Introduction to
graph theory and algorithms

Jean-Yves L'Excellent and Bora Ucar

GRAAL, LIP, ENS Lyon, France

CR-07: Sparse Matrix Computations, September 2010
http://graal.ens-1lyon.fr/~bucar/CRO7/

1/124 CR09

http://graal.ens-lyon.fr/~bucar/CR07/

Outline

Outline

@ Definitions and some problems

© Basic algorithms
@ Breadth-first search
@ Depth-first search
@ Topological sort
@ Strongly connected components

© Questions

2/124 CR09

Definitions and some problems

Graph notations and definitions

A graph G = (V, E) consists of a finite set V/, called the vertex set and a
finite, binary relation E on V/, called the edge set.

Three standard graph models

Undirected graph: The edges are unordered pair of vertices, i.e.,
{u,v} € E for some u,v € V.

Directed graph: The edges are ordered pair of vertices, that is, (v, v) and
(v, u) are two different edges.

Bipartite graph: G = (U U V/, E) consists of two disjoint vertex sets U
and V such that for each edge (u,v) € E, u€ Uand v € V.

An ordering or labelling of G = (V/, E) having n vertices, i.e., |V| = n, is
a mapping of V onto 1,2,... n.

3/124 CR09

Definitions and some problems

Matrices and graphs: Rectangular matrices

The rows/columns and nonzeros of a given sparse matrix correspond (with
natural labelling) to the vertices and edges, respectively, of a graph.

Rectangular matrices
1 2 3 4 e
1 /x X @
A= 2| X X @
3 X X Q‘
X B
@)
()

The set of rows corresponds to one of the vertex set R, the set of columns

corresponds to the other vertex set C such that for each a; # 0, (i, ¢;) is an
edge.

4/124 CR09

Definitions and some problems

Matrices and graphs: Square unsymmetric pattern

The rows/columns and nonzeros of a given sparse matrix correspond (with
natural labelling) to the vertices and edges, respectively, of a graph.

Square unsymmetric

Graph models

pattern matrices

@ Bipartite graph as before.

1 2 3 @ Directed graph
1 /x X
A=2| x X (\1
\" 2)

Y e

_/\/4

The set of rows/cols corresponds the vertex set V such that for each a; # 0,
(vi, vj) is an edge. Transposed view possible too, i.e., the edge (v;, v;) directed
from column i to row j. Usually self-loops are omitted.

5/124 CR09

Definitions and some problems

Matrices and graphs: Square unsymmetric pattern

A special subclass

Directed acyclic graphs (DAG): We can sort the vertices such that
A directed graphs with no loops if (u,v) is an edge, then u appears
(maybe except for self-loops). before v in the ordering.

Question: What kind of matrices have a DAG?

6/124 CR09

Definitions and some problems

Matrices and graphs: Symmetric pattern

The rows/columns and nonzeros of a given sparse matrix correspond (with
natural labelling) to the vertices and edges, respectively, of a graph.

Square symmetric

Graph models

pattern matrices

@ Bipartite and directed graphs as before.

1 2 3 @ Undirected graph
1 X
A=2| x x X
3 X X e

The set of rows/cols corresponds the vertex set V such that for each
ajj, aj # 0, {vi, vj} is an edge. No self-loops; usually the main diagonal is
assumed to be zero-free.

7/124 CR09

Definitions and some problems

Definitions: Edges, degrees, and paths

Many definitions for directed and undirected graphs are the same. We
will use (u, v) to refer to an edge of an undirected or directed graph to
avoid repeated definitions.

@ An edge (u,v) is said to incident on the vertices u and v.

@ For any vertex u, the set of vertices in adj(v) = {v : (u,v) € E} are
called the neighbors of u. The vertices in adj(u) are said to be
adjacent to u.

@ The degree of a vertex is the number of edges incident on it.

@ A path p of length k is a sequence of vertices (v, vi, ..., vx) where
(vi—1,v;) € Efori=1,..., k. The two end points vy and v are
said to be connected by the path p, and the vertex v, is said to be
reachable from vy.

8/124 CR09

Definitions and some problems

Definitions: Components

@ An undirected graph is said to be connected if every pair of vertices
is connected by a path.

@ The connected components of an undirected graph are the
equivalence classes of vertices under the “is reachable” from
relation.

@ A directed graph is said to be strongly connected if every pair of
vertices are reachable from each other.

@ The strongly connected components of a directed graph are the
equivalence classes of vertices under the “are mutually reachable”
relation.

9/124 CR09

Definitions and some problems

Definitions: Trees and spanning trees

A tree is a connected, acyclic, undirected graph. If an undirected graph is
acyclic but disconnected, then it is a forest.

Properties of trees

@ Any two vertices are connected by a unique path.
o |[E|=|V|-1

A rooted tree is a tree with a distinguished vertex r, called the root.

There is a unique path from the root r to every other vertex v. Any
vertex y in that path is called an ancestor of v. If y is an ancestor of v,
then v is a descendant of y.

The subtree rooted at v is the tree induced by the descendants of v,
rooted at v.

A spanning tree of a connected graph G = (V,E)isatree T = (V,F),
such that F C E.

10/124 CR09

Definitions and some problems

Ordering of the vertices of a rooted tree

o A topological ordering of a rooted tree is an ordering that numbers
children vertices before their parent.

@ A postorder is a topological ordering which numbers the vertices in
any subtree consecutively.

N

Connected graph G
6 6
‘ 2 4 5
4 3
pts o

Rooted spanning tree Rooted spanning tre

with topological ordering with postordering

11/124 CR09

Definitions and some problems

Postordering the vertices of a rooted tree — |

The following recursive algorithm will do the job:

[porder|=POSTORDER(T, r)
for each child c of r do
porder «— [porder, POSTORDER(T, ¢)]
porder «— [porder, r]

We need to run the algorithm for each root r when T is a forest.

Usually recursive algorithms are avoided, as for a tree with large number
of vertices can cause stack overflow.

12/124 CR09

Definitions and some problems

Postordering the vertices of a rooted tree — Il

[porder|=POSTORDER(T, r)
porder — []
seen(v) « False forall v T
seen(r) < True
PusH(S, r)
while NoTEMPTY(S) do
v —Pop(S)
if 3 a child ¢ of v with seen(c) = False then
seen(c) < True
PuUsH(S, ¢)
else
porder «— [porder, v]

Again, have to run for each root, if T is a forest.

Both algorithms run in O(n) time for a tree with n nodes.

13/124 CR09

Definitions and some problems

Permutation matrices

A permutation matrix is a square (0, 1)-matrix where each row and
column has a single 1.

If P is a permutation matrix, PPT =1, i.e., itis an orthogonal matrix.

Let,
1 2 3
1 /x x
A= 2| x X
3 X

and suppose we want to permute columns as [2,1,3]. Define p, 1 =1,
pi2=1, p33=1 and B=AP (if column j to be at position 7, set

pi = 1)
2 3 1 2 3 1 2 3
1 /x X 1 /x x 1 1
B=2 X X | =21 X x 1211
3 X 3 x]/ 3 1

Definitions and some problems

Matching in bipartite graphs and permutations

A matching in a graph is a set of edges no two of which share a common
vertex. We will be mostly dealing with matchings in bipartite graphs.

In matrix terms, a matching in the bipartite graph of a matrix
corresponds to a set of nonzero entries no two of which are in the same
row or column.

A vertex is said to be matched if there is an edge in the matching
incident on the vertex, and to be unmatched otherwise. In a perfect
matching, all vertices are matched.

The cardinality of a matching is the number of edges in it. A maximum
cardinality matching or a maximum matching is a matching of maximum
cardinality. Solvable in polynomial time.

15/124 CR09

Definitions and some problems

Matching in bipartite graphs and permutations

Given a square matrix whose bipartite graph has a perfect matching, such
a matching can be used to permute the matrix such that the matching
entries are along the main diagonal.

wWnN =
X
X

2 3 3 1 2 3
1 /x x 1 /x x 1 1
2 X X |=21]x x |21
3 X 3 x /3 1

16/124 CR09

Definitions and some problems

Definitions: Reducibility

Reducible matrix: An n X n square matrix is reducible if there exists an
n X n permutation matrix P such that

A A
T _ 11 12
PAP _(0 Ao) ,

where Aj1 is an r X r submatrix, Az is an (n — r) x (n — r) submatrix,
where 1 < r < n.

Irreducible matrix: There is no such a permutation matrix.

Theorem: An n X n square matrix is irreducible iff its directed graph is
strongly connected.

Proof: Follows by definition.

17/124 CR09

Definitions and some problems

Definitions: Fully indecomposability

Fully indecomposable matrix: There is no permutation matrices P and @
such that
Al A
PAQ =
Q < O A22)
with the same condition on the blocks and their sizes as above.

Theorem: An n x n square matrix A is fully indecomposable iff for some
permutation matrix P, the matrix PA is irreducible and has a zero-free
main diagonal.

Proof: We will come later in the semester to the “if” part.

Only if part (by contradiction): Let B = PA be an irreducible matrix with
zero-free main diagonal. B is fully indecomposable iff A is (why?).
Therefore we may assume that A is irreducible and has a zero-free
diagonal. Suppose, for the sake of contradiction, A is not fully
indecomposable.

18/124 CR09

Definitions and some problems

Fully indecomposable matrices

Fully indecomposable matrix

There is no permutation matrices P and @ such that

All A12 >

PAQ = (o A

with the same condition on the blocks and their sizes as above.

Proof cont.: Let P;AQ; be of the form above with A;; of size r x r. We
may write P;AQ; = A'Q’, where A’ = P AP, T with zero-free diagonal
(why?), and Q" = Py @y is a permutation matrix which has to permute
(why?) the first r columns among themselves, and similarly the last n — r
columns among themselves. Hence, A’ is in the above form, and A is
reducible: contradiction. O

19/124 CR09

Definitions and some problems

Definitions: Cliques and independent sets

Clique

In an undirected graph G = (V/, E), a set of vertices S C V is a clique if for all
s,t € S, we have (s, t) € E.

Maximum clique: A clique of maximum cardinality (finding a maximum clique
in an undirected graph is NP-complete).

Maximal clique: A clique is a maximal clique, if it is not contained in another
clique.

In a symmetric matrix A, a clique corresponds to a subset of rows R and the
corresponding columns such that the matrix A(R, R) is full.

Independent set

A set of vertices is an independent set if none of the vertices are adjacent to
each other. Can we find the largest one in polynomial time?

In a symmetric matrix A, an independent set corresponds to a subset of rows R
and the corresponding columns such that the matrix A(R, R) is either zero, or
diagonal.

20/124 CR09

Definitions and some problems

Definitions: More on cliques

Clique: In an undirected graph G = (V/, E), a set of vertices S C V is a
clique if for all s,t € S, we have (s, t) € E.

In a symmetric matrix A corresponds to a subset of rows R and the
corresponding columns such that the matrix A(R, R) is full.

Cliques in bipartite graphs: Bi-cliques

In a bipartite graph G = (U U V/, E), a pair of sets (R, C) where R C U
and C C V is a bi-clique if for all 2 € R and b € C, we have (a, b) € E.

In a matrix A, corresponds to a subset of rows R and a subset of columns
C such that the matrix A(R, C) is full.

The maximum node bi-clique problem asks for a bi-clique of maximum
size (e.g., |[R| +|C|), and it is polynomial time solvable, whereas
maximum edge bi-clique problem (e.g., asks for a maximum |R| x |C]) is
NP-complete.

21/124 CR09

Definitions and some problems

Definitions: Hypergraphs

Hypergraph: A hypergraph H = (V/,) consists of a finite set V/ called the
vertex set and a set of non-empty subsets of vertices /V called the hyperedge
set or the net set. A generalization of graphs.

For a matrix A, define a hypergraph whose vertices correspond to the rows and
whose nets correspond to the columns such that vertex v; is in net n; iff a; # 0
(the column-net model).

A sample matrix The column-net hypergraph model

1 2 3 4 —
1 /X X X § "
2| x X G
3\x x X '

0 @,'(
o1 "3

|

n 7

22/124 CR09

Basic algorithms

1 components

Basic graph algorithms

Searching a graph: Systematically following the edges of the graph so as
to visit all the vertices.

@ Breadth-first search,

@ Depth-first search.

Topological sort (of a directed acyclic graph): It is a linear ordering of all
the vertices such that if (v, v) directed is an edge, then u appears before
v in the ordering.

Strongly connected components (of a directed graph; why?): Recall that
a strongly connected component is a maximal set of vertices for which
every pair its vertices are reachable. We want to find them all.

We will use some of the course notes by Cevdet Aykanat
(http://www.cs.bilkent.edu.tr/~aykanat/teaching.html)

23/124 CR09

http://www.cs.bilkent.edu.tr/~aykanat/teaching.html

Basic algorithms

Breadth-first search: ldea

Graph G =(V, E), directed or undirected with adjacency list repres.
GOAL: Systematically explores edges of G to
* discover every vertex reachable from the source vertex s

» compute the shortest path distance of every vertex
from the source vertex s

* produce a breadth-first tree (BFT) G with root s
— BFT contains all vertices reachable from s

— the unique path from any vertex v to s in G
constitutes a shortest path from s to vin G

IDEA: Expanding frontier across the breadth -greedy-
* propagate a wave 1 edge-distance at a time
¢ using a FIFO queue: O(1) time to update pointers to both ends

24/124 CR09

Basic algorithms
mponents

Breadth-first search: Key components

Maintains the following fields for eachu € V

e color[u]: color of u
— WHITE : not discovered yet
— GRAY : discovered and to be or being processed

- BLACK: discovered and processed
e T[u]: parent of u (NIL of u = s or u is not discovered yet)

e d[u]: distance of u from s

Processing a vertex = scanning its adjacency list

25/124 CR09

Basic algorithms

Breadth-first search: Algorithm

BFS(G, s)
for each u € V- {s} do
color[u] < WHITE
II[u] <= NIL; d [u] <= o0
color[s] <= GRAY
II[s] <= NIL; d [s] < 0
0 < {s}
while O = & do
u < head[Q]
for each v in Adj[u] do
if color[v] = WHITE then
color[v] < GRAY
v] < u
dvl]<du]l+1
ENQUEUE(Q, v)
DEQUEUE(Q)
color[u] <= BLACK

26/124 CR09

1 components

0 FIFO just after

A
/@ queue O processing vertex
(2) -
@>®\ |

27/124 CR09

1 components

>~ 0 FIFO just after

TA
f\ I /@ queue QO processing vertex
1 ?\ (a)]

(a,b,c) a

28/124 CR09

Depth-fi
Topc
S

Basic algorithms

1 components

0 FIFO just after

A
1 /@ queue O processing vertex

1 (@) :

{a,b,c) a

\ 2 (ab,c,f) b
O

29/124 CR09

Depth-fi
Topc
S

Basic algorithms

1 components

FIFO just after
queue O processing vertex

(@)
(ab,c)
(ab,c.f)

a (ap,cfe)
f

o o o

30/124 CR09

Depth-fi
Topc
S

Basic algorithms

1 components

S
0 FIFO just after
1 /@ queue O processing vertex
1 2 <a> -

°\ e <a’b ’c>
2 (ab,cf)
(apcfe)
(abcfe.gh)

- 0 o

31/124 CR09

cted components

FIFO just after
queue 0 processing vertex

() -
(a,b,c)

(ab,c.f)
(apb,c.fe)
(a,b,c.fe.gh)
(abcfe.ghdi)

!

all distances are filled in after processing e

o -0 o

32/124 CR09

1 components

FIFO just after
queue O processing vertex

(@ -
{a,b,c)

(a,bc,b
(abcfe)
(a,b,c.fe,gh)
(ab,c.fe,gh,d,i)

@ ~h O o

33/124 CR09

cted components

FIFO just after
queue O processing vertex

(@) -
{a,b,c)

(a,b,c.b)
(a,b,c.fe)
(a,bcfe.gh)
(a,b,c.fe,ghd,i)

- 0 o e

34/124 CR09

1 components

0 3 FIFO just after

Ao\ | /o queue O processing vertex
L L |
(a,bc) a
o\ 2 (ab.c.fy b
(ab.cfe) c
\ 3 (abcfegh) f
(apecfeghdi) d

3 3 T

35/124 CR09

Breadth-first search
Depth-first
T
S

Basic algorithms

3 FIFO just after
queue O processing vertex

(@) -
(a,b,c)

(a,b,c.f)
(a,b,c.fe)
(a,bcfe.gh)
(a,b.cfe.ghd,i)

r?
it

-0 o o

—-

‘

algorithm terminates: all vertices are processed

36/124 CR09

Running time: O(V+E) = considered linear time in graphs
e initialization: (V)
* queue operations: O(V)
—each vertex enqueued and dequeued at most once
— both enqueue and dequeue operations take O(1) time

e processing gray vertices: O(E)
—each vertex is processed at most once and

> 1 Adjlu]l= ©(E)

uev

37/124 CR09

Breadth-first search
Basic algorithms 2 :
nts

Breadth-first search: The paths to the root

BFS(G, s) , where V;={v € V: II[v] = NIL}U{s} and
Eq={(pv]yv) e E:ve Vi—{s}}
is a breadth-first tree such that
— V[consists of all vertices in V that are reachable from s

- Vv € V;, unique path p(v, s) in G, constitutes a sp(s, v) in G

PRINT-PATH(G, s, v) Prints out vertices on a
s=>v shortest path

if v = s then print s
else if 11[v] = NIL then
print no “s—>v path”
else
PRINT-PATH(G, s, I1[v])
print v

38/124 CR09

Basic algorithms

Breadth-first search
D h

Breadth-first search: The BFS tree

Breadth-First Tree Generated by BFS

Brs(G,a) terminated

BFT generated by BFs(G,a)

o]
)
g O

@_’@

39/124

CR09

Depth-first search: Idea

Graph G=(V,E) directed or undirected
Adjacency list representation

Goal: Systematically explore every vertex and
every edge

Idea: search deeper whenever possible
— Using a LIFO queue (Stack; FIFO queue used in BFS)

40/124 CR09

Depth-first search: Key components

» Maintains several fields for each veV
» Like BFS, colors the vertices to indicate their
states. Each vertex is
— Initially white,
— grayed when discovered,
— blackened when finished

» Like BFS, records discovery of a white v during
scanning Adj[u] by n[v]« u

41/124 CR09

Depth-first search: Key components

» Unlike BFS, predecessor graph G produced by
DFS forms spanning forest

* G =(V.E) where
E ={(n[v],v): veV and n[v]# NIL}

* G = depth-first forest (DFF) is composed of
disjoint depth-first trees (DFTs)

42/124 CR09

B
Basic algorithms Depth-fir
s

Depth-first search: Key components

DFS also timestamps each vertex with two timestamps

d[v]: records when Vv is first discovered and grayed

f[v]: records when v is finished and blackened

Since there is only one discovery event and finishing
event for each vertex we have 1< d[v] < f[V]< 2|V]|

Time axis for the color of a vertex

OO eee OO0 o0 000 +-- @
Pt f ! f
12 d[v] fiv] 2|V

43/124 CR09

Depth-first search: Algorithm

DFS(G) DFS-VISIT(G, u)
for each ueV do color[u]« gray
color[u]«— white d[u]« time <« time +1
[u] <= NIL for each ve Adj[u] do
time < 0 if color[v]| = white then

[v] < u

f h
or each ueV do DFS-VISIT(G, v)

if color[u] = white then
DFS-VISIT(G, u) color[u]« black
flu]« time < time +1

44/124 CR09

Basic algorithms

Depth-first search: Analysis

* Running time: O@(V+E)

* Initialization loop in DFS : O(V)

* Main loop in DFS: ®(V) exclusive of time to execute
calls to DFS-VisiT

« DFS-VisiT is called exactly once for each veV since
— DFS-VISIT is invoked only on white vertices and
— DFS-VISIT(G, ©) immediately colors u as gray

* For loop of DFS-VISIT(G, u) is executed |Adj[u]| time
* Since Z |Adj[u]| = E, total cost of executing loop of
DFS-VisIT is O(E)

45/124 CR09

46/124 CR09

Basic algorithms

47/124 CR09

omponents

48/124 CR09

Basic algorithms

49/124 CR09

Basic algorithms

50/124 CR09

Basic algorithms

51/124 CR09

Basic algorithms

52/124 CR09

Basic algorithms

53/124 CR09

B
Basic algorithms ?
s

Depth-first search: Example

54/124 CR09

B
Basic algorithms ?
s

Depth-first search: Example

55/124 CR09

B
Basic algorithms ?
s

Depth-first search: Example

56/124 CR09

B
Basic algorithms ?
s

Depth-first search: Example

57/124 CR09

58/124 CR09

B
Basic algorithms ?
s

Depth-first search: Example

59/124 CR09

60/124 CR09

61/124 CR09

62/124 CR09

Basic algorithms

Depth-first search: Example

63/124 CR09

64/124 CR09

65/124 CR09

66/124 CR09

Basic algorithms

Depth-first search: Example

67/124 CR09

Basic algorithms

Depth-first search: Example

68/124 CR09

69/124 CR09

components

70/124 CR09

ponents

Depth-first search: Parenthesis theorem

Thm: In any DFS of G=(V ,E), let int[v] = [d[v], f[v]]
then exactly one of the following holds
for any u and v €V

* int[u] and int[v] are entirely disjoint

e int[v] is entirely contained in int[«] and
v is a descendant of u# in a DFT

* int[u] is entirely contained in int[v] and
u is a descendant of v in a DFT

71/124 CR09

Basic algorithms

d components

Depth-first search: Parenthesis theorem

Parenthesis
Theorem

Basic algorithms

mponents

Depth-first search: Edge classification

Tree Edge: discover a new (WHITE) vertex
>GRAY tO WHITE<

Back Edge: from a descendent to an ancestor in DFT
>GRAY t0 GRAY<

Forward Edge: from ancestor to descendent in DFT
>GRAY tO BLACK<

Cross Edge: remaining edges (btwn trees and subtrees)
>GRAY tO BLACK«

Note: ancestor/descendent is wrt Tree Edges

73/124 CR09

Basic algorithms

onents

Depth-first search: Edge classification

* How to decide which GRAY to BLACK edges
are forward, which are cross

Let BLACK vertex v €EAdj[u] is encountered
while processing GRAY vertex u

—(u,v) is a forward edge if d[u] < d[v]
—(u,v) 1s a cross edge if d[u] > d[v]

74/124 CR09

Basic algorithms

nponents

Depth-first search: Edge classification example

75/124 CR09

Basic algorithms

nponents

Depth-first search: Edge classification example

76/124 CR09

Basic algorithms

nponents

Depth-first search: Edge classification example

v CR09

Basic algorithms

nponents

Depth-first search: Edge classification example

78/124 CR09

Basic algorithms

nponents

Depth-first search: Edge classification example

79/124 CR09

Basic algorithms

nponents

Depth-first search: Edge classification example

80/124 CR09

Basic algorithms

nponents

Depth-first search: Edge classification example

81/124 CR09

Basic algorithms

nponents

Depth-first search: Edge classification example

82/124 CR09

Basic algorithms

nponents

Depth-first search: Edge classification example

83/124 CR09

Basic algorithms

nponents

Depth-first search: Edge classification example

84/124 CR09

Basic algorithms

nponents

Depth-first search: Edge classification example

85/124 CR09

Basic algorithms

nponents

Depth-first search: Edge classification example

86/124 CR09

Basic algorithms

nponents

Depth-first search: Edge classification example

87/124 CR09

Basic algorithms

components

Depth-first search: Edge classification example

88/124 CR09

Basic algorithms

components

Depth-first search: Edge classification example

89/124 CR09

Basic algorithms

components

Depth-first search: Edge classification example

90/124 CR09

Basic algorithms

components

Depth-first search: Edge classification example

91/124 CR09

Basic algorithms

components

Depth-first search: Edge classification example

92/124 CR09

Basic algorithms

components

Depth-first search: Edge classification example

93/124 CR09

Basic algorithms

components

Depth-first search: Edge classification example

94/124 CR09

Basic algorithms

components

Depth-first search: Edge classification example

95/124 CR09

Basic algorithms

1 components

Depth-first search: Edge classification example

96/124 CR09

Edge classification
Any DFS on an undirected graph produces only Tree and Back edges.

6/7 5/8 4/11 @
) | \
9/10
@ o Yo
)
1/20 é e
)
2/19 15/18 16/17 @

97/124 CR09

Basic algorithms
S n ents

Depth-first search: Non-recursive algorithm

[, d, f|=DFS(G,v)
top +— 1
stack(top) «— v
d(v) < ctime — 1
while top > 0 do
u «— stack(top)
if there is a vertex w € Adj(u) where (w) is not set then
top «— top+1
stack(top) «— w
w(w) — u
d(w) < ctime «— ctime + 1
else
f(u) « ctime <« ctime + 1
top «— top — 1

98/124 CR09

Basic algorithms

Topological sort

Topological sort (of a directed acyclic graph): It is a linear ordering of all
the vertices such that if (u, v) is a directed edge, then u appears before v
in the ordering.

Ordering is not necessarily unique.

99/124 CR09

Depth-first
Topological sort
S

conn:

Basic algorithms

Topological sort: Example

11/16] Under socks | 17/18 9/10
13/14

12/15{ pants]—[shoes } shirt }1/8
belt H jacket }—[tie } 2/5

6/7 3/4

[socks } { fggﬁr } { pants } { shoes } { watch} [shirt }
v

—

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

CR09

Basic algorith g o
asic algorithms Topological sort
Str

ected components

Topological sort: Algorithm

The algorithm
e run DFS(G)
@ when a vertex is finished, output it

@ vertices are output in the reverse topologically sorted order

Runs in O(V + E) time — a linear time algorithm.

The algorithm: Correctness
if (u,v) € E, then f[u] > f[v]

Proof: Consider the color of v during exploring the edge (u, v), where u
is GRAY. O

v cannot be GRAY (otherwise a Back edge in an acyclic graph !l!).
If v is WHITE, then u is an ancestor of v, hence f[u] > f[v].

If v is BLACK, f[v] is computed already, f[u] is going to be computed,
hence f[u] > f[v].

101/124 CR09

Basic algorithms To .
Strongly connected components

Strongly connected components (SCC)

The strongly connected components of a directed graph are the
equivalence classes of vertices under the “are mutually reachable”
relation.

For a graph G = (V/, E), the transpose is defined as GT = (V,ET),
where ET = {(u,v) : (v,u) € E}.

Constructing GT from G takes O(V + E) time with adjacency list (like
the CSR or CSC storage format for sparse matrices) representation.

Notice that G and G7 have the same SCCs.

102/124 CR09

Basic algorithms

Strongly

Strongly connected components: Algorithm

(1) Run DFS(G) to compute finishing times for all u€VvV

(2) Compute GT

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[«] computed in Step (1)

(4) Output vertices of each DFT in DFF of Step (3) as a
separate SCC

103/124 CR09

Basic algorithms +

sor
onnected components

Strongly connected components: Analysis

Lemma 1: no path between a pair of vertices in
the same SCC, ever leaves the SCC

Proof: let u and v be in the same SCC = u i v

let w be on some path u —Hw - v =
butvi>u=3dapathwrvi>u=

umrw
w—u

therefore u and w are in the same SCC

104/124 CR09

QED

Basic algorithms ical sort

connected components

Strongly connected components: Example

105/124 CR09

Basic algorithms .

opolc sor
Strongly connected components

Strongly connected components: Example

(1)Run DFS(G) to compute finishing times for all u€VvV

a b c ¥ d

e f g h

106/124 CR09

Basic algorithms A

opolc sor
Strongly connected components

Strongly connected components: Example

(1)Run DFS(G) to compute finishing times for all u&V

]
b

4

c ¥ d

107/124 CR09

Basic algorithms

opolc sort
Strongly connected components

Strongly connected components: Example

(1)Run DFS(G) to compute finishing times for all u€V

108/124 CR09

Basic algorithms

Strongly connected components

Strongly connected components: Example

e f g h
Vertices sorted according to the finishing times:
(b,e,a,c,d, g, h,f)

109/124 CR09

Basic algorithms .

sor
nnected components

Strongly connected components: Example

(2) Compute GT
a b o d
e f g9 h

110/124 CR09

Basic algorithms .

opolc sor
Strongly connected components

Strongly connected components: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] order: (b, e,a,c,d, g, h,f)

a b ¥ c d

e f g h

111/124 CR09

Basic algorithms

ical sort
connected components

Strongly connected components: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] order: (b, e,a,c,d, g, h,f)

112/124 CR09

Basic algorithms

ical sort
connected components

Strongly connected components: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] order: (b, e,a,c,d, g, h,f)

113/124 CR09

Basic algorithms

al sor
connected components

Strongly connected components: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] order: (b, e,a,c,d, g, h,f)

114/124 CR09

Basic algorithms

ical sort
connected components

Strongly connected components: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] order: (b, e,a,c,d, g, h,[)

115/124 CR09

Basic algorithms

ted components

Strongly connected components: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] order: (b, e,a,c,d, g, h,f)

e it S

116/124 CR09

Basic algorithms

ted components

Strongly connected components: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasmg f[u] order: (b, e,a,c,d, g, h,f)

117/124 CR09

Basic algorithms

ted components

Strongly connected components: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] order: (b, e,a,c,d, g, h,f)

118/124 CR09

Basic algorithms +

or
onnected components

Strongly connected components: Example

119/124 CR09

Acyclic component
graph

120/124

CR09

Basic algorithms ical sort

connected components

Strongly connected components: Observations

e In any DFS(G), all vertices in the same SCC are placed in the same
DFT.

@ In the DFS(G) step of the algorithm, the last vertex finished in an
SCC is the first vertex discovered in the SCC.

o Consider the vertex r with the largest finishing time. It is a root of a
DFT. Any vertex that is reachable from r in G7 should be in the
SCC of r (why?)

121/124 CR09

Basic algorithms

SCC and reducibility

To detect if there exists a permutation matrix P such that

T _(Au Anp
PAP _(0wl

where Aq; is an r X r submatrix, Ay is an (n — r) x (n — r) submatrix,
where 1 < r < n:

run SCC on the directed graph of A to identify each strongly connected

component as an irreducible block (more than one SCC?). Hence A;q,
too, can be in that form (how many SCCs?).

122/124 CR09

Questions

Could not get enough of it: Questions

How would you describe the following in the language of graphs

o the structure of PAPT for a given square sparse matrix A and a
permutation matrix P,

@ the structure of PAQ for a given square sparse matrix A and two
permutation matrices P and @,

@ the structure of A, for k > 1,
@ the structure of AAT,

@ the structure of the vector b, where b = Ax for a given sparse
matrix A, and a sparse vector x.

123/124 CR09

Questions

Could not get enough of it: Questions

Can you define:
@ the row-net hypergraph model of a matrix.
@ a matching in a hypergraph (is it a hard problem?).

Can you relate:

@ the DFS or BFS on a tree to a topological ordering? postordering?
Find an algorithm

@ how do you transpose a matrix in CSR or CSC format?

124/124 CR09

	Outline
	Main Talk
	Definitions and some problems
	Basic algorithms
	Breadth-first search
	Depth-first search
	Topological sort
	Strongly connected components

	Questions

