IX Math
 Ch 2: Polynomials
 Chapter Notes

Top Definitions

1. A polynomial $p(x)$ in one variable x is an algebraic expression in x of the form
$p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots \ldots . .+a_{2} x^{2}+a_{1} x+a_{0}$, where
(i) $a_{0}, a_{1}, a_{2} \ldots \ldots a_{n}$ are constants
(ii) $x_{0}, x_{1}, x_{2} \ldots \ldots x_{n}$ are variables
(iii) $a_{0}, a_{1}, a_{2} \ldots \ldots a_{n}$ are respectively the coefficients of $x_{0}, x_{1}, x_{2} \ldots \ldots x_{n}$.
(iv) Each of $a_{n} x^{n}+a_{n-1} x^{n-1}, a_{n-2} x^{n-2}, \ldots \ldots . a_{2} x^{2}, a_{1} x, a_{0}$, with $a_{n} \neq 0$, is called a term of a polynomial.
2. A leading term is the term of highest degree.
3. Degree of a polynomial is the degree of the leading term.
4. A polynomial with one term is called a monomial.
5. A polynomial with two terms is called a binomial.
6. A polynomial with three terms is called a trinomial.
7. A polynomial of degree 1 is called a linear polynomial. It is of the form ax+b. For example: $x-2,4 y+89,3 x-z$.
8. A polynomial of degree 2 is called a quadratic polynomial. It is of the form $a x^{2}+b x+c$. where a, b, c are real numbers and $a \neq 0$ For example: $x^{2}-2 x+5$ etc.
9. A polynomial of degree 3 is called a cubic polynomial and has the general form $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$. For example: $x^{3}+2 x^{2}-2 x+5$ etc.
10. A bi-quadratic polynomial $p(x)$ is a polynomial of degree 4 which can be reduced to quadratic polynomial in the variable $z=x^{2}$ by substitution.
11. The zero polynomial is a polynomial in which the coefficients of all the terms of the variable are zero.
12. Remainder theorem: Let $p(x)$ be any polynomial of degree greater than or equal to one and let a be any real number. If $p(x)$ is divided by the linear polynomial $x-a$, then remainder is $p(a)$.
13. Factor Theorem: If $p(x)$ is a polynomial of degree $n \geq 1$ and a is any real number then $(x-a)$ is a factor of $p(x)$, if $p(a)=0$.
14. Converse of Factor Theorem: If $p(x)$ is a polynomial of degree $n \geq 1$ and a is any real number then $p(a)=0$ if $(x-a)$ is a factor of $p(x)$.
15. An algebraic identity is an algebraic equation which is true for all values of the variables occurring in it.

Top Concepts

1. The degree of non-zero constant polynomial is zero.
2. A real number ' a ' is a zero/ root of a polynomial $p(x)$ if $p(a)=0$.
3. The number of real zeroes of a polynomial is less than or equal to the degree of polynomial.
4. Degree of zero polynomial is not defined.
5. A non zero constant polynomial has no zero.
6. Every real number is a zero of a zero polynomial.
7. Division algorithm: If $p(x)$ and $g(x)$ are the two polynomials such that degree of $p(x) \geq$ degree of $g(x)$ and $g(x) \neq 0$, then we can find polynomials $q(x)$ and $r(x)$ such that:
$p(x)=g(x) q(x)+r(x)$
where, $r(x)=0$ or degree of $r(x)<$ degree of $g(x)$.
8. If the polynomial $p(x)$ is divided by $(x+a)$, the remainder is given by the value of $p(-a)$.
9. If the polynomial $p(x)$ is divided by $(x-a)$, the remainder is given by the value of $p(a)$.
10. If $p(x)$ is divided by $a x+b=0 ; a \neq 0$, the remainder is given by $p\left(\frac{-b}{a}\right) ; a \neq 0$.
11. If $p(x)$ is divided by $a x-b=0, a \neq 0$, the remainder is given by $p\left(\frac{b}{a}\right) ; a \neq 0$.
12. A quadratic polynomial $a x^{2}+b x+c$ is factorised by splitting the middle term $b x$ as $p x+q x$ so that $p q=a c$.
13. The quadratic polynomial $a x^{2}+b x+c$ will have real roots if and only if $b^{2}-4 a c \geq 0$.
14. For applying factor theorem the divisor should be either a linear polynomial of the form x-a or it should be reducible to a linear polynomial.

Top Formulae

1. Quadratic identities:
a. $(x+y)^{2}=x^{2}+2 x y+y^{2}$
b. $(x-y)^{2}=x^{2}-2 x y+y^{2}$
c. $(x-y)(x+y)=x^{2}-y^{2}$
d. $(x+a)(x+b)=x^{2}+(a+b) x+a b$
e. $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}++2 x y+2 y z+2 z x$

Here x, y, z are variables and a, b are constants
2. Cubic identities:
a. $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$
b. $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
c. $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
d. $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
e. $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
f. If $x+y+z=0$ then $x^{3}+y^{3}+z^{3}=3 x y z$

Here, $x, y \& z$ are variables.

