IX
 Mathematics
 Chapter 11: Geometric Constructions
 Chapter Notes

Top Concepts

1. To construct an angle equal to a given angle.

Given : Any $\angle \mathrm{POQ}$ and a point A .
Required : To construct an angle at A equal to $\angle \mathrm{POQ}$.
Steps of Construction:

1. With O as centre and any (suitable) radius, draw an arc to meet OP at R and OQ at S .
2. Through A draw a line $A B$.
3. Taking A as centre and same radius (as in step 1), draw an arc to meet $A B$ at D.
4. Measure the segment RS with compasses.
5. With d as centre and radius equal to RS, draw an arc to meet the previous arc at E .
6. Join $A E$ and produce it to C, then $\angle B A C$ is the required angle equal to $\angle \mathrm{POQ}$

(i)

(ii)
7. To bisect a given angle.

Given : Any $\angle \mathrm{POQ}$
Required : To bisect $\angle \mathrm{POQ}$.
Steps of Construction:

1. With O as centre and any (suitable) radius, draw an arc to meet OP at R and OQ at S .
2. With R as centre and any suitable radius (not necessarily) equal to radius of step 1 (but $>\frac{1}{2} \mathrm{RS}$), draw an arc. Also, with S as centre and same radius draw another arc to meet the previous arc at T .
3. Join OT and produce it, then OT is the required bisector of $\angle \mathrm{POQ}$.

4. To construct angles of $60^{\circ}, 30^{\circ}, 120^{\circ}, 90^{\circ}, 45^{\circ}$
(i) To construct an angle of 60°

Steps of Construction:

1. Draw any line OP.
2. With O as centre and any suitable radius, draw an arc to meet OP at R.
3. With R as centre and same radius (as in step 2), draw an arc to meet the previous arc at S.
4. Join OS and produce it to Q , then $\angle \mathrm{POQ}=60^{\circ}$.

(ii) To construct an angle of 30°

Steps of Construction

1. Construct $\angle \mathrm{POQ}=60^{\circ}$ (as above).
2. Bisect $\angle \mathrm{POQ}$ (as in construction 2). Let OT be the bisector of $\angle \mathrm{POQ}$, then $\angle \mathrm{POT}=30^{\circ}$

(iii) To construct an angle of 120°
3. Draw any line OP.
4. With O as centre and any suitable radius, draw an arc to meet OP at R.
5. With R as centre and same radius (as in step 2), draw an arc to meet the previous arc at T . With T as centre and same radius, draw another arc to cut the first arc at S .
6. Join OS and produce it to Q , then $\angle \mathrm{POQ}=120^{\circ}$.

(iv) To construct an angle of 90°

Steps of Construction

1. Construct $\angle \mathrm{POQ}=60^{\circ}$
(as in construction 3(i)).
2. Construct $\angle \mathrm{POV}=120^{\circ}$ (as above).
3. Bisect $\angle \mathrm{QOV}$ (as in construction 2). Let OU be the bisector of $\angle \mathrm{QOV}$, then $\angle \mathrm{POU}=90^{\circ}$.

(v) To construct an angle of 45°

Steps of Construction

1. Construct $\angle \mathrm{AOP}=90^{\circ}$ (as above).
2. Bisect AOP (as in construction 2).

Let OQ be the bisector of $\angle A O P$, then $\angle A O Q=45^{\circ}$

4. To bisect a given line segment.

Given : Any line segment AB.
Required : To bisect line segment AB.
Steps of Construction:

1. At A, construct any suitable angle BAC.
2. At B, construct $\angle A B D=\angle B A C$ on the other side of the line $A B$.
3. With A as centre and any suitable radius, draw an arc to meet $A C$ at E.
4. From $B D$, cut off $B F=A E$.
5. Join $E F$ to meet $A B$ at G, then $E G$ is a bisector of the line segment $A B$ and G is mid - point of $A B$.

(ii) To divided a given line segment in a number of equal part.
6. Divided a line segment $A B$ of length 8 cm into 4 equal part.

Given : A line segment $A B$ of length 8 cm .
Required : To divide line segment 8 cm into 4 equal parts.
Steps of Construction:

1. Draw lien segment $A B=8 \mathrm{~cm}$.
2. At A, construct any suitable angle $B A X$.
3. At B, construct $\angle A B Y=\angle B A X$ on the other side of the line $A B$.
4. From $A X$, cut off 4 equal distances at the points C, D, E and F such that $A C=C D=D E=E F$.
5. With the same radius, cut off 4 equal distances along $B Y$ at the points $\mathrm{H}, \mathrm{I}, \mathrm{J}$ and K such that $\mathrm{BH}=\mathrm{HI}=\mathrm{IJ}=\mathrm{JK}$.
6. Join $A K, C J, D I, E H$ and $F B$. Let $C J, D I$ and $E H$ meet the line segment $A B$ at the points M, N and O respectively. Then, M, N and O are the points of division of $A B$ such that $A M=M N=N O$ $=O B$.

7. To draw a perpendicular bisector of a line segment.

Given : Any line segment PQ.
Required : To draw a perpendicular bisector of lien segment PQ.
Steps of Construction:

1. With P as centre and any line suitable radius draw arcs, one on each side of PQ.
2. With Q as centre and same radius (as in step 1), draw two more arcs, one on each side of $P Q$ cutting the previous arcs at A and B.
3. Join $A B$ to meet $P Q$ at M, then $A B$ bisects $P Q$ at M, and is perpendicular to $P Q$, Thus, $A B$ is the required perpendicular bisector of PQ.

4. To construct an equilateral triangle when one of its side is given.
E.g.: Construct and equilateral triangle whose each side is 5 cm .

Given : Each side of an equilateral triangle is 5 cm .
Required : To construct the equilateral triangle.
Steps of Construction:

1. Draw any line segment $A B=5 \mathrm{~cm}$.
2. With A as centre and radius 5 cm draw an arc.
3. With B as centre and radius 5 cm draw an arc to cut the previous arc at C.
4. Join $A C$ and $B C$. Then $A B C$ is the required triangle.

5. To construct an equilateral triangle when its altitude is given.
E.g.: Construct an equilateral triangle whose altitude is 4 cm .

Steps of Construction:

1. Draw any line segment PQ.
2. Take an point D on $P Q$ and $A t D$, construct perpendicular $D R$ to $P Q$. From $D R$, cut off $D A=4 \mathrm{~cm}$.
3. At A , construct $\angle \mathrm{DAS}=\angle \mathrm{DAT}=\frac{1}{2} \times 60^{\circ}=30^{\circ}$ on either side of
$A D$. Let $A S$ and $A T$ meet $P Q$ at points B and C respectively. Then, $A B C$ is the required equilateral triangle.

4. Construction of a triangle, given its Base, Sum of the other Two sides and one Base Angle.
E.g Construct a triangle with base of length 5 cm , the sum of the other two sides 7 cm and one base angle of 60°.
Given: In $\triangle A B C$, base $B C=5 \mathrm{~cm}, A B+A C=7 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$
Required : To construct the $\triangle A B C$.
Steps of Construction:
5. Draw $\mathrm{BC}=5 \mathrm{~cm}$.
6. At B, construct $\angle C B X=60^{\circ}$
7. From $B X$, cut off $B D=7 \mathrm{~cm}$.
8. Join CD.
9. Draw the perpendicular bisector of $C D$, intersecting $B D$ at a point A.
10. Join $A C$. Then, $A B C$ is the required triangle.

11. Construction of a triangle, Given its Base, Difference of the Other Two Sides and one Base Angle.
Eg: Construct a triangle with base of length 7.5 cm , the difference of the other two sides 2.5 cm , and one base angle of 45°
Given : In $\triangle A B C$, base $B C=7.5 \mathrm{~cm}$, the difference of the other two sides, $A B-A C$ or $A C-A B=2.5 \mathrm{~cm}$ and one base angle is 45°.
Required : To construct the $\triangle A B C$,
CASE (i) $A B-A C=2.5 \mathrm{~cm}$.
Steps of Construction:
12. Draw $B C=7.5 \mathrm{~cm}$.
13. At B, construct $\angle C B X=45^{\circ}$.
14. From $B X$, cut off $B D=2.5 \mathrm{~cm}$.
15. Join CD.
16. Draw the perpendicular bisector $R S$ of $C D$ intersecting $B X$ at a point A.
17. Join $A C$. Then, $A B C$ is the required triangle.

CASE (ii) $A C-A B=2.5 \mathrm{~cm}$
Steps of Construction:

1. Draw $\mathrm{BC}=7.5 \mathrm{~cm}$.
2. At B, construct $\angle C B X=45^{\circ}$ and produce $X B$ to form a line $X B X^{\prime}$.
3. From $B X^{\prime}$, cut off $B D^{\prime}=2.5 \mathrm{~cm}$.
4. Join CD'.
5. Draw perpendicular bisector $R S$ of $C D^{\prime}$ intersecting $B X$ at a point A.
6. Join $A C$. Then, $A B C$ is the required triangle.

7. Construction of a Triangle of Given Perimeter and Base Angles. Construct a triangle with perimeter 11.8 cm and base angles 60° and 45°.

Given $\quad:$ In $\triangle A B C, A B+B C+C A=11.8 \mathrm{~cm}, \angle B=60^{\circ} \& \angle C=45^{\circ}$.
Required : To construct the $\triangle A B C$.
Steps of Construction:

1. Draw $\mathrm{DE}=11.8 \mathrm{~cm}$.
2. At D, construct $\angle E D P=\frac{1}{2}$ of $60^{\circ}=30^{\circ}$ and at E, construct $\angle \mathrm{DEQ}=\frac{1}{2}$ of $45^{\circ}=22 \frac{1}{2}^{\circ}$.
3. Let DP and EQ meet at A.
4. Draw perpendicular bisector of $A D$ to meet $D E$ at B.
5. Draw perpendicular bisector of $A E$ to meet DE at C.
6. Join $A B$ and $A C$. Then, $A B C$ is the required triangle.

Downloaded from www.studiestoday.com

