Downloaded from www.studiestoday.com PRACTICE QUESTIONS
 CLASS IX: CHAPTER - 8 QUADRILATERALS

1. In the below figure, bisectors of $\angle B$ and $\angle D$ of quadrilateral $A B C D$ meets $C D$ and $A B$, produced at P and Q respectively. Prove that $\angle \mathrm{P}+\angle \mathrm{Q}=\frac{1}{2}(\angle \mathrm{ABC}+\angle \mathrm{ADC})$

2. In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the median through A and E is the midpoint of AD . BE produced meets AC in F such that $\mathrm{BF} \| \mathrm{DK}$. Prove that $\mathrm{AF}=\frac{1}{3} \mathrm{AC}$

3. In a parallelogram, the bisectors of any two consecutive angles intersects at right angle. Prove it.
4. In a quadrilateral $\mathrm{ABCD}, \mathrm{AO}$ and BO are the bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ respectively. Prove that $\angle \mathrm{AOB}=\frac{1}{2}(\angle \mathrm{C}+\angle \mathrm{D})$
5. $A B C D$ is a square E, F, G, H are points on $A B, B C, C D$ and $D A$ respectively such that $A E=B F$ $=\mathrm{CG}=\mathrm{DH}$. Prove that EFGH is a square.
6. ABCD is a parallelogram. If its diagonals are equal, then find the value of $\angle \mathrm{ABC}$.

Downloaded from www.studiestoday.com

7. In the below figure, ABCD is a parallelogram and $\angle \mathrm{DAB}=60^{\circ}$. If the bisector AP and BP of angles A and B respectively meet P on $C D$. Prove that P is the midpoint of $C D$.

8. In the below given figure, ABCD is a parallelogram and E is the midpoint of side BC, DE and AB when produced meet at F . Prove that $\mathrm{AF}=2 \mathrm{AB}$.

9. $\triangle \mathrm{ABC}$ is right angle at B and P is the midpoint of AC and Q is any point on AB . Prove that (i) $\mathrm{PQ} \perp \mathrm{AB}$ (ii) Q is the midpoint of AB (iii) $\mathrm{PA}=\frac{1}{2} \mathrm{AC}$
10. The diagonals of a parallelogram $A B C D$ intersect at O. A line through O intersects $A B$ at X and $D C$ at Y. Prove that $\mathrm{OX}=\mathrm{OY}$.
11. $A B C D$ is a parallelogram. $A B$ is produced to E so that $B E=A B$. Prove that $E D$ bisects $B C$.
12. If $A B C D$ is a quadrilateral in which $A B \| C D$ and $A D=B C$, prove that $\angle A=\angle B$.
13. Diagonals $A C$ and $B D$ of a parallelogram $A B C D$ intersect each other at O. If $O A=3 \mathrm{~cm}$ and $O D$ $=2 \mathrm{~cm}$, determine the lengths of AC and BD .
14. In quadrilateral $\mathrm{ABCD}, \angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$. What special name can be given to this quadrilateral?
15. All the angles of a quadrilateral are equal. What special name is given to this quadrilateral?
16. In $\triangle \mathrm{ABC}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{CA}=7 \mathrm{~cm}$. If D and E are respectively the mid-points of $A B$ and $B C$, determine the length of $D E$.
17. Diagonals of a quadrilateral ABCD bisect each other. If $\angle \mathrm{A}=35^{\circ}$, determine $\angle \mathrm{B}$.

Downloaded from www.studiestoday.com

18. Opposite angles of a quadrilateral $A B C D$ are equal. If $A B=4 \mathrm{~cm}$, determine $C D$.
19. In the below figure, it is given that BDEF and FDCE are parallelograms. Can you say that $\mathrm{BD}=$ CD? Why or why not?

20. In the above right sided figure, ABCD and AEFG are two parallelograms. If $\angle \mathrm{C}=55^{\circ}$, determine $\angle \mathrm{F}$.
21. Angles of a quadrilateral are in the ratio $3: 4: 4: 7$. Find all the angles of the quadrilateral.
22. In the below figure, X and Y are respectively the mid-points of the opposite sides $A D$ and $B C$ of a parallelogram ABCD . Also, BX and DY intersect AC at P and Q , respectively. Show that $\mathrm{AP}=$ $P Q=Q C$.

23. One angle of a quadrilateral is of 108: and the remaining three angles are equal. Find each of the three equal angles.
24. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and $\angle \mathrm{A}=\angle \mathrm{B}=45^{\circ}$. Find angles C and D of the trapezium.
25. The angle between two altitudes of a parallelogram through the vertex of an obtuse angle of the parallelogram is 60؛. Find the angles of the parallelogram.
26. $A B C D$ is a rhombus in which altitude from D to side $A B$ bisects $A B$. Find the angles of the rhombus.
27. E and F are points on diagonal AC of a parallelogram ABCD such that $\mathrm{AE}=\mathrm{CF}$. Show that BFDE is a parallelogram.
28. ABCD is a parallelogram and $\angle \mathrm{DAB}=60^{\circ}$. If the bisectors AP and BP of angles A and B respectively, meet at P on CD , prove that P is the midpoint of CD .
29. $A B C D$ is a parallelogram. $A M$ and $B N$ are respectively, the perpendiculars from A and B to $D C$ and $C D$ produced. Prove that $A M=B N$.

Downloaded from www.studiestoday.com

30. $A B C D$ is a parallelogram. L and M are points on $A B$ and $D C$ respectively and $A L=C M$. Prove that LM and BD bisect each other.
31. Points P and Q have been taken on opposite sides $A B$ and $C D$, respectively of a parallelogram $A B C D$ such that $A P=C Q$ (see below figure). Show that $A C$ and $P Q$ bisect each other.

32. In the below figure, P is the mid-point of side BC of a parallelogram ABCD such that $\angle \mathrm{BAP}=$ $\angle \mathrm{DAP}$. Prove that $\mathrm{AD}=2 \mathrm{CD}$.

33. D, E and F are the mid-points of the sides $B C, C A$ and $A B$, respectively of an equilateral triangle ABC . Show that $\triangle \mathrm{DEF}$ is also an equilateral triangle.
34. E is the mid-point of the side $A D$ of the trapezium $A B C D$ with $A B \| D C$. A line through E drawn parallel to $A B$ intersect $B C$ at F. Show that F is the mid-point of $B C$.
35. $P Q$ and RS are two equal and parallel line-segments. Any point M not lying on PQ or RS is joined to Q and S and lines through P parallel to QM and through R parallel to SM meet at N . Prove that line segments MN and PQ are equal and parallel to each other.
36. Prove that "If the diagonals of a quadrilateral bisect each other, then it is a parallelogram".
37. Prove that "A quadrilateral is a parallelogram if a pair of opposite sides is equal and parallel".
38. Prove that "A quadrilateral is a parallelogram if its opposite angles are equal".
39. Show that the diagonals of a rhombus are perpendicular to each other.
40. Two parallel lines l and m are intersected by a transversal p. Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.
41. Show that the bisectors of angles of a parallelogram form a rectangle.
42. If the diagonals of a parallelogram are equal, then show that it is a rectangle.
43. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Downloaded from www.studiestoday.com

44. Show that the diagonals of a square are equal and bisect each other at right angles.
45. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.
46. In the adjoining figure, ABCD is a parallelogram in which P and Q are mid-points of opposite sides $A B$ and $C D$. If $A Q$ intersects $D P$ at S and $B Q$ intersects $C P$ at R, show that:
(i) APCQ is a parallelogram.
(ii) DPBQ is a parallelogram.
(iii) PSQR is a parallelogram.

47. The angles of quadrilateral are in the ratio $3: 5: 9: 13$. Find all the angles of the quadrilateral.
48. Prove that "The line segment joining the mid-points of two sides of a triangle is parallel to the third side and half of it".
49. Prove that "The line drawn through the mid-point of one side of a triangle, parallel to another side bisects the third side".
50. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.
51. $A B C D$ is a rhombus and P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral PQRS is a rectangle.
52. $A B C$ is a triangle right angled at C. A line through the mid-point M of hypotenuse $A B$ and parallel to BC intersects AC at D . Show that
(i) D is the mid-point of AC
(ii) $\mathrm{MD} \perp \mathrm{AC}$
(iii) $\mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB}$
53. In $\triangle A B C, D, E$ and F are respectively the mid-points of sides $A B, B C$ and $C A$. Show that $\triangle A B C$ is divided into four congruent triangles by joining D, E and F .

54. Prove that the quadrilateral formed by joining the mid-points of the sides of a quadrilateral, in order, is a parallelogram.

Downloaded from www.studiestoday.com

55. l, m and n are three parallel lines intersected by transversals p and q such that l, m and n cut off equal intercepts AB and BC on p. Show that l, m and n cut off equal intercepts DE and EF on q.
56. In parallelogram $A B C D$, two points P and Q are taken on diagonal $B D$ such that $D P=B Q$. Show that: APCQ is a parallelogram

57. In the below figure, $\mathrm{AB}\|\mathrm{DE}, \mathrm{AB}=\mathrm{DE}, \mathrm{AC}\| \mathrm{DF}$ and $\mathrm{AC}=\mathrm{DF}$. Prove that $\mathrm{BC} \| \mathrm{EF}$ and $\mathrm{BC}=$ EF.

58. A square is inscribed in an isosceles right triangle so that the square and the triangle have one angle common. Show that the vertex of the square opposite the vertex of the common angle bisects the hypotenuse.
59. $A B C D$ is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral $P Q R S$ is a rhombus.
60. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.
61. E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD . Prove that $\mathrm{EF} \| \mathrm{AB}$ and $E F=\frac{1}{2}(A B+C D)$
62. Prove that the quadrilateral formed by the bisectors of the angles of a parallelogram is a rectangle.
63. P and Q are points on opposite sides $A D$ and $B C$ of a parallelogram $A B C D$ such that $P Q$ passes through the point of intersection O of its diagonals $A C$ and $B D$. Show that $P Q$ is bisected at O.
64. ABCD is a rectangle in which diagonal BD bisects $\angle \mathrm{B}$. Show that ABCD is a square.
65. D, E and F are respectively the mid-points of the sides AB, BC and CA of a triangle ABC . Prove that by joining these mid-points D, E and F , the triangles ABC is divided into four congruent triangles.

Downloaded from www.studiestoday.com

66. Prove that the line joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides of the trapezium.
67. P is the mid-point of the side CD of a parallelogram ABCD . A line through C parallel to PA intersects $A B$ at Q and $D A$ produced at R. Prove that $D A=A R$ and $C Q=Q R$.
68. E is the mid-point of a median AD of $\otimes \mathrm{ABC}$ and BE is produced to meet AC at F . Show that $\mathrm{AF}=\frac{1}{3} \mathrm{AC}$
69. Show that the quadrilateral formed by joining the mid-points of the consecutive sides of a square is also a square.
70. In a parallelogram $\mathrm{ABCD}, \mathrm{AB}=10 \mathrm{~cm}$ and $\mathrm{AD}=6 \mathrm{~cm}$. The bisector of $\angle \mathrm{A}$ meets DC in E . AE and $B C$ produced meet at F. Find the length of $C F$.
71. P, Q, R and S are respectively the mid-points of the sides $A B, B C, C D$ and $D A$ of a quadrilateral $A B C D$ in which $A C=B D$. Prove that $P Q R S$ is a rhombus.
72. P, Q, R and S are respectively the mid-points of the sides $A B, B C, C D$ and $D A$ of a quadrilateral $A B C D$ such that $A C \perp B D$. Prove that $P Q R S$ is a rectangle.
73. P, Q, R and S are respectively the mid-points of sides $A B, B C, C D$ and $D A$ of quadrilateral $A B C D$ in which $A C=B D$ and $A C \perp B D$. Prove that $P Q R S$ is a square.
74. A diagonal of a parallelogram bisects one of its angles. Show that it is a rhombus. P and Q are the mid-points of the opposite sides AB and CD of a parallelogram
75. In quadrilateral $A B C D$. $A Q$ intersects $D P$ at S and $B Q$ intersects $C P$ at R. Show that PRQS is a parallelogram.
76. ABCD is a quadrilateral in which $\mathrm{AB} \| \mathrm{DC}$ and $\mathrm{AD}=\mathrm{BC}$. Prove that $\angle \mathrm{A}=\angle \mathrm{B}$ and $\angle \mathrm{C}=\angle \mathrm{D}$.
77. $A B C$ is a triangle. D is a point on $A B$ such $A D=\frac{1}{4} A B$ and E is a point on $A C$ such that $\mathrm{AE}=\frac{1}{4} \mathrm{AC}$. Prove that $\mathrm{DE}=\frac{1}{4} \mathrm{BC}$.
78. Let ABC be an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$. If $\mathrm{D}, \mathrm{E}, \mathrm{F}$ be the midpoints of the sides BC , CA and AB respectively, show that the segment AD and EF bisect each other at right angles.
79. Prove that the line segment joining the mid-points of the diagonals of a trapezium is parallel to each of the parallel sides and is equal to half the difference of these sides.
80. P is the midpoint of side $A B$ of a parallelogram $A B C D$. A line through B parallel to PD meets $D C$ at Q and $A D$ produced at R. Prove that (i) $A R=2 B C$ (ii) $B R=2 B Q$.
