NCERT SOLUTIONS CLASS-IX MATHS CHAPTER-2 POLYNOMIALS

Exercise - 1
Q.1. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer:
(i) $4 x^{2}-3 x+7$

Answer: It is a polynomial in one variable
(ii) $y^{2}+\sqrt{2}$

Answer: It is a polynomial in one variable.
(iii) $3 \sqrt{t}+t \sqrt{2}$

Answer: It is not a polynomial since the power of the variable is not a whole number.
(iv) $y+\frac{2}{y}$

Answer: It is not a polynomial since the power of the variable is not a whole number.
(v) $x^{10}+y^{3}+t^{50}$

Answer: It is a polynomial in three variables.
Q.2. Write the coefficients of a^{2} in each of the following:
(i) $2+a^{2}+a$

Answer: Coefficient of a^{2} is 1 .
(ii) $2-a^{2}+a^{3}$

Answer: Coefficient of a^{2} is -1 .
(iii) $\frac{\pi}{2} x^{2}+x$

Answer: Coefficient of a^{2} is $\frac{\pi}{2}$
(iv) $\sqrt{2} x-1$

Answer: Coefficient of a^{2} is 0 .

Q.3. Give one example each of a binomial of degree 35, and of a monomial of degree 100.

Answer: $3 x^{35}+5$ and $4 x^{100}$
(i) $5 a^{3}+4 a^{2}+7 a$

Answer : Degree is 3 .
(ii) $3-b^{2}$

Answer : Degree is 2 .
(iii) $5 t-\sqrt{8}$

Answer: Degree is 1 .
(iv) 8

Answer: No Degree.
Q.5. Classify the following as linear, quadratic and cubic polynomial.
(i) $a^{2}+a$

Answer: Quadratic Polynomial
(ii) $a-a^{3}$

Answer: Cubic Polynomial
(iii) $y+y^{2}+4$

Answer: Quadratic Polynomial
(iv) $1+x$

Answer: Linear Polynomial
(v) $3 a$

Answer: Linear Polynomial
(vi) a^{2}

Answer: Quadratic Polynomial
(vii) $6 a^{3}$

Answer: Cubic Polynomial

Exercise - 2

Q.1. Find the value of the polynomial at $f(x)=5 a-4 a^{2}+3$ at
(i) $a=0$
(ii) $a=-1$
(iii) $a=2$

Answer:

Let $f(x)=5 a-4 a^{2}+3$
(i) When $a=0$
$f(0)=5(0)+4(0)^{2}+3=3$
(ii) When $a=-1$
$f(a)=5 a+4 a^{2}+3$
$f(-1)=5(-1)+4(-1)^{2}+3=-5-4+3=-6$
(iii) When $a=2$
$f(a)=5 a+4 a^{2}+3$
$f(2)=5(2)+4(2)^{2}+3=10-16+3=-3$
Q.2. Find $p(0), p(1)$ and $p(2)$ for each of the following polynomials:

$$
\text { (i) } p(y)=y^{2}-y+1
$$

Answer: $p(y)=y 2-y+1$

$$
\begin{aligned}
& \therefore p(0)=(0)^{2}-(0)+1=1 \\
& p(1)=(1)^{2}-(1)+1=1 \\
& p(2)=(2)^{2}-(2)+1=3
\end{aligned}
$$

(ii) $p(a)=2+a+2 a^{2}-a^{3}$

Answer: $p(a)=2+a+2 a^{2}-a^{3}$

$$
\begin{aligned}
& \therefore p(0)=2+0+2(0)^{2}-(0)^{3}=2 \\
& p(1)=2+1+2(1)^{2}-(1)^{3}=2+1+2-1=4 \\
& p(2)=2+2+2(2)^{2}-(2)^{3}=2+2+8-8=4
\end{aligned}
$$

(iii) $p(x)=x^{3}$

Answer: $p(x)=x 3$

$$
\begin{aligned}
& \therefore p(0)=(0)^{3}=0 \\
& p(1)=(1)^{3}=1 \\
& p(2)=(2)^{3}=8
\end{aligned}
$$

(iv) $p(a)=(a-1)(a+1)$

Answer: $p(a)=(a-1)(a+1)$

$$
\begin{aligned}
& \therefore p(0)=(0-1)(0+1)=(-1)(1)=-1 \\
& p(1)=(1-1)(1+1)=0(2)=0 \\
& p(2)=(2-1)(2+1)=1(3)=3
\end{aligned}
$$

Q.3. Verify whether the following are zeroes of the polynomial, indicated against them.

(i) $p(x)=3 x+1 \cdot x=-\frac{1}{\infty}$

Answer: For, $x=-\frac{1}{3}$
$p(x)=3 x+1$
$\therefore p\left(-\frac{1}{3}\right)=3\left(-\frac{1}{3}\right)+1=-1+1=0$
$\therefore-\frac{1}{3}$ is a zero of $\mathrm{p}(\mathrm{x})$.
(iii) $p(x)=5 x-\pi, x=\frac{4}{5}$

Answer: For, $x=\frac{4}{5}$
$p(x)=5 x-\pi$
$\therefore p\left(\frac{4}{5}\right)=5\left(\frac{4}{5}\right)-\pi=4-\pi$
$\therefore \frac{4}{5}$ is not a zero of $\mathrm{p}(\mathrm{x})$.
(iii) $p(x)=x^{2}-1, x=1,-1$

Answer: For, $x=1,-1$
$p(x)=x^{2}-1$
$\therefore p(1)=x^{1}-1=1-1=0$
$p(-1)=x^{-1}-1=1-1=0$
$\therefore 1,-1$ are zeros of $\mathrm{p}(\mathrm{x})$.
(iv) $p(x)=(x+1)(x-2), x=-1,2$

Answer: For, $x=-1,2$
$p(x)=(x+1)(x-2)$
$\therefore p(-1)=(-1+1)(-1-2)$
$=((0)(-3))$
$=0$
$p(2)=(2+1)(2-2)$
$=(3)(0)=0$
$\therefore-1,2$ are zeros of $\mathrm{p}(\mathrm{x})$.
(v) $p(x)=x^{2}, x=0$

Answer: For, $x=0$
$p(x)=0^{2}=0$
$\therefore 0$ is a zero of $\mathrm{p}(\mathrm{x})$.
(vi) $p(x)=l x+m, x=-\frac{m}{l}$

Answer: For, $x=-\frac{m}{l}$
$p(x)=l x+m$
$\therefore p\left(-\frac{m}{l}\right)=l\left(-\frac{m}{l}\right)+m=-m+m=0$
$\therefore-\frac{m}{l}$ is a zero of $\mathrm{p}(\mathrm{x})$.
(vii) $p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$

Answer: For, $\boldsymbol{x}=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$
$p(x)=3 x^{2}-1$
$\therefore p\left(-\frac{1}{\sqrt{3}}\right)=3\left(-\frac{1}{\sqrt{3}}\right)^{2}-1$
$=3\left(\frac{1}{3}\right)-1=1-1=0$
$\therefore p\left(\frac{2}{\sqrt{3}}\right)=3\left(\frac{2}{\sqrt{3}}\right)^{2}-1$
$=3\left(\frac{4}{3}\right)-1=4-1=3 \neq 0$
$\therefore-\frac{1}{\sqrt{3}}$ is a zero of $p(x)$ but $\frac{2}{\sqrt{3}}$ is not a zero of $p(x)$.
(viii) $p(x)=2 x+1, x=\frac{1}{2}$

Answer: For, $x=\frac{1}{2}$
$p(x)=2 x+1$
$\therefore p\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)+1=1+1=2 \neq 0$
Misplaced \& is not a zero of $p(x)$.

Q.4. Find the zero of the polynomial in each of the following cases:

(i) $p(x)=x+5$

Answer: $\begin{aligned} & p(x)=x+5 \\ & \quad \Rightarrow x+5=0 \Rightarrow x=-5\end{aligned}$
$\therefore-5$ is a zero polynomial of the polinomila $p(x)$.
(ii) $p(x)=x-5$

Answer: $p(x)=x-5$

$$
\Rightarrow x-5=0 \Rightarrow x=5
$$

$\therefore 5$ is a zero polynomial of the polinomila $\mathrm{p}(\mathrm{x})$.
(iii) $p(x)=2 x+5$

Answer: $p(x)=2 x+5$

$$
\begin{aligned}
& \Rightarrow 2 x+5=0 \Rightarrow 2 x=-5 \\
& \Rightarrow x=\frac{-5}{2}
\end{aligned}
$$

$\therefore x=\frac{-5}{2}$ is a zero polynomial of the polynomial $\mathrm{p}(\mathrm{x})$.
(iv) $p(x)=3 x-2$

Answer: $p(x)=3 x-2$

$$
\begin{aligned}
& \Rightarrow 3 x-2=0 \Rightarrow 3 x=2 \\
& \Rightarrow x=\frac{2}{3}
\end{aligned}
$$

$\therefore x=\frac{2}{3}$ is a zero polynomial of the polynomial $\mathrm{p}(\mathrm{x})$.
(v) $p(x)=3 x$

Answer: $p(x)=3 x$

$$
\Rightarrow 3 x=0 \Rightarrow x=0
$$

$\therefore 0$ is a zero polynomial of the polynomial $\mathrm{p}(\mathrm{x})$.

Exercise - 3

Q.1.Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by (i) $x+1$

Answer:
$x+1=0 \quad \therefore$ Remainder $=p(-1)=(-1)^{3}+3(-1)^{2}+3(-1)+1=-1+3-3+1=0$
$\Rightarrow x=-1$
(ii) $x-\frac{1}{2}$

Answer:
$x-\frac{1}{2}=0 \therefore$ Remainder $\left(\frac{1}{2}\right)^{3}+3\left(\frac{1}{2}\right)^{2}+3\left(\frac{1}{2}\right)+1$
$\Rightarrow x=\frac{1}{2}=\frac{1}{8}+\frac{3}{4}+\frac{3}{2}+1=\frac{27}{8}$
(iii) x

Answer:

\therefore Remainder $=(0)^{3}+3(0)^{2}+3(0)+1$
$=1$
(iv) $x+\pi$

Answer:
$x+\pi=0 \quad \therefore$ Remainder $=(-\pi)^{3}+3(-\pi)^{2}+3(-\pi)+1=-\pi^{3}+3 \pi^{2}-3 \pi+1$
$\Rightarrow x=-\pi$

(v) $5+2 x$

Answer:
$5+2 x=0 \quad \therefore$ Remainder $=\left(-\frac{5}{2}\right)^{3}+3\left(-\frac{5}{2}\right)^{2}+3\left(-\frac{5}{2}\right)+1=-\frac{125}{8}+\frac{75}{4}-\frac{15}{2}+1=-\frac{27}{8}$
$\Rightarrow 2 x=-5 \Rightarrow x=-\frac{5}{2}$
Q.2.Find the remainder when $x^{3}-a x^{2}+6 x-a$ is divided by x - a.

Answer:

$$
\begin{aligned}
& \text { Let } p(x)=x^{3}-a x^{2}+6 x-a \\
& \qquad x-a=0 \\
& \qquad \begin{array}{l}
\therefore x=a \text { Remainder }=(a)^{2}-a\left(a^{2}\right)+6(a)-a \\
\quad=a^{3}-a^{3}+6 a-a \\
\quad=5 a
\end{array}
\end{aligned}
$$

Q.3.Check whether $7+3 x$ is a factor of $3 x^{3}+7 x$.

Answer:
$7+3 x=0 \Rightarrow 3 x=-7$ only if $7+3 \mathrm{x}$ divides $3 x^{3}+7 x$ leaving no reaminder.
Let $p(x)=3 x^{3}+7 x$
$7+3 x=0 \Rightarrow 3 x=-7 \Rightarrow x=-\frac{7}{3} \therefore$ Remainder $=3\left(-\frac{7}{3}\right)^{3}+7\left(-\frac{7}{3}\right)=-\frac{343}{9}-\frac{49}{3}=-\frac{490}{9} \neq 0$
$\therefore 7+3 \mathrm{x}$ is not a factor of $3 x^{3}+7 x$

Exercise-4

Q.1. Determine which of the following polynomials has $(x+1)$ a factor:

(i) $x^{3}+x^{2}+x+1$

Answer:

Let $\mathrm{p}(\mathrm{x})=x^{3}+x^{2}+x+1$
The zero of $x+1$ is -1 .
$p(-1)=(-1)^{3}+(-1)^{2}+(-1)+1$
$=-1+1-1+1=0$
\therefore By factor theorem, $\mathrm{x}+1$ is a factor of $x^{3}+x^{2}+x+1$
(ii) $x^{4}+x^{3}+x^{2}+x+1$

Answer:

Let $\mathrm{p}(\mathrm{x})=x^{4}+x^{3}+x^{2}+x+1$
The zero of $x+1$ is -1 .
$p(-1)=(-1)^{4}+(-1)^{3}+(-1)^{2}+(-1)+1 \therefore$ By factor theorem, $\mathrm{x}+1$ is a factor of $x^{4}+x^{3}+x^{2}+x+1$ $=1-1+1-1+1=1 \neq 0$
(iii) $x^{4}+3 x^{3}+3 x^{2}+x+1$

Answer:
Let $\mathrm{p}(\mathrm{x})=x^{4}+3 x^{3}+3 x^{2}+x+1$
The zero of $\mathrm{x}+1$ is -1 .
$p(-1)=(-1)^{4}+3(-1)^{3}+3(-1)^{2}+(-1)+1 \therefore$ By factor theorem, $\mathrm{x}+1$ is a factor of $x^{4}+3 x^{3}+3 x^{2}+x+1$ $=1-3+3-1+1=1 \neq 0$
(iv) $x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$

Answer:

Let $\mathrm{p}(\mathrm{x})=x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$
The zero of $x+1$ is -1 .
$n(-1)-(-1)^{3}-(-1)^{2}-(9+\sqrt{9})(-1)+\sqrt{9}$
Cole
\therefore By factor theorem, $\mathrm{x}+1$ is not a factor of $x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$
Q.2. Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases:
(i) $p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1$

Answer: $p(x)=2 x^{3}+x^{2}-2 x-1, \mathrm{~g}(\mathrm{x})=x+1$
$g(x)=0$
$\Rightarrow x+1=0 \Rightarrow x=-1$
\therefore Zero of $\mathrm{g}(\mathrm{x})$ is -1 .
Now, $p(-1)=2(-1)^{3}+(-1)^{2}-2(-1)-1$

$$
=-2+1+2-1=0
$$

\therefore By factor theorem, $\mathrm{g}(\mathrm{x})$ is a factor of $\mathrm{p}(\mathrm{x})$.
(ii) $p(x)=x^{3}+3 x^{2}+3 x+1, g(x)=x+2$

Answer: $p(x)=x^{3}+3 x^{2}+3 x+1, \mathrm{~g}(\mathrm{x})=x+2$
$g(x)=0$
$\Rightarrow x+2=0 \Rightarrow x=-2$
\therefore Zero of $\mathrm{g}(\mathrm{x})$ is -2 .
Now, $p(-2)=(-2)^{3}+3(-2)^{2}+3(-2)+1$

$$
=-8+12-6+1=-1 \neq=0
$$

\therefore By factor theorem, $\mathrm{g}(\mathrm{x})$ is not a factor of $\mathrm{p}(\mathrm{x})$.
(iii) $p(x)=x^{3}-4 x^{2}+x+6, g(x)=x-3$

Answer: $p(x)=x^{3}-4 x^{2}+x+6, \mathrm{~g}(\mathrm{x})=x-3$
$g(x)=0$
$\Rightarrow x-3=0 \Rightarrow x=3$
\therefore Zero of $\mathrm{g}(\mathrm{x})$ is 3 .

$$
\text { Now, } p(3)=(3)^{3}-4(3)^{2}+(3)+6
$$

$$
=27-36+3+6=0
$$

\therefore By factor theorem, $\mathrm{g}(\mathrm{x})$ is a factor of $\mathrm{p}(\mathrm{x})$.

Q.3. Find the value of k, if $x-1$ is a factor of $p(x)$ in each of the following cases:

(i) $p(x)=x^{2}+x+k$

Answer: If $\mathrm{x}-1$ is a factor of $\mathrm{p}(\mathrm{x})$, then $\mathrm{p}(1)=0 \quad$ By Factor Theorem $\Rightarrow(1)^{2}+(1)+k=0 \Rightarrow 1+1+k=0$
$\Rightarrow 2+k=0 \Rightarrow k=-2$
(ii) $p(x)=2 x^{2}+k x+\sqrt{2}$

Answer: If $x-1$ is a factor of $p(x)$, then $p(1)=0$
$\Rightarrow 2(1)^{2}+k(1)+\sqrt{2}=0 \Rightarrow 2+k+\sqrt{2}=0 \Rightarrow k=-(2+\sqrt{2})$
(iii) $p(x)=k x^{2}-\sqrt{2} x+1$

Answer: If $x-1$ is a factor of $p(x)$, then $p(1)=0$
By Factor Theorem
$\Rightarrow k(1)^{2}-\sqrt{2}(1)+1=0$
$\Rightarrow k=\sqrt{2}-1$
(iv) $p(x)=k x^{2}-3 x+k$

Answer: If $x-1$ is a factor of $p(x)$, then $p(1)=0$
By Factor Theorem
$\Rightarrow k(1)^{2}-3(1)+k=0 \Rightarrow k-3+k=0$
$\Rightarrow 2 k-3=0$
$\Rightarrow k=\frac{3}{2}$

Q.4. Factorize:

(i) $12 x^{2} \quad 7 x+1$

Answer:

$12 x^{2}-7 x+1=12 x^{2}-4 x-3 x+1$
$=4 x(3 x-1)-1(3 x-1)=(4 x-1)(3 x-1)$
Let $\mathrm{p}(\mathrm{x})=12 x^{2}-7 x+1$
Then $\mathrm{p}(\mathrm{x})=12\left(x^{2}-\frac{7}{12} x+\frac{1}{12}\right)=12 q(x)$
Where $\mathrm{q}(\mathrm{x})=x^{2}-\frac{7}{12} x+\frac{1}{12}$
By trial, we find that
$q\left(\frac{1}{3}\right)=\left(\frac{1}{3}\right)^{2}-\frac{7}{12}\left(\frac{1}{3}\right)+\frac{1}{12}$
$=\frac{4-7+3}{36}=\frac{0}{36}=0$
\therefore By Factor Theorem,
$\left(x-\frac{1}{3}\right)$ is a factor of $\mathrm{q}(\mathrm{x})$.
Similarly, by trial, we find that
$q\left(\frac{1}{4}\right)=\left(\frac{1}{4}\right)^{2}-\frac{7}{12}\left(\frac{1}{4}\right)+\frac{1}{12}$
$=\frac{3-7+4}{18}=\frac{0}{48}=0$
\therefore By Factor Theorem,
$\left(x-\frac{1}{4}\right)$ is a factor of $\mathrm{q}(\mathrm{x})$.
Therefore, $12 x^{2}-7 x+1=12\left(x-\frac{1}{3}\right)\left(x-\frac{1}{4}\right)$

$$
=12\left(\frac{3 x-1}{3}\right)\left(\frac{4 x-1}{4}\right)=(3 x-1)(4 x-1)
$$

(ii) $2 x^{2}+7 x+3$

Answer:

$$
\begin{aligned}
& 2 x^{2}+7 x+3=2 x^{2}+6 x+x+3 \\
& =2 x(x+3)+1(x+3) \\
& =(x+3)(2 x+1)
\end{aligned}
$$

Let $\mathrm{p}(\mathrm{x})=2 x^{2}+7 x+3$
Then $\mathrm{p}(\mathrm{x})=2\left(x^{2}+\frac{7}{2} x+\frac{3}{2}\right)=2 q(x)$
Where $\mathrm{q}(\mathrm{x})=x^{2}+\frac{7}{2} x+\frac{3}{2}$
By trial, we find that
$q(-3)=(-3)^{2}-\frac{7}{2}(-3)+\frac{3}{2}$
$=9-\frac{21}{2}+\frac{3}{2}=0$
\therefore By Factor Theorem,
$(x-3)$, i.e. $(x+3)$ is a factor of $\mathrm{q}(\mathrm{x})$.
Similarly, by trial, we find that
$q\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^{2}+\frac{7}{12}\left(-\frac{1}{2}\right)+\frac{3}{2}$
$=\frac{1}{3}-\frac{7}{4}+\frac{3}{4}=0$
\therefore By Factor Theorem,
$\left(x-\left(-\frac{1}{2}\right)\right)$, i.e. $\left(x+\frac{1}{2}\right)$ is a factor of $q(x)$.
Therefore, $2 x^{2}+7 x+3=2(x+3)\left(x+\frac{1}{2}\right)$
$=2(x+3)\left(\frac{2 x+1}{2}\right)$
$=(x+3)(2 x+1)$
By Simpler method,
(iii) $\backslash\left(6 x^{\wedge}\{2\}+5 x-6=6 x^{\wedge}\{2\}+9 x-4 x-6\right.$
$=3 x(2 x+3)-2(2 x+3)=(2 x+3)(3 x-2)!)$

$$
\begin{aligned}
\text { (iv) } 3 x^{2}-x-4= & 3 x^{2}-x-4 \\
& =3 \times 2-4 x+3 x-4 \\
& =x(3 x-4)+1(3 x-4) \\
& =(3 x-4)(x+1)
\end{aligned}
$$

Q.5. Factorize:

(i) $x^{3}-2 x^{2}-x+2$

Answer: Let $p(x)=x^{3}-2 x^{2}-x+2$
Factors of 2 are ± 1 and ± 2
By trial method, we find that
$p(1)=0$
So, $(x+1)$ is factor of $p(x)$
Now,
$p(x)=x^{3}-2 x^{2}-x+2$
$p(-1)=(-1)^{3}-2(-1)^{2}-(-1)+2=-1-1+1+2=0$
Therefore, $(x+1)$ is the factor of $p(x)$

Now, Dividend $=$ Divisor \times Quotient + Remainder

$$
\begin{aligned}
& (x+1)\left(x^{2}-3 x+2\right) \\
& =(x+1)\left(x^{2}-x-2 x+2\right) \\
& =(x+1)(x(x-1)-2(x-1)) \\
& =(x+1)(x-1)(x+2)
\end{aligned}
$$

(ii) $x^{3}-3 x^{2}-9 x-5$

Answer: Let $\mathrm{p}(\mathrm{x})=x^{3}-3 x^{2}-9 x-5$
Factors of 5 are ± 1 and ± 5
By trial method, we find that
$p(5)=0$
So, ($x-5$) is factor of $p(x)$
Now,
$\mathrm{p}(\mathrm{x})=x^{3}-3 x^{2}-9 x-5$
$p(5)=(5)^{3}-3(5)^{2}-9(5)-5=125-75-45-5=0$
Therefore, $(x-5)$ is the factor of $p(x)$

Now, Dividend $=$ Divisor \times Quotient + Remainder
$(x-5)\left(x^{2}+2 x+1\right)$
$=(x-5)\left(x^{2}+x+x+1\right)$
$=(x-5)(x(x+1)+1(x+1))$
$=(x-5)(x+1)(x+1)$
(iii) $x^{3}+13 x^{2}+32 x+20$

Answer: Let $\mathrm{p}(\mathrm{x})=x^{3}+13 x^{2}+32 x+20$
Factors of 20 are $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10$ and ± 20
By trial method, we find that
$p(-1)=0$
So, $(x+1)$ is factor of $p(x)$
Now,
$\mathrm{p}(\mathrm{x})=x^{3}+13 x^{2}+32 x+20$
$\mathrm{p}(-1)=(-1)^{3}+13(-1)^{2}+32(-1)+20=-1+13-32+20=0$
Therefore, $(\mathrm{x}+1)$ is the factor of $\mathrm{p}(\mathrm{x})$

Now, Dividend $=$ Divisor \times Quotient + Remainder

$$
\begin{aligned}
& (x+1)\left(x^{2}+12 x+20\right) \\
& =(x+1)\left(x^{2}+2 x+10 x+20\right) \\
& =(x-5) x(x+2)+10(x+2) \\
& =(x-5)(x+2)(x+10)
\end{aligned}
$$

(iv) $2 y^{3}+y^{2}-2 y-1$

Answer: Let $\mathrm{p}(\mathrm{y})=2 y^{3}+y^{2}-2 y-1$
Factors of $\mathrm{ab}=2 \times(-1)=-2$ are ± 1 and ± 2
By trial method, we find that
$p(1)=0$
So, $(y-1)$ is factor of $p(y)$
Now,
$\mathrm{p}(\mathrm{y})=2 y^{3}+y^{2}-2 y-1$
$p(1)=2(1)^{3}+(1)^{2}-2(1)-1=2+1-2=0$
Therefore, $(y-1)$ is the factor of $p(y)$

Now, Dividend $=$ Divisor \times Quotient + Remainder

$$
\begin{aligned}
& (y-1)\left(2 y^{2}+3 y+1\right) \\
& =(y-1)\left(2 y^{2}+2 y+y+1\right) \\
& =(y-1)(2 y(y+1)+1(y+1)) \\
& =(y-1)(2 y+1)(y+1)
\end{aligned}
$$

Exercise - 5

Q.1.Use suitable identities to find the following products:

(i) $(x+4)(x+10)$

Answer: $(x+4)(x+10)=x^{2}+(4+10) x+(4 \times 10)$

$$
=x^{2}+14 x+40
$$

(ii) $(x+8)(x-10)$

$$
\text { Answer: } \begin{aligned}
& (x+8)(x-10)=x^{2}+(8+(-10)) x+(8 \times(-10)) \\
& =x^{2}+(8-10) x-80 \\
& =x^{2}-2 x-80
\end{aligned}
$$

(iii) $(3 x+4)(3 x-5)$

Answer: $(3 x+4)(3 x-5)=(3 x)^{2}+4+(-5) 3 x+4 \times(-5)$

$$
=9 x^{2}+3 x(4-5)-20
$$

$=9 x^{2}-3 x-$
(iv) $\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)$
Answer: $\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)=\left(y^{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}$

$$
=y^{4}-\frac{9}{4}
$$

Q.2. Evaluate the following products without multiplying directly:

(i) 103×107

Answer: $103 \times 107=(100+3) \times(100+7)$

$$
\begin{aligned}
& =(100)^{2}+(3+7)(100+(3 \times 7)) \\
& =10000+1000+21 \\
& =11021
\end{aligned}
$$

(ii) 95×96

Answer: $95 \times 96=(90+5) \times(90+6)$

$$
\begin{aligned}
& =(90)^{2}+90(5+6)+(5 \times 6) \\
& =8100+990+30=9120
\end{aligned}
$$

(iii) 104×96

Answer: $104 \times 96=(100+4) \times(100-4)$

$$
\begin{aligned}
& =(100)^{2}-(4)^{2} \\
& =10000-16 \\
& =9984
\end{aligned}
$$

Q.3. Factorize the following using appropriate identities:

(i) $9 x^{2}+6 x y+y^{2}$

Answer: $9 x^{2}+6 x y+y^{2}$

$$
\begin{aligned}
& =(3 x)^{2}+(2 \times 3 x \times y)+y^{2} \\
& =(3 x+y)^{2} \\
& =(3 x+y)(3 x+y)
\end{aligned}
$$

(ii) $4 y^{2}-4 y+1$

Answer: $4 y^{2}-4 y+1$

$$
\begin{aligned}
& =(2 y)^{2}-(2 \times 2 y \times 1)+1^{2} \\
& =(2 y-1)^{2} \\
& =(2 y-1)(2 y-1)
\end{aligned}
$$

(iii) $x 2-\frac{y^{2}}{100}$

Answer: $x^{2}-\left(\frac{y}{10}\right)^{2}=\left(x-\frac{y}{10}\right)\left(x+\frac{y}{10}\right)$

Q.4. Expand each of the following, using suitable identities:

(i) $(x+2 y+4 z)^{2}$
(ii) $(2 x-y+z)^{2}$
(iii) $(-2 x+3 y+2 z)^{2}$
(iv) $\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2}$

Answer:

(i) $(x+2 y+4 z)^{2}$

Using identity,
$(x+2 y+4 z)^{2}$
$=x^{2}+(2 y)^{2}+(4 z)^{2}+(2 \times x \times 2 y)+(2 \times 2 y \times 4 z)+(2 \times 4 z \times x)$
$=x^{2}+4 y^{2}+16 z 2+4 x y+16 y z+8 x z$
(ii) $(2 x-y+z)^{2}$

Using identity,
$(2 x-y+z)^{2}$
$=(2 x)^{2}+(-y)^{2}+z^{2}+(2 \times 2 x \times-y)+(2 \times-y \times z)+(2 \times z \times 2 x)$
$=4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z$
(iii) $(-2 x+3 y+2 z)^{2}$

Using identity,
$(-2 x+3 y+2 z)^{2}$
$=(-2 x)^{2}+(3 y)^{2}+(2 z)^{2}+(2 \times-2 x \times 3 y)+(2 \times 3 y \times 2 z)+(2 \times 2 z \times-2 x)$
$=4 x^{2}+9 y^{2}+4 z^{2}-12 x y+12 y z-8 x z$
(iv) $\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2}$

Using identity,
$\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2}=\left(\frac{1}{4} a\right)^{2}+\left(-\frac{1}{2} b\right)^{2}+1^{2}+\left(2 \times \frac{1}{4} a \times-\frac{1}{2} b\right)+\left(2 \times-\frac{1}{2} b \times 1\right)+\left(2 \times 1 \times \frac{1}{4} a\right)$
$=\frac{1}{16} a^{2}+\frac{1}{4} b^{2}+1-\frac{1}{4} a b-b+\frac{1}{2} a$

Q.5. Factorize:

(i) $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$
(ii) $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$

Answer:
(i) $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$

Answer:

$$
\begin{aligned}
& 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \\
& =(2 x)^{2}+(3 y)^{2}+(-4 z)^{2}+(2 \times 2 x \times 3 y)+(2 \times 3 y \times-4 z)+(2 \times-4 z \times 2 x) \\
& =(2 x+3 y-4 z)^{2} \\
& =(2 x+3 y-4 z)(2 x+3 y-4 z)
\end{aligned}
$$

(II) $z x^{-}+y^{-}+\delta z^{-}-2 \sqrt{ } z x y+4 \sqrt{ } z y z-\gamma x z$

Answer:
$2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$
$=(-\sqrt{2} x)^{2}+(y)^{2}+(2 \sqrt{2} z)^{2}+(2 \times-\sqrt{2} x \times y)+(2 \times y \times 2 \sqrt{2} z)+(2 \times 2 \sqrt{2} z \times-\sqrt{2} x)$
$=(-\sqrt{2} x+y+2 \sqrt{2} z)^{2}$
$=(-\sqrt{2} x+y+2 \sqrt{2} z)(-\sqrt{2} x+y+2 \sqrt{2} z)$

Q.6. Write the following cubes in expanded form:

(i) $(2 x+1)^{3}$
(ii) $(2 a-3 b)^{3}$
(iii) $\left[\frac{3}{2} x+1\right]^{3}$
(iv) $\left[x-\frac{2}{3} y\right]^{3}$

Answer:
(i) $(2 x+1)^{3}$
$(2 x+1)^{3}=(2 x)^{3}+1^{3}+(3 \times 2 x \times 1)(2 x+1)$
$=8 x^{3}+1+6 x(2 x+1)$
$=8 x^{3}+12 x^{3}+6 x+1$
(ii) $(2 a-3 b)^{3}$
$(2 a-3 b)^{3}=(2 a)^{3}-(3 b)^{3}-(3 \times 2 a \times 3 b)(2 a-3 b)$
$=8 a^{3}-27 b^{3}-18 a b(2 a-3 b)$
$=8 a^{3}-27 b^{3}-36 a^{2} b+54 a b^{2}$
(iii) $\left[\frac{3}{2} x+1\right]^{3}$
$\left[\frac{3}{2} x+1\right]^{3}=\left(\frac{3}{2} x\right)^{3}+1^{3}+\left(3 \times \frac{3}{2} x \times 1\right)\left(\frac{3}{2} x+1\right)$
$=\frac{27}{8} x^{3}+1+\frac{9}{2} x\left(\frac{3}{2} x+1\right)$
$=\frac{27}{8} x 3+1+\frac{27}{4}^{2}+\frac{9}{2} x$
$=\frac{27}{8} x 3+\frac{27}{4}^{2}+\frac{9}{2} x+1$
(iv) $\left[x-\frac{2}{3} y\right]^{3}$
$\left[x-\frac{2}{3} y\right]^{3}=(x)^{3}-\left(\frac{2}{3} y\right)^{3}-\left(3 \times x \times \frac{2}{3} y\right)\left(x-\frac{2}{3} y\right)$
$=(x)^{3}-\frac{8}{27} y^{3}-2 x y\left(x-\frac{2}{3} y\right)$
$=(x)^{3}-\frac{8}{27} y 3-2 x^{2} y+\frac{4}{3} x y^{2}$

Q.7. Evaluate the following using suitable identities:

(i) $(99)^{3}$
(ii) $(102)^{3}$
(iii) $(998)^{3}$

Answer:
(i) $(99)^{3}=(100-1)^{3}$
$(100-1)^{3}=(100)^{3}-1^{3}-(3 \times 100 \times 1)(100-1)$
$=1000000-1-300(100-1)$
$=1000000-1-30000+300=970299$
(ii) $(102)^{3}=(100+2)^{3}$
$(100+2)^{3}=(100)^{3}+2^{3}+(3 \times 100 \times 2)(100+2)$
$=1000000+8+600(100+2)$
$=1000000+8+60000+1200=1061208$
(iii) $(998)^{3}=(1000-2)^{3}$
$=(1000)^{3}-2^{3}-(3 \times 1000 \times 2)(1000-2)$
$=1000000000-8-6000(1000-2)$
$=1000000000-8-6000000+12000=994011992$
Q.8. Factorise each of the following:
(i) $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$
(ii) $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$
(iii) $27-125 a^{3}-135 a+225 a^{2}$
(iv) $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$
(v) $27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$

Answer:

$$
\begin{aligned}
& \text { (i) } 8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2} \\
& 8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2} \\
& =(2 a)^{3}+b^{3}+3(2 a)^{2} b+3(2 a)(b)^{2} \\
& =(2 a+b)^{3} \\
& =(2 a+b)(2 a+b)(2 a+b) \\
& \text { (ii) } 8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2} \\
& 8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2} \\
& =(2 a)^{3}-b^{3}-3(2 a)^{2} b+3(2 a)(b)^{2} \\
& =(2 a-b)^{3} \\
& =(2 a-b)(2 a-b)(2 a-b) \\
& \text { (iii) } 27-125 a^{3}-135 a+225 a^{2}
\end{aligned}
$$

$$
27-125 a^{3}-135 a+225 a^{2}
$$

$$
=3^{3}-(5 a)^{3}-3(3)^{2}(5 a)+3(3)(5 a)^{2}
$$

$$
=(3-5 a)^{3}
$$

$$
=(3-5 a)(3-5 a)(3-5 a)
$$

$$
\begin{aligned}
& \text { (iv) } 64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2} \\
& 64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2} \\
& =(4 a)^{3}-(3 b)^{3}-3(4 a)^{2}(3 b)+3(4 a)(3 b)^{2} \\
& =(4 a-3 b)^{3} \\
& =(4 a-3 b)(4 a-3 b)(4 a-3 b)
\end{aligned}
$$

$$
\text { (v) } 27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p
$$

$$
\begin{aligned}
& 27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p \\
& =(3 p)^{3}-\left(\frac{1}{6}\right)^{3}-3(3 p)^{2}\left(\frac{1}{6}\right)+3(3 p)\left(\frac{1}{6}\right)^{2} \\
& =\left(3 p-\frac{1}{6}\right)^{3} \\
& =\left(3 p-\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right)
\end{aligned}
$$

Q.9. Verify:

$$
\text { (i) } \begin{aligned}
& x^{3}+y^{3} \\
= & (x+y)\left(x^{2}-x y+y^{2}\right)
\end{aligned}
$$

(ii) $x^{3}-y^{3}$

$$
=(x-y)\left(x^{2}+x y+y^{2}\right)
$$

Answer:

$$
\begin{aligned}
& \text { (i) } x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \\
& \text { We know that, } \\
& (x+y)^{3}=x^{3}+y^{3}+3 x y(x+y) \\
& \Rightarrow x^{3}+y^{3}=(x+y)^{3}-3 x y(x+y) \\
& \Rightarrow x^{3}+y^{3}=(x+y)\left[(x+y)^{2}-3 x y\right] \text { Taking }(x+y) \text { common } \\
& \Rightarrow x^{3}+y^{3}=(x+y)\left[\left(x^{2}+y^{2}+2 x y\right)-3 x y\right] \\
& \Rightarrow x^{3}+y^{3}=(x+y)\left(x^{2}+y^{2}-x y\right) \\
& \text { (ii) } x^{3}-y^{3} \\
& =(x-y)\left(x^{2}+x y+y^{2}\right) \\
& x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \\
& \text { We know that, } \\
& (x-y)^{3}=x^{3}-y^{3}-3 x y(x-y) \\
& \Rightarrow x^{3}-y^{3}=(x-y)^{3}+3 x y(x-y) \\
& \Rightarrow x^{3}-y^{3}=(x-y)\left[(x-y)^{2}+3 x y\right] \text { Taking }(x+y) \text { common } \\
& \Rightarrow x^{3}-y^{3}=(x-y)\left[\left(x^{2}+y^{2}-2 x y\right)+3 x y\right] \\
& \Rightarrow x^{3}+y^{3}=(x-y)\left(x^{2}+y^{2}+x y\right)
\end{aligned}
$$

Q.10. Factorize each of the following:

(i) $27 y^{3}+125 z^{3}$
(ii) $64 m^{\circ}-343 n^{\circ}$

Answer:

(i) $27 y^{3}+125 z^{3}$
$27 y^{3}+125 z^{3}$
$=(3 y)^{3}+(5 z)^{3}$
$=(3 y+5 z)\left[(3 y)^{2}-(3 y)(5 z)+(5 z)^{2}\right]$
$=(3 y+5 z)\left(9 y^{2}-15 y z+25 z\right)^{2}$
(ii) $64 m^{3}-343 n^{3}$
$64 m^{3}-343 n^{3}$
$=(4 m)^{3}-(7 n)^{3}$
$=(4 m+7 n)\left[(4 m)^{2}+(4 m)(7 n)+(7 n)^{2}\right]$
$=(4 m+7 n)\left(16 m^{2}+28 m n+49 n\right)^{2}$
Q.11. Factorise : $27 x^{3}+y^{3}+z^{3}-9 x y z$

Answer:

$27 x^{3}+y^{3}+z^{3}-9 x y z$
$=(3 x)^{3}+y^{3}+z^{3}-3(3 x)(y)(z)$
$=(3 x+y+z)(3 x)^{2}+y^{2}+z^{2}-3 x y-y z-3 x z$
$=(3 x+y+z)\left(9 x^{2}+y^{2}+z^{2}-3 x y-y z-3 x z\right)$
Q.12. Verify that:
$x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$

Answer:

We know that,
$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)$
$\Rightarrow x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2} \times(x+y+z)\left[2\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)\right]$
$=\frac{1}{2}(x+y+z)\left(2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 x z\right)$
$=\frac{1}{2}(x+y+z)\left[\left(x^{2}+y^{2}-2 x y\right)+\left(y^{2}+z^{2}-2 y z\right)+\left(x^{2}+z^{2}-2 x z\right)\right]$
$=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$
Q.13. If $x+y+z=0$, show that $x^{3}+y^{3}+z^{3}-3 x y z$.

Answer:

We know that,
$x^{3}+y^{3}+z^{3}=3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)$
Now put $(x+y+z)=0$,
$x^{3}+y^{3}+z^{3}=3 x y z=(0)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)$
$\Rightarrow x^{3}+y^{3}+z^{3}-3 x y z=0$
Q.14. Without actually calculating the cubes, find the value of each of the following:
(i) $(-12)^{3}+(7)^{3}+(5)^{3}$
(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$

Answer:

(i) $(-12)^{3}+(7)^{3}+(5)^{3}$

$=-1260$
(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$
$x+y+z=28-15-13=0$
$(28)^{3}+(-15)^{3}+(-13)^{3}=0+3(28)(-15)(-13)=16380$
Q.15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:
(i) Area : $25 a^{2}-35 a+12$
(ii) Area: $35 y^{2}+13 y-12$

Answer:

(i) Area : $25 a^{2}-35 a+12$
$25 a^{2}-35 a+12$
$=25 a^{2}-15 a-20 a+12$
$=5 a(5 a-3)-4(5 a-3)$
$=(5 a-4)(5 a-3)$
Possible expression for length $=5 a-4$
Possible expression for breadth $=5 a-3$
(ii) Area: $35 y^{2}+13 y-12$
$35 y^{2}+13 y-12$
$=35 y^{2}-15 y+28 y-12$
$=5 y(7 y-3)+4(7 y-3)$
$=(5 y+4)(7 y-3)$
Possible expression for length $=(5 y+4)$
Possible expression for breadth $=(7 y-3)$
Q.16. What are the possible expressions for the dimensions of the cuboids whose volumes are given below?
(i) Volume : $3 x^{2}-12 x$
(ii) Volume : $12 k y^{2}+8 k y-20 k$

Answer:

(i) Volume : $3 x^{2}-12 x$
$3 x^{2}-12 x$
$=3 x(x-4)$
Possible expression for length $=3$
Possible expression for breadth $=x$
Possible expression for height $=(x-4)$
(ii) Volume : $12 k y^{2}+8 k y-20 k$
$12 k y^{2}+8 k y-20 k$
$=4 k\left(3 y^{2}+2 y-5\right)$
$=4 k\left(3 y^{2}+5 y-3 y-5\right)$
$=4 k[y(3 y+5)-1(3 y+5)]$
$=4 k(3 y+5)(y-1)$
Possible expression for length $=4 k$
Dnecihle avnroceinn fnr hroanth $=(21 /+5)$

Possible expression for height $=(y-1)$

