NCERT SOLUTIONS
 CLASS-IX MATHS
 CHAPTER-13 SURFACE AREAS AND VOLUMES

QUESTIONS-:

1. A matchbox measures $5 \mathrm{~cm} \times 1 \mathrm{~cm} \times 3.5 \mathrm{~cm}$. Determine the volume of a packet containing 14 such boxes.

Soln.
Given the dimension of the matchbox $=5 \mathrm{~cm} \times 1 \mathrm{~cm} \times 3.5 \mathrm{~cm}$
Let us assume, $\mathrm{l}=5 \mathrm{~cm}, \mathrm{~b}=1 \mathrm{~cm}, \mathrm{~h}=3.5 \mathrm{~cm}$
As we know that, Volume of one matchbox $=(1 \times b \times h)$
$=(5 \times 1 \times 3.5) \mathrm{cm}^{3}=17.5 \mathrm{~cm}^{3}$
\therefore The volume of a packet containing 14 such boxes $=(17.5 \times 14) \mathrm{cm}^{3}=245 \mathrm{~cm}^{3}$
2. A cuboidal water tank is 10 m long, 2 m wide and 7.5 m deep. How many litres of water can it hold? ($1 \mathrm{~m}^{3}=1000 \mathrm{l}$)

Soln.
Dimensions of water tank $=10 \mathrm{~m} \times 2 \mathrm{~m} \times 7.5 \mathrm{~m}$
Let us assume, $\mathrm{l}=10 \mathrm{~m}, \mathrm{~b}=2 \mathrm{~m}, \mathrm{~h}=7.5 \mathrm{~m}$
Therefore Volume of the tank $=(l \times b \times h) m^{3}$
$=(10 \times 2 \times 7.5) \mathrm{m}^{3}=150 \mathrm{~m}^{3}$
Hence, the tank can hold $=150 \times 1000$ litres $=150000$ litres of water.
3. A cuboidal vessel is 25 m long and 12 m wide. Determine the height that must be made to hold 400 cubic metres of a liquid.

Soln.
Given, Length $=25 \mathrm{~m}$, Breadth $=12 \mathrm{~m}$ and Volume $=400 \mathrm{~m}^{3}$
As we know, Volume of cuboid $=$ Length \times Breadth \times Height
Therefore, Height $=$ Volume of cuboid/(Length \times Breadth $)$
$=\frac{400}{25 \times 12} m=1.33 \mathrm{~m}$
4. Find the value of digging a cuboidal pit 15 m long, 5 m broad and 3 m deep at the rate of Rs .50 per m^{3}.

Soln.
Here, length $=15 \mathrm{~m}$, breadth $=5 \mathrm{~m}$ and height $=3 \mathrm{~m}$
As we know that, Volume of the pit $=(l \times b \times h) m^{3}$
$=(15 \times 5 \times 3) m^{3}=225 m^{3}$
The rate of digging is $=$ Rs. 50 per m^{3}
\therefore The total value of digging the pit $=$ Rs. (225×50)
$=$ Rs. 11250
5. The capacity of a cuboidal tank is 2,10000 litres of water. Calculate the breadth, given that the length is 3.5 m and depth is 20 m .

Soln.
Given, length $=3.5 \mathrm{~m}$, depth $=15 \mathrm{~m}$ and volume $=30000$ litres
As we know that, $1 \mathrm{~m}^{3}=1000$ litres
$\therefore 210000$ litres $=\frac{210000}{1000} m^{3}=2101 m^{3}$
Breadth $=\frac{\text { volume of cuboid }}{\text { length } \times \text { depth }}$
$=\frac{210}{(3.5 \times 20)} m$
$=3 \mathrm{~m}$
6. A village, with a population of 6000 , requires 200 litres of water per head per day. It has a tank measuring $30 \mathrm{~m} \times 25 \mathrm{~m} \times 8 \mathrm{~m}$. Justify the number of days that will take to empty the water tank.

Soln.
Given, the dimension of the tank $=30 \mathrm{~m} \times 25 \mathrm{~m} \times 8 \mathrm{~m}$
So, $\mathrm{I}=30 \mathrm{~m}, \mathrm{~b}=25 \mathrm{~m}$ and $\mathrm{h}=8 \mathrm{~m}$
As we know that, the total capacity of the tank $=(30 \times 25 \times 8) \mathrm{m}^{3}=6000 \mathrm{~m}^{3}$
Water required for a single person per day $=200$ litres
The requirement of water for 6000 person in a single day $=(6000 \times 200)$ litres
$=\frac{(6000 \times 200)}{1000}=1200 \mathrm{~m}^{3}$
Hence, the number of days the water will last = (the capacity of the tank/water required per day) $=\left(\frac{6000}{1200}\right)=5$
\therefore The water lasts for 5 days.
7. A warehouse measures $50 \mathrm{~m} \times 35 \mathrm{~m} \times 25 \mathrm{~m}$. Calculate the maximum number of wooden boxes each measuring $2.5 \mathrm{~m} \times 1.5 \mathrm{~m} \times$ 1 m that can be stored in the warehouse.

Soln.
Given the dimensions of the warehouse $=50 \mathrm{~m} \times 35 \mathrm{~m} \times 25 \mathrm{~m}$
As we know that, the volume of the warehouse will be $=(l b h) m^{3}$
$=(50 \times 35 \times 25) \mathrm{m}^{3}=43750 \mathrm{~m}^{3}$
Now, the dimension of box $=2.5 \mathrm{~m} \times 1.5 \mathrm{~m} \times 1 \mathrm{~m}$
Similarly, volume of 1 box $=(2.5 \times 1.5 \times 1) \mathrm{m}^{3}=3.75 \mathrm{~m}^{3}$
Hence, Number of box that can be stored = volume of warehouse $/$ volume of 1 box $=\frac{43750}{3.75}=11666.666=11666$
8. A solid cuboid having side 20 cm is cut into 16 cubes of equal volume. Calculate the side of the new cuboid and also calculate the ratio between their surface areas.

Soln.
Here the edge of the cube $=20 \mathrm{~cm}$

- , 3 ,
so, volume of the cubold $=(\text { eage })^{-} \mathrm{cm}^{-}$
$=(20 \times 20 \times 20) \mathrm{cm}^{3}=8000 \mathrm{~cm}^{3}$
Now, The number of smaller cube $=16$
So, the volume of 1 small cube $=\frac{8000}{16} \mathrm{~cm}^{3}=500 \mathrm{~cm}^{3}$
Let us assume the side of small cube as ' p '
$p^{3}=500 \Rightarrow p=7.937$ (approx)
Hence, the surface area the cube $=7.937(\text { side })^{2}$
Therefore, the ratio of their surface area
$=(7.937 \times 20 \times 20) /(7.937 \times 7.937 \times 7.937)$
$=\frac{40}{1.585}=40: 1.585$

9. A river 5 m deep and 60 m wide is flowing at a rate of 6 km per hour. Estimate the amount of water that will fall into the sea in a minute.

Soln.

Given, Depth $(\mathrm{h})=5 \mathrm{~m}$
Width (b) $=60 \mathrm{~m}$
So, the rate of flow of water $(\mathrm{I})=6 \mathrm{~km}$ per hour $=\left(\frac{6000}{60}\right)$ m per minute $=100 \mathrm{~m}$ per minute
Therefore, the volume of water flowing into the sea in a minute $=l b h \mathrm{~m}^{3}$
$(100 \times 60 \times 5) m^{3}=30000 m^{3}$

