NCERT SOLUTIONS
 CLASS-VIII MATHS
 CHAPTER-7 CUBE AND CUBE
 ROOTS

Exercise 7.1

Q1:
Mention the numbers that are not perfect cubes.
(A) 216
(B) 128
(C) 1000
(D) 100
(E) 46656

Solution:
(A) 216

Prime factors of 216: $2 \times 2 \times 2 \times 3 \times 3 \times 3$
Here all the factors are in the groups of 3 's
Therefore, 216 is said to be a perfect cube number.

02	0216
02	0108
02	054
03	027
03	09
	03
	01

(B) 128

The prime factor of $128=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
Here one factor 2 does not appear in groups of 3
Hence, 128 is not a perfect cube.
02

0128
064
032
016
08
04
02
01
(C) 1000

The prime factors of $1000=2 \times 2 \times 2 \times 5 \times 5 \times 5$
Here all the factors are in groups of 3
Hence, 1000 is said to be a perfect cube.

| 02 | 0250 |
| :--- | :--- | :--- | :--- |
| 05 | 0125 |
| 05 | 025 |
| 05 | 05 |
| | 01 |

(D) 100

The prime factors of 100 is $2 \times 2 \times 5 \times 5$
Here all the factors do not appear in groups of 3 .
Hence, 100 is not a perfect cube.

02	0100
02	050
05	025
05	05
	01

(E) 46656

The prime factors of $46656=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$
Here all the factors are in groups of 3
Hence, 46656 is said to be a perfect cube.

02	046656
02	023328
02	011664
02	05832
02	02916
02	01458
03	0729
03	0243
03	081
03	027
03	09
03	03
	01

Q2 :
Find the smallest number when multiplied to obtain a perfect cube:
(A) 243
(B) 256
(C) 72
(D) 675
(E) 100

Solution:
(A) 243

The prime factors of $243=3 \times 3 \times 3 \times 3 \times 3$
Here 3 does not appear in groups of 3
Hence, For 243 to be a perfect cube it should be multiplied by 3 .

| 03 | 0243 |
| :--- | :--- | :--- |
| 03 | 081 |
| 03 | 027 |
| 03 | 09 |
| 03 | 03 |
| | 01 |

(B) 256

The prime factors of 256 is $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
Here one factor of 2 is required for it to make groups of 3 .
Hence, for 256 to be a perfect cube it should be multiplied by 2 .

| 02 | 0256 |
| :--- | :--- | :--- |
| 02 | 0128 |
| 02 | 064 |
| 02 | 032 |
| 02 | 016 |
| 02 | 08 |
| 02 | 04 |
| 02 | 02 |

(C) 72

The prime factors for $72=2 \times 2 \times 2 \times 3 \times 3$
Here the factor 3 does not appear in groups of 3
Hence, For 72 to be a perfect cube it should be multiplied by 3 .
(D) 675

The prime factors for $675=3 \times 3 \times 3 \times 5 \times 5$
Here the factor 5 does not appear in groups of 3
Hence, for 675 to be a perfect cube it should be multiplied by 5 .

| 03 | 0675 |
| :--- | :--- | :--- |
| 03 | 0225 |
| 03 | 075 |
| 05 | 025 |
| 05 | 05 |
| | 01 |

(E) 100

The prime factors for $100=2 \times 2 \times 5 \times 5$

Here both the factors 2 and 5 are not in groups of 3
Hence, for 100 to be a perfect cube it should be multiplied by 2 and 5. (i.e. $2 \times 5=10$)

02	0100
02	050
05	025
05	05
	01

Q3:
Find the smallest number by which when divided obtain a perfect cube.
(A) 81
(B) 128
(C) 135
(D) 192
(E) 704

Solution:

(A) 81

The prime factors for $81=3 \times 3 \times 3 \times 3$
Here, there is one factor of 3 which extra from the group of 3
Hence, for 81 to be a perfect cube it should be divided by 3 .

| 03 | 081 |
| :--- | :--- | :--- |
| 03 | 027 |
| 03 | 09 |
| 03 | 03 |
| | 01 |

(B) 128

The prime factors of $128=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
Here there is one factor of 2 which in not in the group of 3
Hence, for 128 to be a perfect cube then it should be divided by 2 .

| 02 | 0128 |
| :--- | :--- | :--- |
| 02 | 064 |
| 02 | 032 |
| 02 | 016 |
| 02 | 08 |
| 02 | 04 |
| 02 | 01 |
| | |

(C) 135

The prime factors of $135=3 \times 3 \times 3 \times 5$

Here there is one tactor of b which is not appearing with its group of 3 .

Hence, for 135 to be a perfect cube it should be divided by 5 .

03	0135
03	045
03	15
05	05
	01

(D) 192

The prime factors for $192=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$
Here there is one factor of 3 which does not appearing with its group of 3 .
Hence for 192 to be a perfect cube then it should be divided by 3 .

| 02 | 0192 |
| :--- | :--- | :--- |
| 02 | 096 |
| 02 | 048 |
| 02 | 024 |
| 02 | 012 |
| 02 | 06 |
| 03 | 01 |

(E) 704

The prime factor for $704=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11$
Here there is one factor of 11 which is not appearing with its group of 3 .
Hence for 704 to be a perfect cube it should be divided by 11.

| 02 | 0704 |
| :--- | :--- | :--- |
| 02 | 0352 |
| 02 | 0176 |
| 02 | 088 |
| 02 | 044 |
| 02 | 011 |
| 02 | 01 |

Q4:
Reuben makes a cuboid of clay of sides $5 \mathrm{~cm}, 2 \mathrm{~cm}, 5 \mathrm{~cm}$. If Reuben wants to form a cube how many such cuboids will be needed?

Solution:

The numbers given: $5 \times 2 \times 5$
Since the factors of 2 and 4 are both not in groups of 3 .
Then, the number should be multiplied by $2 \times 2 \times 5=20$ for it to be made a perfect cube .
Hence Reuben needs 20 cuboids.

Exercise 7.2

Q1 :
By the method of prime factorization find the cube root for the following.
(A) 64
(B) 512
(C) 10648
(D) 27000
(E) 15625
(F) 13824
(G) 110592
(H) 46656
(I) 175616
(J) 91125

Solution:

(A) 64

```
\(\sqrt[3]{64}=\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2}\)
\(\sqrt[3]{64}=2 \times 2\)
\(=4\)
```

| 02 | 064 |
| :--- | :--- | :--- |
| 02 | 032 |
| 02 | 016 |
| 02 | 08 |
| 02 | 04 |
| 02 | 02 |
| | 01 |

(B) 512

$\sqrt[3]{512}=\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2}$	
$=2 \times 2 \times 2$	
$=8$	
02	0512
02	0256
02	0128
02	064
02	032
02	016
02	08
02	04
02	02
	01

|sqrt[3]\{10648\}=\sqrt[3]\{2\times 2|times 2|times 11\times 11\times 11\}

$=2 \times 11$
$=22$

02	010648
02	05324
02	02662
011	01331
011	0121
011	011
	01

(D) 27000

(E) 15625
$\sqrt[3]{15625}=\sqrt[3]{5 \times 5 \times 5 \times 5 \times 5 \times 5}$
$=>5 \times 5$
=> 25

05	015625
05	03125
05	0625
05	0125
05	025
05	05
	01

(F) 13824
$\sqrt[3]{13824}=\sqrt[3]{2 \times 2 \times 3 \times 3 \times 3}$
$=>2 \times 2 \times 2 \times 3$
=> 24

02	03456
02	01728
02	0864
02	0432
02	0216
02	0108
02	054
03	27
03	09
03	03
	01

(G) 110592
$\sqrt[3]{110592}=\sqrt[3]{2 \times 2 \times 3 \times 3 \times 3}$
$=>2 \times 2 \times 2 \times 3$
=> 48

02	0110592
02	055296
02	027648
02	013824
02	06912
02	03456
02	01728
02	0864
02	0432
02	0216
02	0108
02	054
03	027
03	09
03	03
	01

(H) 46656
$\sqrt[3]{46656}=\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$
$=>2 \times 2 \times 2 \times 3 \times 3$
=> 36
(I) 175616
$\sqrt[3]{175616}=\sqrt[3]{2 \times 2 \times 7 \times 7 \times 7}$
$=>2 \times 2 \times 7$
=> 56

02	0175616
02	087808
02	043904
02	021952

| 02 | 010976 |
| :--- | :--- | :--- |
| 02 | 05488 |
| 02 | 02744 |
| 02 | 01372 |
| 02 | 0686 |
| 07 | 0343 |
| 07 | 049 |
| 07 | 07 |
| | 01 |

(J) 91125
$\sqrt[3]{91125}=\sqrt[3]{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5}$
$=>3 \times 3 \times 5$
=> 45

03	091125
03	010125
03	03375
03	01125
03	0375
05	0125
05	025
05	05
	01

Q2:
State whether the following is true of false:
(A) Any off number of a cube is even.
(B) When a number end with two zeros, it is never a perfect cube.
(C) If the square of a given number ends with 5 then its cube will end with 25.
(D) There is no number that ends with 8 which is a perfect cube.
(E) The cube of a given two digit number will always be a three digit number.
(F) The cube of a two digit number will have either seven or more digits.
(G) The cube of single digit number may also be a single digit number.

Solution:
(A) The statement given is false.

Since, $1^{3}=1,3^{3}=27,5^{3}=125$, \qquad
(B) The given statement is true.

Since, a perfect cube ends with three zeroes.
Eg. $10^{3}=1000,20^{3}=8000,30^{3}=27,000, \ldots \ldots \ldots$. so on.
(C) The given statement is false

Since, $5^{2}=25,5^{3}=125,15^{2}=225,15^{3}=3375$ (Did not end with 25)
(D) the given statement is false.

Since $12^{3}=1728$ [the number ends with 8]
$22^{3}=10648$ [the number ends with 8]
(E) The given statement is false

Since, $10^{3}=1000$ [Four digit number]
And $11^{3}=1331$ [four digit number]
(F) The statement is False.

Since $99^{3}=970299$ [Six digit number]
(G) the given statement is true
$1^{3}=1$ [single digit]
$2^{3}=8$ [single digit]
Q3 :
1331 is told to be a perfect cube. What are the factorization methods in which you can find its cube root? Similarly, find the cube roots for
(i) 4913
(ii)12167
(iii) 32768.

Solution:

We know that $10^{3}=1000$ and possible cute of $11^{3}=1331$
Since, the cube of units digit is $1^{3}=1$
Then, cube root of 1331 is 11
(i) 4913

We know that 7^{3} is 343
Next number that comes with 7 as the units place is $17^{3}=4913$
Therefore the cube root of 4913 is 17
(ii) 12167

Since we know that $3^{3}=27$
Here in cube, the ones digit is 7
Now the next number with 3 In the ones digit is $13^{3}=2197$
And the next number with 3 in the ones digit is $23^{3}=12167$
Hence the cube root of 12167 is 23
(iii) 32768

We know that $2^{3}=8$
Here in the cube, the ones digit is 8
Now the next number with 2 in the ones digit is $12^{3}=1728$
And the next number with 2 as the ones digit $22^{3}=10648$
And the next number with 2 as the ones digit $32^{3}=32768$
Hence the cube root of 32768 is 32

