,b,c,f,e,g,h" f

!a,b,c,f,e,g,h,d,i" d
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Breadth-First Search
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 s 

 3  3 

 3 

 3 

FIFO               just after

queue Q processing vertex

!a" -

!a,b,c" a

!a,b,c,f" b

!a,b,c,f,e" c

!a,b,c,f,e,g,h" f

!a,b,c,f,e,g,h,d,i" i

algorithm terminates: all vertices are processed
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Breadth-first search: Analysis

CS473 – Lecture 14 Cevdet Aykanat - Bilkent University

Computer Engineering Department

15

Breadth-First Search Algorithm

Running time: O(V+E) = considered linear time in graphs

• initialization: !(V)

• queue operations: O(V)

" each vertex enqueued and dequeued at most once

" both enqueue and dequeue operations take O(1) time

• processing gray vertices: O(E)

" each vertex is processed at most once and 

!
#

!=
Vu

EuAdj )(|][|
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Breadth-first search: The paths to the root

CS473 – Lecture 14 Cevdet Aykanat - Bilkent University

Computer Engineering Department

25

Breadth-First Tree Generated by BFS

LEMMA 4: predecessor subgraph G!=(V!, E!) generated by 
BFS(G, s) , where V! ={v " V: ![v] # NIL}${s} and

E! ={(![v],v) " E: v " V! %{s}}
is a breadth-first tree such that

% V! consists of all vertices in V that are reachable from s

% &v " V! , unique path p(v, s) in G! constitutes a sp(s, v) in G

PRINT-PATH(G, s, v)

if v = s then print s
else if ![v] = NIL then 

print no “s!v path”
else

PRINT-PATH(G, s, ![v] )
print v

Prints out vertices on a 

s!v shortest path
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Breadth-first search: The BFS tree
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Breadth-First Tree Generated by BFS
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BFS(G,a) terminated BFT generated by BFS(G,a) 
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Depth-first search: Idea
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Depth-first search: Parenthesis theorem

CS473 – Lecture 16 Cevdet Aykanat - Bilkent University

Computer Engineering Department

2

DFS: Parenthesis Theorem

Thm: In any DFS of G=(V,E), let int[v] = [d[v], f[v]] 

then exactly one of the following holds 

for any u and v !V

• int[u] and int[v] are entirely disjoint

• int[v] is entirely contained in int[u] and 

v is a descendant of u in a DFT

• int[u] is entirely contained in int[v] and 

u is a descendant of v in a DFT
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Parenthesis 

Theorem

x y z

s t

w v u

2

3 4 5 6

7 9 1 0

8 1 11 1 2

1 4 1 5

1 3 1 6

1 2 3 4 5 6 7 8 9

x z

s y u

w v t

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

1 0 1 1 1 2 1 3 1 4 1 5 1 6

( x ( s ( w w ) ( v v ) s ) ( y ( t t ) y ) x ) ( z ( u u ) z )
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6

Edge Classification in a DFF

Tree Edge: discover a new (WHITE) vertex
!GRAY to WHITE"

Back Edge: from a descendent to an ancestor in DFT
!GRAY to GRAY"

Forward Edge: from ancestor to descendent in DFT
!GRAY to BLACK"

Cross Edge: remaining edges (btwn trees and subtrees)
!GRAY to BLACK"

Note: ancestor/descendent is wrt Tree Edges
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7

Edge Classification in a DFF

• How to decide which GRAY to BLACK edges 
are forward, which are cross

Let BLACK vertex v !Adj[u] is encountered 
while processing GRAY vertex u

– (u,v) is a forward edge if d[u] <<<< d[v] 

– (u,v) is a cross edge if d[u] >>>> d[v] 
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Depth-First Search: Example
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Depth-First Search: Example
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Depth-First Search: Example
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Depth-first search: Undirected graphs

Edge classification

Any DFS on an undirected graph produces only Tree and Back edges.
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Depth-first search: Non-recursive algorithm

[π, d , f ]=DFS(G , v)

top ← 1
stack(top)← v
d(v)← ctime ← 1
while top > 0 do

u ← stack(top)
if there is a vertex w ∈ Adj(u) where π(w) is not set then

top ← top + 1
stack(top)← w
π(w)← u
d(w)← ctime ← ctime + 1

else
f (u)← ctime ← ctime + 1
top ← top − 1
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Topological sort

Topological sort (of a directed acyclic graph): It is a linear ordering of all
the vertices such that if (u, v) is a directed edge, then u appears before v
in the ordering.

Ordering is not necessarily unique.
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Topological sort: Example

3/4
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under

100/124 CR09



Definitions and some problems
Basic algorithms

Questions

Breadth-first search
Depth-first search
Topological sort
Strongly connected components

Topological sort: Algorithm

The algorithm

run DFS(G )

when a vertex is finished, output it

vertices are output in the reverse topologically sorted order

Runs in O(V + E ) time — a linear time algorithm.

The algorithm: Correctness

if (u, v) ∈ E , then f [u] > f [v ]

Proof: Consider the color of v during exploring the edge (u, v), where u
is Gray. 2

v cannot be Gray (otherwise a Back edge in an acyclic graph !!!).

If v is White, then u is an ancestor of v , hence f [u] > f [v ].

If v is Black, f [v ] is computed already, f [u] is going to be computed,
hence f [u] > f [v ].
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Strongly connected components (SCC)

The strongly connected components of a directed graph are the
equivalence classes of vertices under the “are mutually reachable”
relation.

For a graph G = (V ,E ), the transpose is defined as GT = (V ,ET ),
where ET = {(u, v) : (v , u) ∈ E}.

Constructing GT from G takes O(V + E ) time with adjacency list (like
the CSR or CSC storage format for sparse matrices) representation.

Notice that G and GT have the same SCCs.
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Strongly connected components: Algorithm
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Strongly Connected Components

Algorithm

(1) Run DFS(G) to compute finishing times for all u!V

(2) Compute GT

(3) Call DFS(GT) processing vertices in main loop in 

decreasing f[u] computed in Step (1)

(4) Output vertices of each DFT in DFF of Step (3) as a 

separate SCC
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Strongly Connected Components

Lemma 1: no path between a pair of vertices in 

the same SCC, ever leaves the SCC

Proof: let u and v be in the same SCC ! u ! v

let w be on some path u !w ! v ! u !w 

but v ! u ! ! a path w !v ! u ! w !u 

therefore u and w are in the same SCC 

QED

u

v

w
SCC
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SCC: Example
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SCC: Example
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(1)Run DFS(G) to compute finishing times for all u!V
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SCC: Example
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(1)Run DFS(G) to compute finishing times for all u!V
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SCC: Example
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(1)Run DFS(G) to compute finishing times for all u!V
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SCC: Example
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1

Vertices sorted according to the finishing times:

!!!!b, e, a, c, d, g, h, f """"
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SCC: Example

a b c

e

d

f g h

(2)Compute GT
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SCC: Example

a b c

e

d

f g h

(3) Call DFS(GT) processing vertices in main loop in 

decreasing f[u] order: !!!!b, e, a, c, d, g, h, f """"
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SCC: Example
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(3) Call DFS(GT) processing vertices in main loop in 

decreasing f[u] order: !!!!b, e, a, c, d, g, h, f """"
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SCC: Example
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(3) Call DFS(GT) processing vertices in main loop in 
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SCC: Example
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(3) Call DFS(GT) processing vertices in main loop in 
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SCC: Example
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(3) Call DFS(GT) processing vertices in main loop in 

decreasing f[u] order: !!!!b, e, a, c, d, g, h, f """"
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(3) Call DFS(GT) processing vertices in main loop in 
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SCC: Example
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(3) Call DFS(GT) processing vertices in main loop in 

decreasing f[u] order: !!!!b, e, a, c, d, g, h, f """"
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SCC: Example
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(4) Output vertices of each DFT in DFF as a separate SCC

Cb={b,a,e}
Cg={g,f} Ch={h}

Cc={c,d}
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SCC: Example
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graph
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Strongly connected components: Observations

In any DFS(G ), all vertices in the same SCC are placed in the same
DFT.

In the DFS(G ) step of the algorithm, the last vertex finished in an
SCC is the first vertex discovered in the SCC.

Consider the vertex r with the largest finishing time. It is a root of a
DFT. Any vertex that is reachable from r in GT should be in the
SCC of r (why?)

121/124 CR09



Definitions and some problems
Basic algorithms

Questions

Breadth-first search
Depth-first search
Topological sort
Strongly connected components

SCC and reducibility

To detect if there exists a permutation matrix P such that

PAPT =

(
A11 A12

O A22

)
,

where A11 is an r × r submatrix, A22 is an (n − r)× (n − r) submatrix,
where 1 ≤ r < n:

run SCC on the directed graph of A to identify each strongly connected
component as an irreducible block (more than one SCC?). Hence A11,
too, can be in that form (how many SCCs?).
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Could not get enough of it: Questions

How would you describe the following in the language of graphs

the structure of PAPT for a given square sparse matrix A and a
permutation matrix P,

the structure of PAQ for a given square sparse matrix A and two
permutation matrices P and Q,

the structure of Ak , for k > 1,

the structure of AAT ,

the structure of the vector b, where b = Ax for a given sparse
matrix A, and a sparse vector x .
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Could not get enough of it: Questions

Can you define:

the row-net hypergraph model of a matrix.

a matching in a hypergraph (is it a hard problem?).

Can you relate:

the DFS or BFS on a tree to a topological ordering? postordering?

Find an algorithm

how do you transpose a matrix in CSR or CSC format?
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