NCERT SOLUTIONS CLASS-IX MATHS CHAPTER-7 TRIANGLES

Exercise 7.1

Question 1:

In quadrilateral PQRS, PR = PQ and PQ bisects $\angle P$ (look at the fig.). Show that the $\triangle PQR = \triangle PQS$. What can you say about QR and QS?

Solution:

In $\triangle PQR$ and $\triangle PQS$, we have PR = PS $\angle RPQ = \angle SPQ$ (PQ bisects $\angle P$) PQ = PQ (common) $\triangle PQR = \triangle PQS$ (By SAS congruence) Hence Proved. Therefore, QR = QS (CPCT)

Question 2:

ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$ (see Fig.). Prove that

(i) $\triangle ABD = \triangle BAC$

(ii) BD = AC

(iii) $\angle ABD = \angle BAC$

Solution:

In the given figure, ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$. In $\triangle DAB$ and $\triangle BAC$, we have AD = BC [Given] $\angle DAB = \angle CBA$ [Given] AB = AB [Common] $\triangle ABD = \triangle BAC$ [By SAS congruence] BD = AC [CPCT] and $\angle ABD = \angle BAC$ [CPCT]

Hence Proved

10100110100

Question 3:

AD and BC are equal perpendiculars to a line segment AB (see Fig.). Show that CD bisects AB.

Solution:

In $\triangle AOD = \triangle BOC$, we have, $\angle AOD = \angle BOC$ [Vertically opposite angles) $\angle CBO = \angle DAO(Each = 90^{\circ})$ AD = BC [Given] $\triangle AOD = \triangle BOC$ [By AAS congruence] Also, AO = BO [CPCT] Hence, CD bisects AB Proved.

Question 4:

L and m are two para;;e; lines intersected by another pair of parallel lines p and q (see fig.). Show that $\triangle ABC + \triangle CDA$.

Solution:

In the given figure, ABCD is a parallelogram in which AC is a diagonal, i.e., AB || DC and BC || AD.

 $\triangle ABC = \triangle CDA$, we have,

 $\angle BAC = \angle DCA$ (Alternate angles)

 $\angle BCA = \angle DAC$ (Alternate angles)

AC = AC (Common)

 $\triangle ABC = \triangle CDA$ (By SAS congruence)

```
Hence Proved.
```

Question 5:

Line I is the bisector of an angle A and B is any point on I. BP and BQ are perpendicular from B to the arms of $\angle A$ (See fig.). Show that:

(i) $\triangle APB$ and $\triangle AQB$

(ii) BP = BQ or B is equidistant from the arms of $\angle A$

Solution:

In $\triangle APB$ and $\triangle AQB$, we have $\angle PAB = \angle AQB$ (I is the bisector of $\angle A$) $\angle APB = \angle AQB$ (Each = 90°) AB = AB $\triangle APB = \triangle AQB$ (By AAS congruence) Also, BP = BQ (By CPCT) i.e, B is equidistant from the arms of $\angle A$ Hence proved.

Question 6:

In the fig, AC = AE, AB = AD and riangle BAD = riangle EAC . Show that BC = DE.

Solution:

 $\angle BAD = \triangle EAC$ (Given)

$$\angle BAD + \angle DAC = \angle EAC + \angle DAC (Adding \angle DAC \text{ to both sides}) \angle BAC = \angle EAC$$

Now, in riangle ABC and riangle ADE , We have

AB = AD

AC = AE

 $\angle BAC = \angle DAE$

 $\triangle ABC = \triangle ADE$ (By SAS congruence)

BC = DE (CPCT)

Hence Proved.

Question 7:

AB is a line segment and p is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$ (see fig.). Show that

(i) $\triangle DAP = \triangle EBP$

(ii) AD = BE

Solution:

In $\triangle DAP$ and $\triangle EBP$, we have

AP = BP (P is the midpoint of the line segment AB)

 $\angle BAD = \angle ABE$ (Given)

 $\textbf{Let} \ \textbf{D} = \textbf{L} \textbf{D} \textbf{I} \ \textbf{A} (\textbf{Let} \ \textbf{A} = \textbf{L} \textbf{D} \textbf{I} \ \textbf{D} \neq \textbf{Let} \ \textbf{A} \top \textbf{L} \textbf{D} \textbf{I} \ \textbf{D} = \textbf{L} \textbf{D} \textbf{I} \ \textbf{D} \top \textbf{L} \textbf{D} \textbf{I} \ \textbf{A} = \textbf{L} \textbf{D} \textbf{I} \ \textbf{D}$

AD = BE (ASA)

AD = BE

Hence Proved.

Question 8:

In right triangle ABC, right angles at C, M is the mid-point of hypotenuse AB, C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see fig.). Show that :

(i) $\triangle AMC = \triangle BMD$

(II) $\angle DBC$ is a right angle.

(iii) $\triangle DBC = \triangle ACB$

(iv)
$$CM = \frac{1}{2}AB$$

Solution:

In riangle BMBand riangle DMC , we have (i) DM = CM (given) BM = AM (M is the midpoint of AB) $\angle DMB = \angle AMC$ (Vertically opposite angles) riangle AMC = riangle BMD (By SAS) Hence Proved. (ii) AC || BD ($\angle DBM$ and $\angle CAM$ are .alternate angles) $\Rightarrow \angle DBC + \angle ACB = 180^{o}$ (Sum of co-interior angles) $\Rightarrow \angle DBC = 90^{\circ}$ Hence proved. (iii) In $riangle DBC \ amd \ riangle ACB$, We have DB = AC (CPCT) BC = BC (Common) $\angle DBC = \angle ACB(Each = 90^{\circ})$ $\triangle DBC = \triangle ACB$ (By SAS) Hence proved. (iv) AB = CD $\Rightarrow \frac{1}{2}AB = \frac{1}{2}CD$ (CPCT) Hence, $\frac{1}{2}AB = CM$ Proved.

Exercise 7.2:

Question 1: In an isosceles triangle XYZ with XY=XZ ,the bisector of $\angle B$ and $\angle C$ Intersect each other at O .join A at O .Show that: (1)OY=OZ (2)XO bisects $\angle A$

Solution:

 $\frac{1}{2} \angle XYZ = \frac{1}{2} \angle XZY \angle ZYO = \angle XZY$

OY and OZ are bisector of

 $\angle Y$ and $\angle Z$ respectively]

OBY=OZ [sides opposite to equal angles are equal]

Again, $\frac{1}{2} \angle XYZ = \frac{1}{2} \angle XZY$

 $\angle XYO = \angle XYO$ [::OY and OZ are bisector of $\angle Y$ and $\angle Z$ respectively]

In $\Delta XYO = \Delta XYO$, we have

XY=XZ [Given]

OY=OZ [proved XYove]

 $\angle XYO = \angle XZO$ [proved above]

 $\Delta XYO = \Delta XZO \qquad [SAS congruence]$

 $\Delta XYO = \angle ZXO$ [CPCT]

XO bisects $\angle X$ proved

Question 2:

In ΔXYZ ,XO is the perpendicular bisector of YZ .Prove that ΔXYZ is an isosceles triangle in which XY=XZ

Solution:

In $\Delta XYO = \Delta XZO$, we have $\angle XOZ = \angle XOZ$ [] each =90°] YO=ZO [XO bisects YZ] XO=XO [common] $\therefore \Delta XYO = \Delta XZO$ [SAS] $\therefore XY=XZ$ [CPCT] Hence, ΔXYZ is an isosceles triangle .**Proved** AB respectively (see figure). Show that these altitudes are equal.

Solution:

In ΔABC ,

AB=AC [Given]

 $\angle B = \angle C$ [angles opposite to equal sides of a triangle are equal]

Now in right triangles BFC and CEB,

$\angle BFC = \angle CEB$	[Each =90°]
$\angle FBC = \angle ECB$	[proved above]
BC=BC	
$\therefore \Delta BFC = \Delta CEB$	[AAS]
Hence, BE=CF [CPCT] proved	

Question 4:

ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see.fig) show that

(1) $\triangle ABE \cong \triangle ACF$

(2) AB=AC i,e ABC is an isosceles triangle. Solution(1) in ΔABE and ACF, we have BE=CF [Given] $\angle BAE = \angle CAF$ [common] $\angle BEA = \angle CFA$ [Each =90°] So, $\Delta ABE = \angle ACF$ [AAS]proved (2) also, AB=AC [CPCT] i,e., ABC is an isosceles triangle Proved.

Question 5:

ABC and DBC are two isosceles triangle on the same base BC .show that

 $\angle ABD = \angle ACD$

Solution. In isosceles ΔABC , We have

AB= AC

 $\begin{array}{l} \angle ABC = \angle ACB \quad -----(i) \\ \mbox{[Angles opposite to equal sides are equal]} \\ \mbox{Now , in isosceles } \Delta DCB, We have \\ \mbox{BD=CD} \\ \mbox{$\angle DBC = \angle DCB ------(ii)$} \\ \mbox{[Angle opposite to equal sides are equal]} \\ \mbox{Adding (i) and (ii) , we have} \\ \mbox{$\angle ABC + \angle DBC = \angle ACB + \angle DCB$} \\ \mbox{$\angle ABD = \angle ACD$, proved} \end{array}$

Question 6:

 ΔABC is an isosceles triangle in which AB=AC side BA is produced to D such that AD =AB .show that $\angle BCD$ is a right angle.

Solution:

AB=AC $\angle ACB = \angle ABC$ —(1) [Angles opposite to equal sides are equal] AB=AD [Given]

1

AD=AC [AB=AC] $\therefore \angle ACD = \angle ADC$ (ii) [Angles opposite to equal sides are equal] Adding (i) and (ii) $\angle ACB + \angle ACD = \angle ABC + \angle ADC \angle BCD = \angle ABC + \angle ADC$ Now in $\triangle BCD$, Wehave $\angle BCD + \angle DBC + \angle BDC == 180$ [Angle sum property of a triangle] $\therefore \angle BCD + \angle BCD = 180^{\circ}$ $2\angle BCD = 180 2\angle BCD = 180$

Question 7:

ABC is a right angled triangle in which $\angle A$ =90 and AB=AC.Find

 $\angle Band \angle C$ Solution. In $\triangle ABC$, We have $\angle A$ =90 AB =AC We know that angles opposite to equal sides of an isosceles triangle are equal So, $\angle B = \angle C$ Since $\angle A$ =90, therefore sum of remaining two angles =90 Hence $\angle B = \angle C = 45$

Question 8:

Show that the angles of an equilateral triangle are 60 each.

Solution: As ΔABC is an equilateral So, AB=BC=AC Now, AB=AC

Exercise 7.3

Question 1:

On the same base BC ΔXYZ and ΔDYZ are two isosceles triangles and vertices X and D are on the same side of YZ. If XD is extended to intersect YZ at P, show that

(i) AXYD ≈ AXZD

(ii) ∆XYP ≈ ∆XZP

(iii) XP bisects ∠X as well as ∠D.

(iv) XP is the perpendicular and bisector of YZ.

Solution:

(i) In ∆XYD and ∆XZD, we have
XY = XZ [Given]
YD = ZD [Given]
XD = XD [Common]
∆XYD ≈ ∆XZD [SSS congruence].
(ii) In ∆XYP and ∆XZP, we have
XY = XZ
∠YXP = ∠ZXP
XP = XP
∆XYP ≈ ∆XZP [SAS congruence].
(iii) △XYD ≈ △XDY

$\angle XDY = \angle XDZ$

=> $180^{\circ} - \angle XDY = 180^{\circ} - \angle XDZ$ Also, from part (ii), $\angle YXPD = \angle ZXP$

XP bisects DX as well as ∠D.

(iv) Now, YP = ZP and ∠YPX = ∠ZPX

But ∠YPX + ∠ZPX = 180°

So, 2∠BPA = 180°

Or, ∠YPX = 90°

Since YP = ZP, therefore XP is perpendicular bisector of YZ.

Question 2:

Isosceles triangle XYZ has an altitude XD, in which XY = XZ. Show that

(i) XD bisects YZ

(ii) XD bisects ∠X

Solution:

(i) In $\triangle ABD$ and $\triangle ACD$, we have $\angle ADB = \angle ADC$ XY = XZ

XD = XD

∆XYD ≈ ∆XZD.

YD = ZD

Hence, XD bisects YC.

(ii) Also, ∠YXD = ∠ZXD

Hence XD bisects ∠X.

Question 3:

Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of Δ PQR. Show that: (i) Δ ABM \approx APQN (ii) Δ ABC $\approx \Delta$ PQR

Solution: (i) In $\triangle ABM$ and $\triangle PQN$, we have BM = QN $\frac{1}{2}BC = \frac{1}{2}QR$ AB = PQ

```
AM = PN
```

△ABM = △PQN [SSS Congruence]

 $\angle ABM = \angle PQN.$

(ii) Now, in △ABC and △PQR, we have

AB = PQ

∠ABC = ∠PQR

BC = QR

 $\triangle ABC \approx \triangle PQR$ [SAS congruence]

Question 4:

In triangle ABC, BE and CF are two equal altitudes. By Using RHS congruence rule, prove that the triangle ABC is isosceles.

Solution:

```
BE and CF are altitudes of a △ABC.
```

```
∠BEC = ∠CFB = 90°
```

```
Now, in right triangles BEB and CFB, we have
```

Hyp. BC = Hyp. BC

Side BE= Side CF

△BEC ≈ △CFB

∠BCE = ∠CBF

Now, in $\triangle ABC$, $\angle B = \angle C$

AB = AC

Hence, △ABC is an isosceles triangle.

Question 5:

AB = AC in an isosceles triangle ABC. Draw AP perpendicular BC to show that $\angle B = \angle C$.

Solution: Draw AP perpendicular BC. In \triangle ABP and \triangle ACP, we have AB = AC \angle APB = \angle APC AB = AP [Common] \triangle ABP = \triangle ACP [By RHS congruence rule]

Exercise 7.4

Question 1:

Show that in a right-angled triangle, the hypotenuse is the longest side.

Solution:

ABC is a right angle triangle, right angled at B.

Now $\angle A + \angle C = 90^{\circ}$

Angles A and C are less than 90°

Now, $\angle B > \angle A$

AC > BC(i)

(Side opposite to greater angle is longer)

Again, $\angle B > \angle C$

```
AC > AB ...(ii)
```

(Side opposite to greater angle are longer)

Hence, from (i) and (ii), we can say that AC (hypotenuse) is the longest side.

Hence proved.

Question 2:

In the figure, sides AB and AC of $\triangle ABC$ are extended to points P and Q respectively. Also, $\angle PBC < \angle QCB$. Show that AC > AB.

Solution:

 $\begin{array}{l} \angle ABC + \angle PBC = 180^{o}(Linearpair) \Rightarrow \angle ABC = 180^{o} - \angle PBC \\ \\ \text{Similarly, } \angle ACB = 180^{o} - \angle QCB \\ \\ \text{It is given that } \angle PBC < \angle QCB \\ \\ 180^{o} - \angle QCB < 180^{o} - \angle PBC \\ \\ \text{Or } \angle ACB < \angle ABC \text{ [From (i) and (ii)]} \\ \\ \Rightarrow AB < AC \Rightarrow AC > AB \\ \\ \text{Hence proved.} \end{array}$

Question 3:

In the figure, $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD < BC.

Solution:

 $\angle B < \angle A$ (Given)

BO > AO ...(i)

(Side opposite to greater angle is longer)

 $\angle C < \angle D$ (Given)

CO > DO(ii)

(Same reason)

Adding (i) and (ii)

BO + CO > AO + DO

BC > AD

AD < BC

Hence Proved.

Question 4:

AB and CD are respectively the smallest and longest side of a quadrilateral ABCD (see fig.) Show that $\angle A > \angle C$

In $\triangle ABC$,

BC > AB (AB is the shortest side)

 $\angle 2 > \angle 4$...(i)

[Angle opposite to longer side is greater]

In $\triangle ADC$,

CD > AD (CD is the longest side)

$$\angle 1 > \angle 3$$
 ...(ii)

[Angle opposite to longer side is greater]

Adding (i) and (ii), we have

 $\angle 2 + \angle 1 > \angle 4 + \angle 3 \Rightarrow \angle A > \angle C$

Similarly, by joining BD, we can prove that

 $\angle B > \angle D$

Question 5:

In the figure, PR > PQ and PS bisects $\angle QPR$. Prove that $\angle PSR > \angle PSQ$

Solution:

PR > PQ $\angle PQR > \angle PRQ$ (i)

```
[Angle opposite to longer side is greater]
```

 $\angle QPS > \angle RPS \ (PS \ bisects \angle QPR) \ ...$ (ii) In $\triangle PQS$, $\angle PQS + \angle QPS + \angle PSQ = 180^o$

 $\Rightarrow \angle PSQ = 180^{o} - (\angle PQS + \angle QPS) \dots \text{(iii)}$

Similarly in riangle PRS , $riangle PSR = 180^o - (\angle PRS + \angle RPS)$

 $\Rightarrow ar{PSR} = 180^o - (ar{PSR} + ar{QPS})$ [from (ii) ... (iv)

From (i), we know that $\angle PQS < \angle PSR$

So from (iii) and (iv), $\angle PSQ < \angle PSR$

 $\Rightarrow \angle PSR > \angle PSQ$

Hence proved.

Question 6:

Show that of all the segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Solution: We have a line I and O is the point not on I

 $OP \perp i$

We have to prove that OP < OQ, OP < OR and OP < OS.

OP < OS

In $\triangle OPQ$, $\angle P = 90^{\circ}$ Therefore, $\angle Q$ is an acute angle (i.e, $\angle Q < 90^{\circ}$) $\angle Q < \angle P$ Hence, OP < OQ (Side opposite to greater angle is longer) Similarly, we can prove that OP is shorter than OR, OS, etc. Hence proved

Exercise 7.5

Question 1:

Find a point in the interior of $\triangle DEF$ which is at an equal distance or equidistant from all the vertices of $\triangle DEF$.

Solution:

Draw perpendicular bisectors of sides DE,

EF and FD, which meets at O.

Hence, O is the required point

Question 2:

Find a point in the interior of a triangle such that it is at equal distances from all the sides of the triangle.

Solution:

Question 3:

People are concentrated at three points in a park namely A,B and C. (see Fig.).

A: is where swings and slides for children are present

B: is where a lake is present

C: is where there is a large parking lot and exit

Where do you think an ice – cream parlor should be set up such that the maximum number of people can access it? Draw bisectors <u>AB and BC</u> Let these angle bisectors meet at O. O is the required point.

Solution: Join AB, BC and CA to get a triangle ABC. Draw the perpendicular bisector of AB and BC. Let them meet at O. Then O is equidistant from A, B and C. Hence, the parlor should be set up at O so that all the other points are equidistant from it.

Question 4:

Fill the star shaped and hexagonal rangolies [see fig.(i) and (ii)] by filling them with as many equilateral triangles as you can of side 1 cm. What is the number of triangles in both the cases? Which one has the most number of triangles?

Solution:

