NCERT SOLUTIONS CLASS-IX MATHS CHAPTER-10 CIRCLES

Short Answer Questions

1. Out of the two concentric circle ,the radius of the outer circle is 5 cm and the chord FC is of length 8 cm is a tangent to the inner circle .Find the radius of the inner circle.

Sol. Let the chord FC of the larger circle touch the smaller circle at the point L .
Since $F C$ is tangent at the point L to the smaller circle with the centre O.

\therefore OL.LFC
Since AC is chord of the bigger circle and OL \perp FC.
$\therefore \mathrm{OL}$ bisects FC
$F C=2 F L$
$\Rightarrow \quad 8=2 \mathrm{FL}$
$\Rightarrow \quad \mathrm{FL}=4 \mathrm{~cm}$
Now, consider right-angled $\Delta F L O$, we obtain
$O L^{2}=F O^{2}-F L^{2}$
$=5^{2}-4^{2}$
$=25-16$
$=9$
$\mathrm{OL}=\sqrt{9}=3$
Hence, the radius of the smaller or inner circle is 3 cm
2. Prove that the centre of a circle touching two intersecting lines lies on the angle bisector of the lines.

Sol. Let l_{1} and l_{2}, two intersecting lines, intersect at A, be the tangents from an external point A to a circle with centre X, at B and F respectively.

[^0]$A X=A X$ (common)
$X B=X F$ (radii of same circle)
$A B=A F$
(tangents from an external point)
$\therefore \quad \triangle \mathrm{ABX}=\triangle \mathrm{AFX}$
(by SSS congruence rule)
$\Rightarrow \quad \angle X A B=\angle X A F$
$\Rightarrow X$ lies on the bisector of the lines l_{1} and l_{2}.
3.In the given figure, $L M$ and $N P$ are common tangents to two circles of unequal radii.Prove that $L M=N P$.

Sol. Let Chords LM and NP meet at the point R

Since RL and RN are tangents from an external point R to two Circles with centres O and O^{\prime}.
$\therefore \quad \mathrm{RL}=\mathrm{RN}$
And
$R M=R P$
Subtracting (ii) from (i), we have
RL-RM=RN-RP
$\therefore \quad \mathrm{LM}=\mathrm{NP}$
4.In the given figure, common tangents $P Q$ and $R S$ to two circles intersect at T. Prove that $P Q=R S$.

Sol. Clearly, TP and TR are two tangents from an external point T to the circle with centre O .
$\therefore \quad T P=T R$
Also, TQ and TS are two tangents from an external point T to the circle with centre O^{\prime}.
$\therefore \quad \mathrm{TQ}=\mathrm{TS}$

Adding (i) and (ii),we obtain
$T P+T Q=T R+T S$
$\Rightarrow \quad P Q=R S$
5.A chord $X Y$ of a circle is parallel to the tangent drawn at a point Z of the circle. Prove that Z bisects the arc $X Z Y$.

Sol. Since $X Y$ is parallel to the tangent drawn at the point Z and radius $O Z$ is perpendicular to the tangent.
$\therefore \quad \mathrm{OR} \perp \mathrm{XY}$
$\therefore \quad \mathrm{OL}$ bisects the chord XY .
$\therefore \quad \mathrm{XL}-\mathrm{LY}$
$\therefore \quad \operatorname{arc} X Z=\operatorname{arc} Z Y$
i.e., Z bisects arc $X Z Y$

Long answer questions

1.If from an external point \underline{A} of a circle with centre X, two tangents $A C$ and $A D$ are drawn such that $\angle D A C=120^{\circ}$, prove that $A C+A D=A X$ i.e., $A X=2 A C$.

Sol. Join XC and XD.

```
since, XCAC
```


\therefore [tangent to any circle is perpendicular to its radius at point of contact]
$\therefore \quad \angle X C A=90^{\circ}$
In $\triangle X C B$ and $\triangle X D B$, we have
$C A=D A$
[tangents from an external point]
$X A=X A \quad$ [common side]
$X C=X D$
\therefore By SSS congruency, we have
$\Delta X C A \cong \triangle X D A$
$\Rightarrow \cong \angle X A C=\angle X A D$
$=\frac{1}{2} \angle \mathrm{CAD}=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
In $\triangle X C A, \angle \mathrm{XCA}=90^{\circ}$
${ }_{A X}^{A C}=\cos 60^{\circ}$
$A C=\overline{\frac{1}{2}}$
$A X$
$\Rightarrow \quad A X=2 A C$
Also, $A X=A C+A C$
$\Rightarrow \quad A X=A C+A D \quad[$ Since, $A C=A D]$
2.If x, y, z are the sides of a right triangle where c is hypotenuse,prove that the radius r of the circle which touches the sides of the triangle is given by

$$
r=\frac{x+y-z}{2}
$$

Sol. Let the circle touches the sides $Y Z, Z X, X Y$ of the right triangle $X Y Z$ at D, E, F respectively, where $Y Z=x, Z X=y$ and $X Y=z$. Then $X E=$ $X F$ and $Y D=Y F$.

Also, $\quad Z E=Z D=r$
l.e., $\quad y-r=X F$,
$x-r=y F$
Or $\quad X Y=z=X F+Y F$
$\Rightarrow \quad Z=y-r+x-r$
$\Rightarrow \quad \mathrm{r}=\frac{x+y-z}{2}$
3.In the given figure,from an external poiny P, a tangent PT and a line segment PXY is drawn to a circle with the centre O.ON is perpendicular on the chord XY. Prove that:
(i) $P X \cdot P Y=P Y^{2}-X N^{2}$
(ii) $P N^{2}-X N^{2}=O P^{2}-O T^{2}$
(iii) $P X . P Y=P T^{2}$

Sol. (i) $P X . P Y=(P N-X N)(P N+Y N)$
$=(\mathrm{PN}-\mathrm{XN})(\mathrm{PN}+\mathrm{XN})$
since, $\mathrm{XN}=\mathrm{YN}$, as $\mathrm{ON} \perp$ Chord XY$]$
$=P N^{2}-X N^{2}$
(ii) $P N^{2}-X N^{2}=\left(O P^{2} O N^{2}\right)-X N^{2}$

Since, in rt. $\triangle \mathrm{ONP} O P^{2}=O N^{2}+P N^{2}$]
$=O P^{2}-O N^{2}-X N^{2}$
$\left.=O P^{2}-\left(O N^{2}\right)+X N^{2}\right)$
$=O P^{2}-O X^{2}$
$=O P^{2}-O T^{2}$
Since, $O X=O T=r]$
(iii)From (i) and(ii), we have
$\mathrm{PX} . \mathrm{PY}=O P^{2}-O T^{2}$
$P X . P Y=P T^{2}$
\therefore In rt. $\triangle \mathrm{OTP} ; O P^{2}=O T^{2}+P T^{2}$
4. $X Y$ is a diameter and $X Z$ is a chord with centre O such that $\angle Y X Z=30^{\circ}$. The tangent at Z intersects $X Y$ extended at a point D. Prove that $Y Z=Y D$.

Sol. Here, $X O Y$ is a diameter of the circle, such that $\angle Y X Z=30^{\circ}$ and $Z D$ be the tangent at Z.

$\angle X Z Y=90^{\circ} \angle$ in a semi-circle]
Also, $\quad \angle Z Y D=\angle Y X Z+\angle X Z Y$
[ext. \angle of a \triangle is equal to sum of interior opp.angles]
$=30^{\circ}+90^{\circ}$
$=120^{\circ}$
$\angle Y Z D=\angle Y X Z=30^{\circ}$
In \triangle, by angles sum property, we have
$\angle Y D Z+\angle Z Y D+\angle Y Z D=180^{\circ}$
$\angle Y D Z+120^{\circ}+30^{\circ}=180^{\circ}$
$\angle Y D Z=180^{\circ}-120^{\circ}-30^{\circ}$
$=30^{\circ}$
IRightarrow $\angle \mathrm{YDZ}=\angle \mathrm{YDZ}$
$=30^{\circ}$
Hence, $\quad Y D=Y Z$
[sides opp.to equal angles]
5.Two circles with centres O and O^{\prime} of radii 3 cm and 4 cm respectively intersect at two points P and Q such that $O^{\prime} P$ are tangents to the two circles.Find the length of the common chord PQ.

Sol. Clearly, $\angle \mathrm{OPO} O^{\prime}=90^{\circ}$
$O O^{\prime}={\sqrt{3^{2}+4^{2}}}^{\prime}$
$=\sqrt{9+16}=\sqrt{25}$
$=5 \mathrm{~cm}$

$\begin{array}{lr}\text { Let } & \mathrm{RO}=\mathrm{x} \\ \Rightarrow & \mathrm{R} O^{\prime}=5-\mathrm{x}\end{array}$
Now,

$$
\begin{equation*}
P R^{2}=P O^{2}-R O^{2} \tag{1}
\end{equation*}
$$

$=9-x^{2}$
Also, $\quad P R^{2}=P O^{2}-R O^{2}$
$=16-(5-x)^{2}$
From (1) and (2), we have
$9-x^{2}=16-\left(25+x^{2}-10 \mathrm{x}\right)$
$\left.9-x^{2}=16-25+x^{2}+10 \mathrm{x}\right)$
$10 x=18$
$X=1.8 \mathrm{~cm}$
From (1), we have
$P R^{2}=9-1.8^{2}$

```
=9-3.24
=5.76
PR}=\sqrt{}{5.76
=2.4cm
```

Hence, the required length of the common chord is $2 \times P R$ i.e., 2×2.4 i.e., 4.8 cm .

Exemplar problems

1. If $\mathrm{V} 1, \mathrm{~V} 2(\mathrm{~V} 2>\mathrm{V} 1)$ be the diameters of two concentric circles and \boldsymbol{Z} be the length of a chord of a circle which is tangent to the other circle, prove that : $V_{2}{ }^{2}=Z^{2}+V_{1}{ }^{2}$.

Solution:-
Let $X Y$ be a chord of a circle which touches the other circle at Z. Then $\Delta O Z Y$ is a right triangle.

$\therefore \quad$ By Pythagoras Theorem,

$$
\begin{aligned}
& O Z^{2}+Z Y^{2}=O Y^{2} \\
& \text { i.e., } \quad\left(\frac{V 1}{2}\right)^{2}+\left(\frac{Z}{2}\right)^{2}=\left(\frac{V 2}{2}\right)^{2} \\
& \Rightarrow \quad \frac{V_{1}^{2}}{4}+\frac{Z^{2}}{4}=\quad \frac{V_{2}{ }^{2}}{4} \\
& \Rightarrow \quad V_{2}^{2}+Z^{2}=V_{1}^{2}
\end{aligned}
$$

2. Two tangents $A B$ and $A C$ are drawn from an external point to a circle with centre 0 . Prove that $B O C A$ is a cyclic

 quadrilateral.Sol. We know that, tangents to a circle is perpendicular to its radius at the point of contact.

$\therefore \quad O C \perp A C$ and $O B \perp A B$
$\angle O C A=\angle O B A=90^{\circ}$
$\angle O C A+\angle O B A=90^{\circ}+90^{\circ}$
$=180^{\circ}$
Sum of opposite angles of quadrilateral BOCA is 180°

Hence, BOCA is a cyclic quadrilateral.

[^0]: Join XB and XF

