Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

Question 1:

Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.
(i) $4 \mathrm{x}^{2}-3 \mathrm{x}+7$
(ii) $y^{2}+\sqrt{2}$
(iii) $3 \sqrt{t}+t \sqrt{2}$
(iv) $y+\frac{2}{y}$
(v) $y+2 y^{-1}$

Solution 1:

i) $4 x^{2}-3 x+7$

One variable is involved in given polynomial which is ' x '
Therefore, it is a polynomial in one variable ' x '.
(ii) $y^{2}+\sqrt{2}$

One variable is involved in given polynomial which is ' y ' Therefore, it is a polynomial in one variable ' y '.
(iii) $3 \sqrt{t}+t \sqrt{2}$

No. It can be observed that the exponent of variable t in term $3 \sqrt{t}$ is $\frac{1}{2}$, which is nota whole number. Therefore, this expression is not a polynomial.
(iv) $y+\frac{2}{y}$
$=y+2 y^{-1}$

The power of variable ' y ' is -1 which is not a whole number.
Therefore, it is not a polynomial in one variable

No. It can be observed that the exponent of variable y in term $\frac{2}{y}$ is -1 , which is not a whole number. Therefore, this expression is not a polynomial.
(v) $x^{10}+y^{3}+t^{50}$

In the given expression there are 3 variables which are ' x, y, t ' involved.

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper

Therefore, it is not a polynomial in one variable.

Question 2:

Write the coefficients of x^{2} in each of the following:
(i) $2+x^{2}+x$
(ii) $2-x^{2}+x^{3}$
(iii) $\frac{\pi}{2} x^{2}+x$
(iv) $\sqrt{2} x-1$

Solution 2:

(i) $2+x^{2}+x^{3}$
$=2+1\left(x^{2}\right)+x$

The coefficient of x^{2} is 1 .
(ii) $2-x^{2}+x^{3}$
$=2-1\left(x^{2}\right)+x$
The coefficient of x^{2} is -1 .
(iii) $\frac{\pi}{2} x^{2}+x$

The coefficient x^{2} of is $\frac{\pi}{2}$.
(iv) $\sqrt{2} x-1=0 x^{2}+\sqrt{2} x-1$

The coefficient of x^{2} is 0 .

Question 3:

Give one example each of a binomial of degree 35, and of a monomial of degree 100 .
Solution 3 :
Binomial of degree 35 means a polynomial is having

1. Two terms
2. Highest degree is 35

Example: $x^{35}+x^{34}$
Monomial of degree 100 means a polynomial is having

1. One term
2. Highest degree is 100

Example: x^{100}.

Question 4:

Write the degree of each of the following polynomials:
(i) $5 x^{3}+4 x^{2}+7 x$
(ii) $4-y^{2}$
(iii) $5 t-\sqrt{7}$
(iv) 3

Solution 4:
Degree of a polynomial is the highest power of the variable in the polynomial.
(i) $5 x^{3}+4 x^{2}+7 x$

Highest power of variable ' x ' is 3 . Therefore, the degree of this polynomial is 3
(ii) $4-y^{2}$

Highest power of variable ' y ' is 2 . Therefore, the degree of this polynomial is 2 .
(iii) $5 t-\sqrt{7}$

Highest power of variable ' t ' is 1 . Therefore, the degree of this polynomial is 1 .
(iv) 3

This is a constant polynomial. Degree of a constant polynomial is always 0 .

Question 5: Classify the following as linear, quadratic and cubic polynomial:
(i) $x^{2}+x$
(ii) $x-x^{3}$
(iii) $y+y^{2}+4$
(iv) $1+x$
(v) 3 t
(vi) r^{2}
(vii) $7 \mathrm{x}^{2} 7 x^{3}$

Solution 5:

Linear polynomial - whose variable power is ' 1 '
Quadratic polynomial - whose variable highest power is ' 2 ' Cubic polynomial- whose variable highest power is ' 3 '
(i) $x^{2}+x$ is a quadratic polynomial as its highest degree is 2 .
(ii) $x-x^{3}$ is a cubic polynomial as its highest degree is 3 .
(iii) $y+y^{2}+4$ is a quadratic polynomial as its highest degree is 2 .
(iv) $1+\mathrm{x}$ is a linear polynomial as its degree is 1 .
(v) 3 t is a linear polynomial as its degree is 1 .
(vi) r^{2} is a quadratic polynomial as its degree is 2 .
(vii) $7 x^{2} 7 x^{3}$ is a cubic polynomial as highest its degree is 3 .

Exercise 2.2

Question 1:

Find the value of the polynomial at $5 x-4 x^{2}+3$ at
(i) $\mathrm{x}=0$
(ii) $\mathrm{x}=-1$
(iii) $\mathrm{x}=2$

Solution 1:

(i) $\quad p(x)=5 x-4 x^{2}+3$
$p(0)=5(0)-4(0)^{2}+3=3$
(ii) $\quad p(x)=5 x-4 x^{2}+3$

$$
\begin{aligned}
p(-1) & =5(-1)-4(-1)^{2}+3 \\
& =-5-4(1)+3=-6
\end{aligned}
$$

(iii) $\quad p(x)=5 x-4 x^{2}+3$

$$
p(2)=5(2)-4(2)^{2}+3=10-16+3=-3
$$

Question 2:

Find $p(0), p(1)$ and $p(2)$ for each of the following polynomials:
(i) $p(y)=y^{2}-y+1$
(ii) $\mathrm{p}(\mathrm{t})=2+\mathrm{t}+2 \mathrm{t}^{2}-\mathrm{t} 3$
(iii) $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}$
(iv) $p(x)=(x-1)(x+1)$

Solution 2:

(i) $p(y)=y^{2}-y+1$

- $\mathrm{p}(0)=(0)^{2}-(0)+1=1$
- $\mathrm{p}(1)=(1)^{2}-(1)+1=1-1+1=1$
- $\mathrm{p}(2)=(2)^{2}-(2)+1=4-2+1=3$
(ii) $p(t)=2+t+2 t^{2}-t^{3}$
- $\mathrm{p}(0)=2+0+2(0)^{2}-(0)^{3}=2$
- $\mathrm{p}(1)=2+(1)+2(1)^{2}-(1)^{3}=2+1+2-1=4$
- $\mathrm{p}(2)=2+2+2(2)^{2}-(2)^{3}$
$=2+2+8-8=4$
(iii) $p(x)=x^{3}$
- $\mathrm{p}(0)=(0)^{3}=0$
- $\mathrm{p}(1)=(1)^{3}=1$
- $\mathrm{p}(2)=(2)^{3}=8$
(v) $p(x)=(x-1)(x+1)$
- $\mathrm{p}(0)=(0-1)(0+1)=(-1)(1)=-1$
- $\mathrm{p}(1)=(1-1)(1+1)=0(2)=0$
- $\mathrm{p}(2)=(2-1)(2+1)=1(3)=3$

Question 3:

Verify whether the following are zeroes of the polynomial, indicated against them.
(i) $p(x)=3 x+1, x=-\frac{1}{3}$
(ii) $p(x)=5 x-\pi, x=\frac{4}{5}$
(iii) $p(x)=x^{2}-1, x=1,-1$
(iv) $p(x)=(x+1)(x-2), x=-1,2$
(v) $p(x)=x^{2}, x=0$
(vi) $p(x)=l m+m, x=-\frac{m}{l}$
(vii) $p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$
(viii) $p(x)=2 x+1, x=\frac{1}{2}$

Solution 3:

(i) If $x=-\frac{1}{3}$ is a zero of given polynomial $\mathrm{p}(\mathrm{x})=3 \mathrm{x}+1$, then $p\left(-\frac{1}{3}\right)$ should be 0 .

Here, $p\left(-\begin{array}{r}1 \\ 3\end{array}\right)=3\left(-\begin{array}{r}1 \\ 3\end{array}\right)+1=-1+1=0$
Therefore, is a zero of the given polynomial.
(ii) If $x=\frac{4}{5}$ is a zero of polynomial $\mathrm{p}(\mathrm{x})=5 \mathrm{x}-\pi$, then $p\left(\frac{4}{5}\right)$ should be 0 .

Here, $p\binom{4}{5}=5\binom{4}{5}-\pi=4-\pi$
As $p\left(\frac{4}{5}\right) \neq 0$
Therefore, $x=\frac{4}{5}$ is not a zero of the given polynomial.
(iii) If $x=1$ and $x=-1$ are zeroes of polynomial $p(x)=x^{2}-1$, then $p(1)$ and $p(-1)$ should be 0 .

Here, $p(1)=(1)^{2}-1=0$, and
$p(-1)=(-1)^{2}-1=0$
Hence, $\mathrm{x}=1$ and -1 are zeroes of the given polynomial.
(iv) If $x=-1$ and $x=2$ are zeroes of polynomial $p(x)=(x+1)(x-2)$, then $p(-1)$ and $\mathrm{p}(2)$ should be 0 .

Here, $p(-1)=(-1+1)(-1-2)=0(-3)=0$, and
$p(2)=(2+1)(2-2)=3(0)=0$
Therefore, $\mathrm{x}=-1$ and $\mathrm{x}=2$ are zeroes of the given polynomial.
(v) If $x=0$ is a zero of polynomial $p(x)=x^{2}$, then $p(0)$ should be zero.

Here, $p(0)=(0)^{2}=0$
Hence, $x=0$ is a zero of the given polynomial.
(vi) If $p\left(\frac{-m}{l}\right)$ is a zero of polynomial $\mathrm{p}(\mathrm{x})=\mathrm{x}+\mathrm{m}$, then $p\left(\frac{-m}{l}\right)$ should be 0 .

Here, $p\left(\frac{-m}{l}\right)=l\left(\frac{-m}{l}\right)+m=-m+m=0$

Therefore, $x=\frac{-m}{l}$ is a zero of the given polynomial.
(vii) If $x=\frac{-1}{\sqrt{3}}$ and $x=\frac{2}{\sqrt{3}}$ are zeroes of polynomial $\mathrm{p}(\mathrm{x})=3 \mathrm{x}^{2}-1$, then $p\binom{-1}{\sqrt{3}}$ and $p\binom{2}{\sqrt{3}}$ should be 0.

Here, $p\left(\frac{-1}{\sqrt{3}}\right)=3\left(\frac{-1}{\sqrt{3}}\right)^{2}-1=3\left(\frac{1}{3}\right)-1=1-1=0$, and
$p\left(\frac{2}{\sqrt{3}}\right)=3\left(\frac{2}{\sqrt{3}}\right)^{2}-1=3\left(\frac{4}{3}\right)-1=4-1=3$
Hence, $x=\frac{-1}{\sqrt{3}}$ is a zero of the given polynomial.
However, $x=\frac{2}{\sqrt{3}}$ is not a zero of the given polynomial.
(viii) If $x=\frac{1}{2}$ is a zero of polynomial $\mathrm{p}(\mathrm{x})=2 \mathrm{x}+1$, then $p\left(\frac{1}{2}\right)$ should be 0 .

Here, $\mathrm{p}\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)+1=1+1=2$
As $p\left(\frac{1}{2}\right) \neq 0$,
Therefore, $x=\frac{1}{2}$ is not a zero of the given polynomial.

Question 4:

Find the zero of the polynomial in each of the following cases:
(i) $\mathrm{p}(\mathrm{x})=\mathrm{x}+5$
(ii) $p(x)=x-5$
(iii) $p(x)=2 x+5$
(iv) $p(x)=3 x-2$
(v) $p(x)=3 x$
(vi) $p(x)=a x, a \neq 0$
(vii) $p(x)=c x+d, c \neq 0, c, d$ are real numbers.

Solution 4:

Zero of a polynomial is that value of the variable at which the value of thepolynomial is obtained as 0 .
(i) $\mathrm{p}(\mathrm{x})=\mathrm{x}+5$

Let $p(x)=0$
$x+5=0$
$\mathrm{x}=-5$
Therefore, for $x=-5$, the value of the polynomial is 0 and hence, $x=-5$ is a zero of the given polynomial.
(ii) $p(x)=x-5$

Let $\mathrm{p}(\mathrm{x})=0$
$x-5=0$
$\mathrm{x}=5$
Therefore, for $x=5$, the value of the polynomial is 0 and hence, $x=5$ is a zero of the given polynomial.
(iii) $p(x)=2 x+5$

Let $p(x)=0$
$2 x+5=0$
$2 x=-5$
$x=-\frac{5}{2}$

Therefore, for $x=-\frac{5}{2}$, the value of the polynomial is 0 and hence, $x=-\frac{5}{2}$ is a zero of the given polynomial.
(iv) $\mathrm{p}(\mathrm{x})=3 \mathrm{x}-2$
$p(x)=0$
$3 x-2=0$
Therefore, for $x=\frac{2}{3}$, the value of the polynomial is 0 and hence, $x=\frac{2}{3}$ is a zero of the given polynomial.
(v) $p(x)=3 x$

Let $\mathrm{p}(\mathrm{x})=0$
$3 \mathrm{x}=0$
$\mathrm{x}=0$
Therefore, for $x=0$, the value of the polynomial is 0 and hence, $x=0$ is a zero of the given polynomial.
(vi) $p(x)=a x$

Let $\mathrm{p}(\mathrm{x})=0$
ax $=0$
$\mathrm{x}=0$
Therefore, for $x=0$, the value of the polynomial is 0 and hence, $x=0$ is a zero of the given polynomial.
(vii) $p(x)=c x+d$

Let $\mathrm{p}(\mathrm{x})=0$
$\mathrm{cx}+\mathrm{d}=0$
$x=\frac{-d}{c}$
Therefore, for $x=\frac{-d}{c}$, the value of the polynomial is 0 and hence, $x=\frac{-d}{c}$ is a zero of the given polynomial.

Question 1:
Find the remainder when $\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1$ is divided by
(i) $\mathrm{x}+1$
(ii) $x-\frac{1}{2}$
(iii) x
(iv) $x+\pi$
(v) $5+2 x$

Solution 1:

(i) $x^{3}+3 x^{2}+3 x+1 \div x+1$

By long division, we get

$$
\begin{array}{r}
x+1 \begin{array}{l}
x^{2}+2 x+1 \\
x^{3}+3 x^{2}+3 x+1 \\
x^{3}+x^{2} \\
-\quad- \\
2 \not x^{2}+3 x+1 \\
2 x^{2}+2 x \\
-\quad- \\
-\quad-\quad- \\
-\quad x^{x+1}
\end{array}
\end{array}
$$

Therefore, the remainder is 0 .
(ii) $\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1 \div \mathrm{x}-\frac{1}{2}$

By long division,

$$
\begin{aligned}
& x - \frac { 1 } { 2 } \longdiv { x ^ { 2 } + \frac { 7 } { 2 } x + \frac { 1 9 } { 4 } } \underset { x ^ { 3 } + 3 x ^ { 2 } + 3 x + 1 } { x ^ { 2 } } \\
& x^{3}-\frac{x^{2}}{2} \\
& \text { - + } \\
& \begin{array}{l}
\frac{7}{2} x^{2}+3 x+1 \\
\frac{7}{2} x^{2}-\frac{7}{4} x
\end{array} \\
& -\quad+ \\
& \frac{19}{4} x+1 \\
& \frac{19}{4} x-\frac{19}{8} \\
& -\quad+ \\
& \frac{27}{8}
\end{aligned}
$$

Therefore, the remainder is $\frac{27}{8}$.
(iii) $\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1 \div \mathrm{x}$

By long division,

Therefore, the remainder is 1 .
(iv) $x^{3}+3 x^{2}+3 x+1 \div x+\pi$ By long division, we get

$$
\begin{aligned}
& x^{2}+(3-\pi) x+\left(3-3 \pi+\pi^{2}\right) \\
& x + \pi \longdiv { x ^ { 3 } + 3 x ^ { 2 } + 3 x + 1 } \\
& x^{3}+\pi x^{2} \\
& -\quad- \\
& (3-\pi) x^{2}+3 x+1 \\
& (3-\pi) x^{2}+(3-\pi) \pi x \\
& \frac{-}{\left[3-3 \pi+\pi^{2}\right] x+1} \\
& {\left[3-3 \pi+\pi^{2}\right] x+\left(3-3 \pi+\pi^{2}\right) \pi} \\
& -\quad- \\
& {\left[1-3 \pi+3 \pi^{2}-\pi^{3}\right]}
\end{aligned}
$$

Therefore, the remainder is $-\pi^{3}+3 \pi^{2}-3 \pi+1$.
(v) $5+2 \mathrm{x}$

By long division, we get

$$
\begin{array}{r}
\frac{x^{2}}{2}+\frac{x}{4}+\frac{7}{8} \\
\frac{x^{3}+\frac{5}{2} x^{2}}{x^{3}+3 x^{2}+3 x+1} \\
\frac{x^{2}}{\frac{x^{2}}{2}+3 x+1}+\frac{5 x}{4} \\
-\quad-\quad \frac{7 x}{4}+1 \\
\frac{-}{4} x+\frac{35}{8} \\
-\frac{27}{8}
\end{array}
$$

Therefore, the remainder is $-\frac{27}{8}$.

Question 2:

Find the remainder when $x^{3}-a x^{2}+6 x-a$ is divided by $x-a$.
Solution 2:
$x^{3}-a x^{2}+6 x-a \div x-a$
By long division,

$x^{3}-a x^{2}$
$-\quad+$

$6 x-a$
$6 x-6 a$
$-\quad+$
$5 a$

Therefore, when $\mathrm{x}^{3}-\mathrm{ax}+6 \mathrm{x}-\mathrm{a}$ is divided by $\mathrm{x}-\mathrm{a}$, the remainder obtained is 5 a .

Question 3:

Check whether $7+3 x$ is a factor of $3 x^{3}+7 x$.

Solution 3:

Let us divide $\left(3 x^{3}+7 x\right)$ by $(7+3 x)$.
By long division, we get

$$
\begin{array}{r}
x^{2}-\frac{7}{3} x+\frac{70}{9} \\
3 x + 7 \longdiv { 3 x ^ { 3 } + 0 x ^ { 2 } + 7 x } \\
\frac{-7 x^{3}+7 x^{2}+7 x}{-\quad-} \\
\frac{-7 x^{2}-\frac{49 x}{3}}{+\quad+} \\
\frac{70 x}{3} \\
\frac{70 x}{3}+\frac{490}{9} \\
-\quad-\frac{490}{9}
\end{array}
$$

The remainder is not zero,
Therefore, $7+3 \mathrm{x}$ is not a factor of $3 \mathrm{x}^{3}+7 \mathrm{x}$.

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

