Downloaded from www.studiestoday.com

IX Math Ch 2: Polynomials <u>Chapter Notes</u>

Top Definitions

1. A polynomial p(x) in one variable x is an algebraic expression in x of the form $p(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0, \text{ where}$ (i) $a_0, a_1, a_2, \dots, a_n$ are constants (ii) $x_0, x_1, x_2, \dots, x_n$ are variables (iii) $a_0, a_1, a_2, \dots, a_n$ are respectively the coefficients of $x_0, x_1, x_2, \dots, x_n$. (iv) Each of $a_n x^n + a_{n-1} x^{n-1}, a_{n-2} x^{n-2}, \dots, a_2 x^2, a_1 x, a_0$, with $a_n \neq 0$, is called a term of a polynomial.

- 2. A leading term is the term of highest degree.
- 3. Degree of a polynomial is the degree of the leading term.
- 4. A polynomial with one term is called a monomial.
- 5. A polynomial with two terms is called a binomial.
- 6. A polynomial with three terms is called a trinomial.
- A polynomial of degree 1 is called a linear polynomial. It is of the form ax+b. For example: x-2, 4y+89, 3x-z.
- 8. A polynomial of degree 2 is called a quadratic polynomial. It is of the form $ax^2 + bx + c$. where a, b, c are real numbers and $a \neq 0$ For example: $x^2 2x + 5$ etc.
- 9. A polynomial of degree 3 is called a cubic polynomial and has the general form $ax^3 + bx^2 + cx + d$. For example: $x^3 + 2x^2 2x + 5$ etc.
- 10. A bi-quadratic polynomial p(x) is a polynomial of degree 4 which can be reduced to quadratic polynomial in the variable $z = x^2$ by substitution.

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

- 11. The zero polynomial is a polynomial in which the coefficients of all the terms of the variable are zero.
- 12. Remainder theorem: Let p(x) be any polynomial of degree greater than or equal to one and let a be any real number. If p(x) is divided by the linear polynomial x - a, then remainder is p(a).
- 13. Factor Theorem: If p(x) is a polynomial of degree $n \ge 1$ and a is any real number then (x-a) is a factor of p(x), if p(a) = 0.
- 14. Converse of Factor Theorem: If p(x) is a polynomial of degree $n \ge 1$ and a is any real number then p(a) = 0 if (x-a) is a factor of p(x).
- 15. An algebraic identity is an algebraic equation which is true for all values of the variables occurring in it.

Top Concepts

- 1. The degree of non-zero constant polynomial is zero.
- 2. A real number 'a' is a zero/ root of a polynomial p(x) if p(a) = 0.
- 3. The number of real zeroes of a polynomial is less than or equal to the degree of polynomial.
- 4. Degree of zero polynomial is not defined.
- 5. A non zero constant polynomial has no zero.
- 6. Every real number is a zero of a zero polynomial.
- 7. Division algorithm: If p(x) and g(x) are the two polynomials such that degree of $p(x) \ge degree$ of g(x) and $g(x) \ne 0$, then we can find polynomials q(x) and r(x) such that: p(x) = g(x) q(x) + r(x)where, r(x) = 0 or degree of r(x) < degree of g(x).
- 8. If the polynomial p(x) is divided by (x+a), the remainder is given by the value of p(-a).
- 9. If the polynomial p(x) is divided by (x-a), the remainder is given by the value of p (a).

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

- If p (x) is divided by ax + b = 0; $a \neq 0$, the remainder is given by 10. $p\left(\frac{-b}{a}\right)$; $a \neq 0$.
- If p (x) is divided by ax b = 0, $a \neq 0$, the remainder is given by 11. $p\left(\frac{b}{a}\right)$; $a \neq 0$.
- A quadratic polynomial $ax^2 + bx + c$ is factorised by splitting the middle 12. term bx as px + qx so that pq = ac.
- The quadratic polynomial $ax^2 + bx + c$ will have real roots if and only if 13. b^2 -4ac ≥ 0 .
- 14. For applying factor theorem the divisor should be either a linear polynomial of the form x-a or it should be reducible to a linear polynomial.

Top Formulae

1. Ouadratic identities: a. $(x + y)^2 = x^2 + 2xy + y^2$ b. $(x-y)^2 = x^2 - 2xy + y^2$ c. $(x - y)(x + y) = x^2 - y^2$ d. $(x + a)(x + b) = x^{2} + (a + b)x + ab$ e. $(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$ Here x, y, z are variables and a, b are constants

2. Cubic identities:

a. $(x + y)^3 = x^3 + y^3 + 3xy(x + y)$ b. $(x-y)^3 = x^3 - y^3 - 3xy(x-y)$ c. $x^3 + y^3 = (x + y)(x^2 - xy + y^2)$ d. $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$ e. $x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - vz - zx)$ f. If x + y + z = 0 then $x^3 + y^3 + z^3 = 3xyz$

Here, x, y & z are variables.

Downloaded from www.studiestoday.com