Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

Question 1:

Construct an angle of 90° at the initial point of a given ray and justify the construction.

Solution 1:

The below given steps will be followed to construct an angle of 90°.
(i) Take the given ray PQ. Draw an arc of some radius taking point P as its centre, which intersects PQ at R.
(ii) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(iii) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(iv) Taking S and T as centre, draw an arc of same radius to intersect each other at U .
(v) Join PU, which is the required ray making 90° with the given ray PQ .

Justification of Construction:

We can justify the construction, if we can prove $\angle \mathrm{UPQ}=90^{\circ}$.
For this, join PS and PT.

We have, $\angle \mathrm{SPQ}=\angle \mathrm{TPS}=60^{\circ}$. In (iii) and (iv) steps of this construction, PU was drawn as the bisector of \angle TPS.
$\therefore \angle \mathrm{UPS}=\frac{1}{2} \angle \mathrm{TPS}=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
Also, $\angle \mathrm{UPQ}=\angle \mathrm{SPQ}+\angle \mathrm{UPS}$
$=60^{\circ}+30^{\circ}$
$=90^{\circ}$

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper

Question 2:

Construct an angle of 45° at the initial point of a given ray and justify the construction.

Solution 2:

The below given steps will be followed to construct an angle of 45°.
(i) Take the given ray PQ. Draw an arc of some radius taking point P as its centre, which intersects PQ at R.
(ii) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(iii) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(iv) Taking S and T as centre, draw an arc of same radius to intersect each other at U .
(v) Join PU. Let it intersect the arc at point V.
(vi) From R and V, draw arcs with radius more than $\frac{1}{2}$ RV to intersect each other at W. Join PW. PW is the required ray making 45° with PQ .

Justification of Construction:

We can justify the construction, if we can prove $\angle \mathrm{WPQ}=45^{\circ}$.
For this, join PS and PT.

We have, $\angle \mathrm{SPQ}=\angle \mathrm{TPS}=60^{\circ}$. In (iii) and (iv) steps of this construction, PU was drawn as the bisector of \angle TPS.
$\therefore \angle \mathrm{UPS}=\frac{1}{2} \angle \mathrm{TPS}=\frac{1}{2} \times 60^{\circ}=30^{\circ}$

Also, $\angle \mathrm{UPQ}=\angle \mathrm{SPQ}+\angle \mathrm{UPS}$
$=60^{\circ}+30^{\circ}$
$=90^{\circ}$
In step (vi) of this construction, PW was constructed as the bisector of $\angle \mathrm{UPQ}$.
$\therefore \angle \mathrm{WPQ}=\frac{1}{2} \angle \mathrm{UPQ}=\frac{90^{\circ}}{2}=45^{\circ}$

Question 3:

Construct the angles of the following measurements:
(i) 30° (ii) $22 \frac{1}{2}^{\circ}$ (iii) 15°

Solution 3 :

(i) 30°

The below given steps will be followed to construct an angle of 30°.
Step I: Draw the given ray PQ. Taking P as centre and with some radius, draw an arc of a circle which intersects PQ at R.
Step II: Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point S.
Step III: Taking R and S as centre and with radius more than $\frac{1}{2}$ RS, draw arcs to intersect each other at T . Join PT which is the required ray making 30° with the given ray PQ .

(ii) $22 \frac{1}{2}$ 。

The below given steps will be followed to construct an angle of $22 \frac{1}{2}^{\circ}$.
(1) Take the given ray PQ. Draw an arc of some radius, taking point P as its centre, which intersects PQ at R.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U .
(5) Join PU. Let it intersect the arc at point V.
(6) From R and V, draw arcs with radius more than $\frac{1}{2}$ RV to intersect each other at W. Join PW. (7) Let it intersect the arc at X . Taking X and R as centre and radius more than $\frac{1}{2} \mathrm{RX}$, draw arcs to intersect each other at Y .
Joint PY which is the required ray making $22 \frac{1}{2}^{\circ}$ with the given ray $P Q$.

(iii) 15°

The below given steps will be followed to construct an angle of 15°.
Step I: Draw the given ray PQ. Taking P as centre and with some radius, draw an arc of a circle which intersects PQ at R.
Step II: Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point S.
Step III: Taking R and S as centre and with radius more than $\frac{1}{2}$ RS, draw arcs to intersect each other at T. Join PT.
Step IV: Let it intersect the arc at U . Taking U and R as centre and with radius more than $\frac{1}{2} \mathrm{RU}$, draw an arc to intersect each other at V. Join PV which is the required ray making 15° with the given ray PQ.

Question 4:

Construct the following angles and verify by measuring them by a protractor:
(i) 75°
(ii) 105° (iii) 135°

Solution 4:

(i) 75°

The below given steps will be followed to construct an angle of 75°.
(1) Take the given ray PQ . Draw an arc of some radius taking point P as its centre, which intersects PQ at R.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U .
(5) Join PU. Let it intersect the arc at V . Taking S and V as centre, draw arcs with radius more than $\frac{1}{2}$ SV. Let those intersect each other at W. Join PW which is the required ray making 75° with the given ray PQ.

The angle so formed can be measured with the help of a protractor. It comes to be 75°.
(ii) 105°

The below given steps will be followed to construct an angle of 105°.
(1) Take the given ray PQ . Draw an arc of some radius taking point P as its centre, which intersects PQ at R.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U .
(5) Join PU. Let it intersect the arc at V . Taking T and V as centre, draw arcs with radius more than $\frac{1}{2}$ TV. Let these arcs intersect each other at W. Join PW which is the required ray making 105° with the given ray PQ.

The angle so formed can be measured with the help of a protractor. It comes to be 105°.
(iii) 135°

The below given steps will be followed to construct an angle of 135°.
(1) Take the given ray PQ. Extend PQ on the opposite side of Q. Draw a semi-circle of some radius taking point P as its centre, which intersects PQ at R and W .
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U .
(5) Join PU. Let it intersect the arc at V. Taking V and W as centre and with radius more than $\frac{1}{2}$

VW, draw arcs to intersect each other at X. Join PX, which is the required ray making 135° with the given line PQ .

The angle so formed can be measured with the help of a protractor. It comes to be 135°.

Question 5:

Construct an equilateral triangle, given its side and justify the construction.

Solution 5:

Let us draw an equilateral triangle of side 5 cm . We know that all sides of an equilateral triangle are equal. Therefore, all sides of the equilateral triangle will be 5 cm . We also know that each angle of an equilateral triangle is 60°.
The below given steps will be followed to draw an equilateral triangle of 5 cm side.
Step I: Draw a line segment AB of 5 cm length. Draw an arc of some radius, while taking A as its centre. Let it intersect AB at P .
Step II: Taking P as centre, draw an arc to intersect the previous arc at E. Join AE.
Step III: Taking A as centre, draw an arc of 5 cm radius, which intersects extended line segment AE at C . Join AC and $\mathrm{BC} . \triangle \mathrm{ABC}$ is the required equilateral triangle of side 5 cm .

Justification of Construction:
We can justify the construction by showing ABC as an equilateral triangle i.e., $\mathrm{AB}=\mathrm{BC}=\mathrm{AC}=$ 5 cm and $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$.
In $\triangle A B C$, we have $A C=A B=5 \mathrm{~cm}$ and $\angle A=60^{\circ}$.
Since $A C=A B$,
$\angle \mathrm{B}=\angle \mathrm{C}$ (Angles opposite to equal sides of a triangle)
In $\triangle \mathrm{ABC}$,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ (Angle sum property of a triangle)
$60^{\circ}+\angle \mathrm{C}+\angle \mathrm{C}=180^{\circ}$
$60^{\circ}+2 \angle \mathrm{C}=180^{\circ}$
$2 \angle \mathrm{C}=180^{\circ}-60^{\circ}=120^{\circ}$
$\therefore \angle C=60^{\circ}$
$\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$
We have, $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$
$\angle \mathrm{A}=\angle \mathrm{B}$ and $\angle \mathrm{A}=\angle \mathrm{C}$
$\angle \mathrm{BC}=\mathrm{AC}$ and $\mathrm{BC}=\mathrm{AB}$ (Sides opposite to equal angles of a triangle)
$\angle \mathrm{AB}=\mathrm{BC}=\mathrm{AC}=5 \mathrm{~cm}$
From Equations (1) and (2), $\triangle \mathrm{ABC}$ is an equilateral triangle.

Question 1:

Construct a triangle ABC in which $\mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{~B}=75^{\circ}$ and $\mathrm{AB}+\mathrm{AC}=13 \mathrm{~cm}$.

Solution 1:

The below given steps will be followed to construct the required triangle.
Step I: Draw a line segment BC of 7 cm . At point B , draw an angle of 75°, say $\angle \mathrm{XBC}$.
Step II: Cut a line segment $\mathrm{BD}=13 \mathrm{~cm}$ (that is equal to $\mathrm{AB}+\mathrm{AC}$) from the ray BX .
Step III: Join DC and make an angle DCY equal to $\angle \mathrm{BDC}$.
Step IV: Let CY intersect BX at $\mathrm{A} . \triangle \mathrm{ABC}$ is the required triangle.

Question 2:

Construct a triangle ABC in which $\mathrm{BC}=8 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}$ and $\mathrm{AB}-\mathrm{AC}=3.5 \mathrm{~cm}$.

Solution 2:

The below given steps will be followed to draw the required triangle.
Step I: Draw the line segment $B C=8 \mathrm{~cm}$ and at point B, make an angle of 45°, say $\angle X B C$.
Step II: Cut the line segment $\mathrm{BD}=3.5 \mathrm{~cm}$ (equal to $\mathrm{AB}-\mathrm{AC}$) on ray BX .
Step III: Join DC and draw the perpendicular bisector PQ of DC.
Step IV: Let it intersect BX at point A. Join AC. $\triangle \mathrm{ABC}$ is the required triangle.

Question 3:

Construct a triangle PQR in which $\mathrm{QR}=6 \mathrm{~cm}, \angle \mathrm{Q}=60^{\circ}$ and $\mathrm{PR}-\mathrm{PQ}=2 \mathrm{~cm}$

Solution 3:

The below given steps will be followed to construct the required triangle.
Step I: Draw line segment QR of 6 cm . At point Q , draw an angle of 60°, say $\angle \mathrm{XQR}$.
Step II: Cut a line segment QS of 2 cm from the line segment QT extended in the opposite side of line segment XQ . (As $\mathrm{PR}>\mathrm{PQ}$ and $\mathrm{PR}-\mathrm{PQ}=2 \mathrm{~cm}$). Join SR.
Step III: Draw perpendicular bisector $A B$ of line segment $S R$. Let it intersect $Q X$ at point P. Join PQ, PR.
$\triangle \mathrm{PQR}$ is the required triangle.

Question 4:

Construct a triangle XYZ in which $\angle \mathrm{Y}=30^{\circ}, \angle \mathrm{Z}=90^{\circ}$ and $\mathrm{XY}+\mathrm{YZ}+\mathrm{ZX}=11 \mathrm{~cm}$.

Solution 4:

The below given steps will be followed to construct the required triangle.
Step I: Draw a line segment $A B$ of 11 cm .
(As XY + YZ + ZX = 11 cm)
Step II: Construct an angle, $\angle \mathrm{PAB}$, of 30° at point A and an angle, $\angle \mathrm{QBA}$, of 90° at point B .
Step III: Bisect $\angle \mathrm{PAB}$ and $\angle \mathrm{QBA}$. Let these bisectors intersect each other at point X .
Step IV: Draw perpendicular bisector ST of AX and UV of BX.
Step V: Let ST intersect AB at Y and UV intersect AB at Z.
Join XY, XZ.
$\triangle \mathrm{XYZ}$ is the required triangle.

Question 5:

Construct a right triangle whose base is 12 cm and sum of its hypotenuse and other side is 18 cm .

Solution 5:

The below given steps will be followed to construct the required triangle.
Step I: Draw line segment $A B$ of 12 cm . Draw a ray $A X$ making 90° with $A B$.
Step II: Cut a line segment AD of 18 cm (as the sum of the other two sides is 18) from ray AX .
Step III: Join DB and make an angle DBY equal to ADB.
Step IV: Let BY intersect AX at C. Join AC, BC.
$\Delta \mathrm{ABC}$ is the required triangle.

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

