NCERT SOLUTIONS
 CLASS-IX MATHS
 CHAPTER-7 TRIANGLES

Exercise 7.1
Question 1:
In quadrilateral $P Q R S, P R=P Q$ and $P Q$ bisects $\angle P$ (look at the fig.). Show that the $\triangle P Q R=\triangle P Q S$. What can you say about $Q R$ and $Q S$?

Solution:
In $\triangle P Q R$ and $\triangle P Q S$, we have
$P R=P S$
$\angle R P Q=\angle S P Q(\mathrm{PQ}$ bisects $\angle P)$
$P Q=P Q$ (common)
$\triangle P Q R=\triangle P Q S$ (By SAS congruence)
Hence Proved
Therefore, $\mathrm{QR}=\mathrm{QS}$ (CPCT)

Question 2:
$A B C D$ is a quadrilateral in which $A D=B C$ and $\angle D A B=\angle C B A$ (see Fig.). Prove that
(i) $\triangle A B D=\triangle B A C$
(ii) $B D=A C$
(iii) $\angle A B D=\angle B A C$

Solution:
In the given figure, ABCD is a quadrilateral in which $\mathrm{AD}=\mathrm{BC}$ and $\angle D A B=\angle C B A$
In $\triangle D A B$ and $\triangle B A C$, we have
$A D=B C$ [Given]
$\angle D A B=\angle C B A$ [Given]
$A B=A B$ [Common]
$\triangle A B D=\triangle B A C$ [By SAS congruence]
$B D=A C[C P C T]$
and $\angle A B D=\angle B A C$ [CPCT]

Question 3:

$A D$ and $B C$ are equal perpendiculars to a line segment $A B$ (see Fig.). Show that $C D$ bisects $A B$.

Solution:
In $\triangle A O D=\triangle B O C$, we have,
$\angle A O D=\angle B O C$ [Vertically opposite angles)
$\angle C B O=\angle D A O\left(\right.$ Each $\left.=90^{\circ}\right)$
$A D=B C$ [Given]
$\triangle A O D=\triangle B O C$ [By AAS congruence]
Also, $\mathrm{AO}=\mathrm{BO}$ [CPCT]
Hence, $C D$ bisects $A B$ Proved.

Question 4:

L and m are two para;;e; lines intersected by another pair of parallel lines p and q (see fig.). Show that $\triangle A B C+\triangle C D A$.

Solution:

In the given figure, $A B C D$ is a parallelogram in which $A C$ is a diagonal, i.e., $A B \| D C$ and $B C \| A D$.
$\triangle A B C=\triangle C D A$, we have,
$\angle B A C=\angle D C A$ (Alternate angles)
$\angle B C A=\angle D A C$ (Alternate angles)
$\mathrm{AC}=\mathrm{AC}($ Common $)$
$\triangle A B C=\triangle C D A$ (By SAS congruence)
Hence Proved

Question 5:

Line I is the bisector of an angle A and B is any point on I. $B P$ and $B Q$ are perpendicular from B to the arms of $\angle A$ (See fig.). Show that:

(i) $\triangle A P B$ and $\triangle A Q B$
(ii) $\mathrm{BP}=\mathrm{BQ}$ or B is equidistant from the arms of $\angle A$

Solution:

In $\triangle A P B$ and $\triangle A Q B$, we have
$\angle P A B=\angle A Q B$ (I is the bisector of $\angle A$)
$\angle A P B=\angle A Q B\left(\right.$ Each $\left.=90^{\circ}\right)$
$A B=A B$
$\triangle A P B=\triangle A Q B$ (By AAS congruence)
Also, $B P=B Q(B y C P C T)$
i.e, B is equidistant from the arms of $\angle A$

Hence proved.

Question 6:

In the fig, $A C=A E, A B=A D$ and $\triangle B A D=\triangle E A C$. Show that $B C=D E$.

Solution:
$\angle B A D=\triangle E A C$ (Given)
$\angle B A D+\angle D A C=\angle E A C+\angle D A C($ Adding $\angle D A C$ to both sides $) \angle B A C=\angle E A C$
Now, in $\triangle A B C$ and $\triangle A D E$, We have
$A B=A D$
$A C=A E$
$\angle B A C=\angle D A E$
$\triangle A B C=\triangle A D E$ (By SAS congruence)
$B C=D E(C P C T)$
Hence Proved

Question 7:

$A B$ is a line segment and p is its mid-point. D and E are points on the same side of $A B$ such that $\angle B A D=\angle A B E$ and $\angle E P A=\angle D P B$ (see fig.). Show that (i) $\triangle D A P=\triangle E B P$
(ii) $A D=B E$

Solution:

In $\triangle D A P$ and $\triangle E B P$, we have
$A P=B P(P$ is the midpoint of the line segment $A B)$
$\angle B A D=\angle A B E$ (Given)

$A D=B E(A S A)$
$A D=B E$
Hence Proved.

Question 8:

In right triangle $A B C$, right angles at C, M is the mid-point of hypotenuse $A B, C$ is joined to M and produced to a point D such that $D M=C M$. Point D is joined to point B (see fig.). Show that :

$$
\begin{aligned}
& \text { (i) } \triangle A M C=\triangle B M D \\
& \text { (II) } \angle D B C \text { is a right angle. } \\
& \text { (iii) } \triangle D B C=\triangle A C B
\end{aligned}
$$

(iv) $C M=\frac{1}{2} A B$

Solution:
In $\triangle B M$ Band $\triangle D M C$, we have
(i) $\mathrm{DM}=\mathrm{CM}$ (given)
$B M=A M$ (M is the midpoint of $A B$)
$\angle D M B=\angle A M C$ (Vertically opposite angles)
$\triangle A M C=\triangle B M D(\mathrm{By} \mathrm{SAS})$
Hence Proved.
(ii) $\mathrm{AC} \| \mathrm{BD}(\angle D B M$ and $\angle C A M$ are alternate angles)
$\Rightarrow \angle D B C+\angle A C B=180^{\circ}$ (Sum of co-interior angles)
$\Rightarrow \angle D B C=90^{\circ}$
Hence proved.
(iii) In $\triangle D B C$ amd $\triangle A C B$, We have
$D B=A C(C P C T)$
$\mathrm{BC}=\mathrm{BC}($ Common $)$
$\angle D B C=\angle A C B\left(\right.$ Each $\left.=90^{\circ}\right)$
$\triangle D B C=\triangle A C B$ (By SAS)
Hence proved.
(iv) $\mathrm{AB}=\mathrm{CD}$
$\Rightarrow \frac{1}{2} A B=\frac{1}{2} C D$ (CPCT)
Hence, $\frac{1}{2} A B=C M$ Proved.

Exercise 7.2:

Question 1:
In an isosceles triangle $X Y Z$ with $X Y=X Z$, the bisector of $\angle B$ and $\angle C$
Intersect each other at O.join A at O.Show that:
(1) $O Y=O Z \quad$ (2) $X O$ bisects $\angle A$

Solution:
$\frac{1}{2} \angle X Y Z=\frac{1}{2} \angle X Z Y \angle Z Y O=\angle X Z Y$
[OY and OZ are bisector of
$\angle Y$ and $\angle Z$ respectively]
$\mathrm{OBY}=\mathrm{OZ}$ [sides opposite to equal angles are equal]
Again, $\quad \frac{1}{2} \angle X Y Z=\frac{1}{2} \angle X Z Y$
$\angle X Y O=\angle X Y O \quad[\therefore O Y$ and OZ are bisector of $\angle Y$ and $\angle Z$ respectively]
In $\triangle X Y O=\triangle X Y O$, we have
$\mathrm{XY}=\mathrm{XZ}$ [Given]
$\mathrm{OY}=\mathrm{OZ}$ [proved XYove]
$\angle X Y O=\angle X Z O \quad$ [proved above]
$\Delta X Y O=\triangle X Z O \quad[$ SAS congruence $]$
$\triangle X Y O=\angle Z X O \quad[\mathrm{CPCT}]$
XO bisects $\angle X \quad$ proved

Question 2:

In $\Delta X Y Z \quad \mathrm{XO}$ is the perpendicular bisector of YZ . Prove that $\triangle X Y Z$ is an isosceles triangle in which $\mathrm{XY}=\mathrm{XZ}$

Solution:

In $\triangle X Y O=\triangle X Z O$, we have
$\angle X O Z=\angle X O Z \quad[]$ each $=90^{\circ}$]
$\mathrm{YO}=\mathrm{ZO}$ [XO bisects YZ]
$\mathrm{XO}=\mathrm{XO}$ [common]
$\therefore \triangle X Y O=\triangle X Z O$ [SAS]
$\therefore \mathrm{XY}=\mathrm{XZ} \quad[\mathrm{CPCT}]$
Hence, $\triangle X Y Z$ is an isosceles triangle Proved

Question 3:

Solution:

In $\triangle A B C$,
$\mathrm{AB}=\mathrm{AC}$ [Given]
$\angle B=\angle C \quad$ [angles opposite to equal sides of a triangle are equal]

Now in right triangles BFC and CEB ,
$\angle B F C=\angle C E B$
$\left[\right.$ Each $=90^{\circ}$]
$\angle F B C=\angle E C B$
[proved above]
$B C=B C$
$\therefore \triangle B F C=\triangle C E B$
[AAS]
Hence, $\mathrm{BE}=\mathrm{CF}[\mathrm{CPCT}]$ proved

Question 4:
$A B C$ is a triangle in which altitudes $B E$ and CF to sides $A C$ and $A B$ are equal (see.fig) show that

(1) $\triangle A B E \cong \triangle A C F$

(2) $A B=A C \quad i, e A B C$ is an isosceles triangle.

Solution(1) in $\triangle A B E$ and $A C F$, we have
$B E=C F \quad$ [Given]
$\angle B A E=\angle C A F$ [common]
$\angle B E A=\angle C F A \quad\left[\right.$ Each $\left.=90^{\circ}\right]$
So, $\triangle A B E=\angle A C F \quad$ [AAS]proved
(2) also, $\mathrm{AB}=\mathrm{AC} \quad[\mathrm{CPCT}]$

Question 5:

$A B C$ and DBC are two isosceles triangle on the same base BC .show that

$\angle A B D=\angle A C D$
Solution. In isosceles $\triangle A B C$, We have
$A B=A C$

$\angle A B C=\angle A C B-$-(i)
[Angles opposite to equal sides are equal]
Now, in isosceles $\triangle D C B$, We have
$B D=C D$
$\angle D B C=\angle D C B$ \qquad -(ii)
[Angle opposite to equal sides are equal]
Adding (i) and (ii), we have
$\angle A B C+\angle D B C=\angle A C B+\angle D C B$
$\angle A B D=\angle A C D$ proved

Question 6:

$\triangle A B C$ is an isosceles triangle in which $A B=A C$ side $B A$ is produced to D such that $A D=A B$.show that $\angle B C D$ is a right angle.

Solution:
$A B=A C$
$\angle A C B=\angle A B C$ \qquad -(1)
[Angles opposite to equal sides are equal]
$\mathrm{AB}=\mathrm{AD} \quad$ [Given]

$$
A^{D}
$$

$A D=A C \quad[A B=A C]$
$\therefore \angle A C D=\angle A D C$ \qquad
[Angles opposite to equal sides are equal]
Adding (i) and (ii)
$\angle A C B+\angle A C D=\angle A B C+\angle A D C \angle B C D=\angle A B C+\angle A D C$
Now in $\triangle B C D$, Wehave
$\angle B C D+\angle D B C+\angle B D C==180$ [Angle sum property of a triangle]
$\therefore \angle B C D+\angle B C D=180^{\circ}$
$2 \angle B C D=1802 \angle B C D=180$

Question 7:

$A B C$ is a right angled triangle in which $\angle A=90$ and $A B=A C$. Find

\angle Band $\angle C$

Solution. In $\triangle A B C$, We have
$\angle A=90$
$A B=A C$
We know that angles opposite to equal sides of an isosceles triangle are equal
So, $\angle B=\angle C$
Since $\angle A=90$, therefore sum of remaining two angles $=90$
Hence $\angle B=\angle C=45$

Question 8:

Show that the angles of an equilateral triangle are 60 each.

Solution:

As $\triangle A B C$ is an equilateral
So, $A B=B C=A C$
Now, $A B=A C$
$\angle A C B=\angle A B C —$-(ii)[angles sum property of a triangle]
Again $B C=A C$
$\angle B A C=\angle A B C$-(ii) [same reason]
Now in $\triangle A B C$
$\angle A B C+\angle A C B+\angle B A C=180$ [angle sum property of a triangle are equal]
$\angle A B C+\angle A C B+\angle B A C=180=180[$ from (i) (ii)]
$3 \angle A B C=180$
$\angle A B C=180 / 3=60^{\circ}$
Also from (i) and (ii)
$\angle A C B=60$ and $\angle B A C$
Hence each angle of an equilateral triangle is 60° Proved

Exercise 7.3

Question 1:
On the same base $B C \triangle X Y Z$ and $\triangle D Y Z$ are two isosceles triangles and vertices X and D are on the same side of $Y Z$. If $X D$ is extended to intersect $Y Z$ at P, show that
(i) $\triangle X Y D \approx \triangle X Z D$
(ii) $\triangle X Y P \approx \triangle X Z P$
(iii) $X P$ bisects $\angle X$ as well as $\angle D$.
(iv) XP is the perpendicular and bisector of $Y Z$.

Solution:

(i) In $\triangle X Y D$ and $\triangle X Z D$, we have
$X Y=X Z$ [Given]
$\mathrm{YD}=\mathrm{ZD}$ [Given]
$\mathrm{XD}=\mathrm{XD}$ [Common]
$\Delta X Y D \approx \triangle \mathrm{XZD}$ [SSS congruence]
(ii) In $\triangle X Y P$ and $\triangle X Z P$, we have
$X Y=X Z$
$\angle Y X P=\angle Z X P$
$X P=X P$
$\Delta X Y P \approx \Delta X Z P$ [SAS congruence]
(iii) $\triangle X Y D \approx \triangle X D Y$
$\angle X D Y=\angle X D Z$
$\Rightarrow 180^{\circ}-\angle X D Y=180^{\circ}-\angle X D Z$
Also, from part (ii), $\angle Y X P D=\angle Z X P$
XP bisects $D X$ as well as $\angle D$.
(iv) Now, $\mathrm{YP}=\mathrm{ZP}$ and $\angle \mathrm{YPX}=\angle \mathrm{ZPX}$

But $\angle Y P X+\angle Z P X=180^{\circ}$
So, $2 \angle B P A=180^{\circ}$
Or, $\angle Y P X=90^{\circ}$
Since $Y P=Z P$, therefore $X P$ is perpendicular bisector of $Y Z$.

Question 2:

Isosceles triangle $X Y Z$ has an altitude $X D$, in which $X Y=X Z$. Show that
(i) $X D$ bisects $Y Z$
(ii) $X D$ bisects $\angle X$

Solution:
(i) In $\triangle A B D$ and $\triangle A C D$, we have $\angle A D B=\angle A D C$
$X Y=X Z$
$X D=X D$
$\triangle X Y D \approx \triangle X Z D$.
$Y D=Z D$
Hence, XD bisects YC.
(ii) Also, $\angle \mathrm{YXD}=\angle \mathrm{ZXD}$

Hence $X D$ bisects $\angle X$.

Question 3:

Two sides $A B$ and $B C$ and median $A M$ of one triangle $A B C$ are respectively equal to sides $P Q$ and $Q R$ and median $P N$ of $\triangle P Q R$. Show that: (i) $\triangle A B M \approx A P Q N$ (ii) $\triangle A B C \approx \triangle P Q R$

Solution:
(i) In $\triangle \mathrm{ABM}$ and $\triangle \mathrm{PQN}$,
we have
$B M=Q N$
$\frac{1}{2} B C=\frac{1}{2} Q R$
$A B=P Q$
$A M=P N$
$\triangle \mathrm{ABM}=\triangle \mathrm{PQN}[$ SSS Congruence]
$\angle \mathrm{ABM}=\angle \mathrm{PQN}$
(ii) Now, in $\triangle A B C$ and $\triangle P Q R$, we have
$A B=P Q$
$\angle A B C=\angle P Q R$
$B C=Q R$
$\triangle \mathrm{ABC} \approx \triangle \mathrm{PQR}[\mathrm{SAS}$ congruence]

Question 4:

In triangle $A B C, B E$ and CF are two equal altitudes. By Using RHS congruence rule, prove that the triangle $A B C$ is isosceles.

Solution:
$B E$ and $C F$ are altitudes of a $\triangle A B C$
$\angle B E C=\angle C F B=90^{\circ}$
Now, in right triangles BEB and CFB, we have
Hyp. $B C=H y p . B C$
Side BE= Side CF
$\triangle \mathrm{BEC} \approx \triangle \mathrm{CFB}$
$\angle \mathrm{BCE}=\angle \mathrm{CBF}$

Now, in $\triangle A B C, \angle B=\angle C$
$A B=A C$
Hence, $\triangle A B C$ is an isosceles triangle

Question 5:
$A B=A C$ in an isosceles triangle $A B C$. Draw $A P$ perpendicular $B C$ to show that $\angle B=\angle C$

Solution:

Draw $A P$ perpendicular $B C$. In $\triangle A B P$ and $\triangle A C P$, we have
$A B=A C$
$\angle A P B=\angle A P C$
$\mathrm{AB}=\mathrm{AP}$ [Common]
$\triangle \mathrm{ABP}=\triangle \mathrm{ACP}$ [By RHS congruence rule]
Alma .n - in nmand rnonnti

Exercise 7.4

Question 1：

Show that in a right－angled triangle，the hypotenuse is the longest side．

Solution：
$A B C$ is a right angle triangle，right angled at B
Now $\angle A+\angle C=90^{\circ}$
Angles A and C are less than 90°
Now，$\angle B>\angle A$
$A C>B C \ldots$（i）
（Side opposite to greater angle is longer）
Again，$\angle B>\angle C$
$A C>A B \ldots$（ii）
（Side opposite to greater angle are longer）
Hence，from（i）and（ii），we can say that AC（hypotenuse）is the longest side
Hence proved．

Question 2：

In the figure，sides $A B$ and $A C$ of $\triangle A B C$ are extended to points P and Q respectively．$A /$ so，$\angle P B C<\angle Q C B$ ．Show that $A C>A B$ ．

Solution：
$\angle A B C+\angle P B C=180^{\circ}($ Linearpair $) \Rightarrow \angle A B C=180^{\circ}-\angle P B C$
Similarly，$\angle A C B=180^{\circ}-\angle Q C B$
It is given that $\angle P B C<\angle Q C B$
$180^{\circ}-\angle Q C B<180^{\circ}-\angle P B C$
Or $\angle A C B<\angle A B C$［From（i）and（ii）］
$\Rightarrow A B<A C \Rightarrow A C>A B$
Hence proved．

Question 3：

In the figure，$\angle B<\angle A$ and $\angle C<\angle D$ ．Show that $A D<B C$ ．

Solution:
$\angle B<\angle A$ (Given)
$B O>A O$... (i)
(Side opposite to greater angle is longer)
$\angle C<\angle D$ (Given)
$\mathrm{CO}>\mathrm{DO} \ldots$ (ii)
(Same reason)
Adding (i) and (ii)
$\mathrm{BO}+\mathrm{CO}>\mathrm{AO}+\mathrm{DO}$
$B C>A D$
$A D<B C$
Hence Proved

Question 4:

$A B$ and $C D$ are respectively the smallest and longest side of a quadrilateral $A B C D$ (see fig.) Show that $\angle A>\angle C$

Solution:
Join AC.
Mark the angles as shown in the figure
In $\triangle A B C$,
$B C>A B(A B$ is the shortest side $)$
$\angle 2>\angle 4 \ldots$ (i)

[Angle opposite to longer side is greater]

In $\triangle A D C$
$C D>A D(C D$ is the longest side $)$
$\angle 1>\angle 3 \ldots$ (ii)
[Angle opposite to longer side is greater]
Adding (i) and (ii), we have
$\angle 2+\angle 1>\angle 4+\angle 3 \Rightarrow \angle A>\angle C$
Similarly, by joining BD, we can prove that
$\angle B>\angle D$

Question 5:

In the figure, $P R>P Q$ and $P S$ bisects $\angle Q P R$. Prove that $\angle P S R>\angle P S Q$

Solution:
$P R>P Q$
$\angle P Q R>\angle P R Q \ldots$ (i)
[Angle opposite to longer side is greater]
$\angle Q P S>\angle R P S(P S$ bisects $\angle Q P R) \ldots$ (ii)
In $\triangle P Q S, \angle P Q S+\angle Q P S+\angle P S Q=180^{\circ}$
$\Rightarrow \angle P S Q=180^{\circ}-(\angle P Q S+\angle Q P S) \ldots$ (iii)
Similarly in $\triangle P R S, \triangle P S R=180^{\circ}-(\angle P R S+\angle R P S)$
$\Rightarrow \angle P S R=180^{\circ}-(\angle P S R+\angle Q P S)[$ from (ii) \ldots. (iv)
From (i), we know that $\angle P Q S<\angle P S R$
So from (iii) and (iv), $\angle P S Q<\angle P S R$
$\Rightarrow \angle P S R>\angle P S Q$
Hence proved.

Question 6:

Show that of all the segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Solution:

We have a line I and O is the point not on I
$O P \perp i$
We have to prove that $\mathrm{OP}<\mathrm{OQ}, \mathrm{OP}<\mathrm{OR}$ and $\mathrm{OP}<\mathrm{OS}$
$\mathrm{OP}<\mathrm{OS}$

In $\triangle O P Q, \angle P=90^{\circ}$
Therefore, $\angle Q$ is an acute angle (i.e, $\angle Q<90^{\circ}$)
$\angle Q<\angle P$
Hence, OP < OQ (Side opposite to greater angle is longer)
Similarly, we can prove that OP is shorter than OR, OS, etc.
Hence proved

Exercise 7.5

Question 1:
Find a point in the interior of $\triangle D E F$ which is at an equal distance or equidistant from all the vertices of $\triangle D E F$.

Solution:

Draw perpendicular bisectors of sides $D E$;
EF and FD , which meets at O .
Hence: O is the required point

Question 2:

Find a point in the interior of a triangle such that it is at equal distances from all the sides of the triangle.
Solution:

Question 3:

People are concentrated at three points in a park namely A, B and C. (see Fig.).

-

A: is where swings and slides for children are present
B : is where a lake is present
C : is where there is a large parking lot and exit
Where do you think an ice - cream parlor should be set up such that the maximum number of people can access it? Draw bisectors $\overline{A B}$ and $B C$ Let these angle bisectors meet at $\mathrm{O} . \mathrm{O}$ is the required point.

Solution: Join $A B, B C$ and $C A$ to get a triangle $A B C$. Draw the perpendicular bisector of $A B$ and $B C$. Let them meet at O. Then O is equidistant from A, B and C Hence, the parlor should be set up at O so that all the other points are equidistant from it

Question 4:
Fill the star shaped and hexagonal rangolies [see fig.(i) and (ii)] by filling them with as many equilateral triangles as you can of side 1 cm . What is the number of triangles in both the cases? Which one has the most number of triangles?

(i)

(ii)

Solution:

