NCERT SOLUTIONS
 CLASS-IX MATHS CHAPTER-11 CONSTRUCTIONS

Question-1 Construct an angle of 90° at the initial point of a given ray and justify the construction.

Solution:
Given a ray OA.

Required: To construct an angle of 90° at 0 and justify the construction.
Steps of Construction:

1. Taking O as centre and some radius, draw an arc of a circle, which intersects $O A$, say at a point B.
2. Taking B as centre and with the same radius as before, draw an arc intersecting the previously drawn arc, say at a point C.

A
3. Taking C as centre and with the same radius as before, draw an arc intersecting the arc drawn in step 1 , say at D.
4. Draw the ray $O E$ passing through C. Then $\angle E O A=60^{\circ}$

Draw the ray OF passing through D. Then $\angle F O E=60^{\circ}$.
5. Next, taking C and D as centres and with the radius more than $C D$, draw arcs to intersect each other, say at G.
6. Draw the ray $0 G$. This ray $O G$ is the bisector of the angle $\angle F O E$, i.e., $\angle F O G=\angle E O G=; \angle F O E=\left(60^{\circ}\right)=30^{\circ}$.

Thus, $\angle G O A=\angle G O E+\angle E O A=30^{\circ}+60^{\circ}=90^{\circ}$
Justification:
(i) Join BC.

Then, $O C=O B=B C$ (By construction)
$\Delta C O B$ is an equilateral triangle.

```
\(\angle \mathrm{COB}=60^{\circ}\)
```

$\angle E O A=60^{\circ}$.
(ii) Join CD.

Then, $O D=O C=C D$ (By construction) $\triangle D O C$ is an equilateral triangle.
$\angle D O C=60^{\circ}$.
$\angle \mathrm{FOE}=60^{\circ}$
(iii) Join CG and DG.

In $\triangle O D G$ and $\triangle O C G$,
$O D=O C$ I Radii of the same arc
DG = CG I Arcs of equal radii
$O G=O G I$ Common $\therefore \Delta O D G \cong \Delta$ OCG ISSS Rule
$\therefore \angle D O G=\angle C O G$ ICPCT
$\therefore \quad \angle \mathrm{FOG}=\angle \mathrm{EOG}=\frac{1}{2} \angle \mathrm{FOE}=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$
Thus, $\angle \mathrm{GOA}=\angle \mathrm{GOE}+\angle \mathrm{EOA}=30^{\circ}+60^{\circ}=90^{\circ}$.

Question-2

Construct an angle of 45° at the initial point of a given ray and justify the construction.

Solution: Given: A ray OA. Required: To construct an angle of 45° at 0 and justify the construction. Steps of Construction:

1. Taking 0 as centre and some radius, draw an arc of a circle, which intersects $O A$, say at a point B.
2. Taking B as centre and with the same radius as before, draw an arc intersecting the previously drawn arc, say at a point C.
3. Taking C as centre and with the same radius as before, draw an arc intersecting the arc drawn in step 1 , say at D.

4. Draw the ray $O E$ passing through C. Then $\angle E O A=60^{\circ}$
5. Draw the ray OF passing through D . Then $\angle \mathrm{FOE}=60^{\circ}$
6. Next, taking C and D as centres and with radius more than 1CD, draw arcs to intersect each other, say at G.
7. Draw the ray $O G$. This ray $O G$ is the bisector of the angle FOE, i.e., $\angle F O G=\angle E O G=\frac{1}{2} \angle F O E=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$.

Thus, $\angle \mathrm{GOA}=\angle \mathrm{GOE}+\angle \mathrm{EOA}=30^{\circ}+60^{\circ}=90^{\circ}$.
8. Now, taking 0 as centre and any radius, draw an arc to intersect the rays $O A$ and $O G$, say at H and I respectively.
9. Next, taking H and I as centres and with the radius more than $\frac{1}{2} \mathrm{HI}$, draw arcs to intersect each other, say at J .
10. Draw the ray OJ. This ray OJ is the required bisector of the angle GOA. Thus, $\angle \mathrm{GOJ}=\angle \mathrm{AOJ}=\frac{1}{2} \angle \mathrm{GOA}=\frac{1}{2}\left(90^{\circ}\right)=45^{\circ}$.

Justification:
(i)Join BC.

Then, $O C=O B=B C$ triangle. (By construction)
$\therefore \quad \angle \mathrm{COB}$ is an equilateral triangle.
$\therefore \angle C O B=60^{\circ}$.
$\therefore \angle E O A=60^{\circ}$.
(ii)Join $C D$.

Then, $O D=O C=C D$ (By construction)
$D D O C$ is an equilateral triangle.
$\therefore \angle \mathrm{DOC}=60^{\circ}$.
$\therefore \angle \mathrm{FOE}=60^{\circ}$.
(iii)Join CG and DG.

In $\triangle O D G$ and $\triangle O C G$,
$O D=O C$
I Radii of the same arc
$D G=C G$
$O G=O G$

I Arcs of equal radii
I Common
$\therefore \Delta O D G=\triangle O C G$ ISSS
Rule $: \angle D O G=\angle C O G \quad I C P C T$
$\therefore \angle F O G=\angle E O G=\frac{1}{2} \angle F O E=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$
Thus, $\angle \mathrm{GOA}=\angle \mathrm{GOE}+\angle \mathrm{EOA}=30^{\circ}+60^{\circ}=90^{\circ}$.
Join HJ and IJ.
In $\Delta \mathrm{OIJ}$ and $\Delta \mathrm{OHJ}$,
$01=\mathrm{OH} \quad \mid$ Radii of the same arc
$\mathrm{IJ}=\mathrm{HJ} \quad$ I Arcs of equal radii
$O J=O J$
| Common $\therefore \Delta \mathrm{OIJ}=\Delta \mathrm{OHJ}$
Rule : $\angle \mathrm{IOJ}=\angle \mathrm{HOJ}\left(90^{\circ}\right)=45^{\circ} \quad$ ICPCT
$\therefore \angle \mathrm{AOJ}=] \angle \mathrm{GOJ}=\frac{1}{2} \angle \mathrm{GOA}=\frac{1}{2}$

Question-3
Construct the angles of the following measurement:
30°
$22 \frac{1}{2}$
15°
Solution:
30°
Given: A ray OA
Required:To construct an angle of 30° at O .

0
B | A

Steps of Construction:

1. Taking 0 as centre and some radius, draw an arc of a circle, which intersects $O A$, say at a point B.
2. Taking B as centre and with the same radius as before, draw an arc intersecting the previously drawn arc, say at a point C.
3. Draw the ray $O E$ passing through C. Then $\angle E O A=60^{\circ}$.
4. Taking B and C as centres and with the radius more than $\frac{1}{2} B C$, draw arcs to intersect each other, say at D.
5. Draw the ray $O D$. This ray $O D$ is the bisector of the angle $E O A$, i.e., $\angle E O D=\angle A O D=\frac{1}{2} \angle E O A=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$.
(ii) $22 \frac{1}{2}^{\circ}$

Given: A ray OA.
Required: To construct an angle of $22 \frac{1}{2}^{\circ}$ at 0 .

Steps of Construction:

1. Taking 0 as centre and some radius, draw an arc of a circle, which intersects $O A$, say at a point B.
2. Taking B as centre and with the same radius as before, draw an arc intersecting the previously drawn arc, say at a point C.

3. Taking C as centre and with the same radius as before, draw an arc intersecting the arc drawn in step 1 , say at D.
4. Draw the ray $O E$ passing through C. Then $\angle E O A=60^{\circ}$.
5. Draw the ray OF passing through D. Then $\angle F O E=60^{\circ}$.
6. Next, taking C and D as centres and with radius more than $\frac{1}{2} C D$, draw arcs to intersect each other, say at G.
7. Draw the ray $O G$. This ray $O G$ is the bisector of the angle $F O E$, i.e., $\angle F O G=\angle E O G=\frac{1}{2} \angle F O E=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$.

Thus, $\angle \mathrm{ZGOA}=\angle \mathrm{GOE}+\angle \mathrm{EOA}=30^{\circ}+60^{\circ}=90^{\circ}$.
8. Now, taking 0 as centre and any radius, draw an arc to intersect the rays $O A$ and $O G$, say at H and I respectively.
9. Next, taking H and I as centres and with the radius more than $\frac{1}{2} \mathrm{HI}$, draw arcs to intersect each other, say at J .
10. Draw the ray OJ. This ray OJ is the bisector of the angle GOA. i.e., $\angle G O J=\angle A O J=\frac{1}{2} \angle G O A=\frac{1}{2}\left(90^{\circ}\right)=45^{\circ}$.
11. Now, taking 0 as centre and any radius, draw an arc to intersect the rays $O A$ and $O J$, say at K and L respectively.
12. Next, taking K and Las centres and with the radius more than $\frac{1}{2} \mathrm{KL}$, draw arcs to intersect each other, say at M .
13. Draw the ray OM . This ray OM is the bisector of the angle AOJ, i.e., $\angle \mathrm{JOM}=\angle \mathrm{AOM}=\frac{1}{2} \angle \mathrm{AOJ}=\frac{1}{2}\left(45^{\circ}\right)=22 \frac{1}{2}^{\circ}$
(iii) 15°

Given: A ray OA.
Required: To construct an angle of 15° at 0 .
Steps of construction:

1. Taking 0 as centre and some radius, draw an arc of a circle, which intersects $O A$, say at a point B.
2. Taking B as centre and with the same radius as before, draw an arc intersecting the previously drawn arc, say at a point C.

3. Draw the ray $O E$ passing through C. Then $\angle E O A=60^{\circ}$.
4. Now, taking B and C as centres and with the radius more than $\frac{1}{2} B C$, draw arcs to intersect each other, say at D.
5. Draw the ray $O D$ intersecting the arc drawn in step 1 at F. This ray $O D$ is the bisector of the angle EOA,
i.e., $\angle \mathrm{EOD}=\angle \mathrm{AOD}=\frac{1}{2} \angle \mathrm{EOA}=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$.
6. Now, taking B and F as centres and with the radius more than $\frac{1}{2} B F$, draw arcs to intersect each other, say at G.
7. Draw the ray $O G$. This ray $O G$ is the bisector of the angle $A O D$, ie., $\angle D O G=\angle A O G=\frac{1}{2} \angle A O D=\frac{1}{2}\left(30^{\circ}\right)=15^{\circ}$.

Question-4

Construct the following angles and verify by measuring them by a protractor:

75°
105°
135°
Solution:
75°
Given: A ray OA .
Required: To construct an angle of 75°
at 0 .
Steps of Construction:

1. Taking 0 as centre and some radius, draw an arc of a circle, which intersects $O A$, say at a point B.

2. Taking B as centre and with the same radius as before, draw an arc intersecting the previously drawn arc, say at a point C.
3. Taking C as centre and with the same radius as before, draw an arc intersecting the arc drawn in step 1, say at D.
4. Join the ray $O E$ passing through C. Then $\angle E O A=60^{\circ}$.
5. Draw the ray OF passing through D . Then $\angle \mathrm{FOE}-75^{\circ}$.
6. Next, taking C and D as centres and with the radius more than $\frac{1}{2} C D$, draw arcs to intersect each other, say at G.
7. Draw the ray $O G$ intersecting the arc of step 1 at H . This ray OG is the bisector of the angle $F O E$, i.e., $\angle F O G=\angle E O G=\frac{1}{2} \angle F O E$ $=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$.
8. Next, taking C and H as centres and with the radius more than $\frac{1}{2} \mathrm{CH}$, draw arcs to intersect each other, say at I .
9. Draw the ray 01. This ray 01 is the bisector of the angle GOE, i.e., $\angle \mathrm{GOI}=\angle \mathrm{EOI}=\frac{1}{2} \angle \mathrm{GOE}=\frac{1}{2}\left(30^{\circ}\right)=15^{\circ}$.

Thus, $\angle \mathrm{IOA}=\angle \mathrm{IOE}+\angle \mathrm{EOA}=15^{\circ}+60^{\circ}=75^{\circ}$.
On measuring the $\angle I O A$ by protractor, we find that $\angle I O A=75^{\circ}$.
Thus the construction is verified.
(ii) 105°

Given: A ray OA. Required: To construct an angle of 105°
at 0 .
Steps of Construction:

1. Taking 0 as centre and some radius, draw an arc of a circle, which intersects $O A$, say at a point B.

2. Taking B as centre and with the same radius as before, draw an arc intersecting the previously drawn arc, say at a point C.
3. Taking C as centre and with the same radius as before, draw an arc intersecting the arc drawn in step 1, say at D.
4. Draw the ray $O E$ passing through C. Then $\angle E O A=60^{\circ}$.
5. Draw the ray OF passing through D .

Then $\angle F O E=60^{\circ}$.
6. Next, taking C and D as centres and with the radius more than $\frac{1}{2} C D$, draw arcs to intersect each other, say at G.
7. Draw the ray $O G$ intersecting the arc drawn in step 1 at H. This ray $O G$ is the bisector of the angle FOE, i.e., $\angle F O G=\angle E O G=; \frac{1}{2}$ $\angle \mathrm{FOE}=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$

Thus, $\angle \mathrm{GOA}=\angle \mathrm{GOE}+\angle \mathrm{EOA}=30^{\circ}+60^{\circ}=90^{\circ}$.
8. Next, taking H and D as centres and with the radius more than $\frac{1}{2} H D$, draw arcs to intersect each other, say at I.
9. Draw the ray 0 I. This ray 01 is the bisector of the angle $\angle F O G$, i.e., $\angle F O I=\angle G O I=\frac{1}{2} \angle F O G=\frac{1}{2}\left(30^{\circ}\right)=15^{\circ}$.

Thus, $\angle \mathrm{IOA}=\angle \mathrm{IOG}+\angle \mathrm{GOA}=15^{\circ}+90^{\circ}=105^{\circ}$.
On measuring the $\angle 10 \mathrm{~A}$ by protractor, we find that $\angle \mathrm{FOA}=105^{\circ}$.
Thus the construction is verified.
(iii) 135°
at 0 .
Steps of Construction:

1. Produce $A O$ to A^{\prime} to form ray $O A^{\prime}$.

2. Taking 0 as centre and some radius, draw an arc of a circle, which intersects $O A$ at a point B and $O A$ at a point B^{\prime}.
3. Taking B as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at a point C.
4. Taking C as centre and with the same radius as before, draw an arc intersecting the arc drawn in step 1 , say at D.
5. Draw the ray OE passing through C .

Then $\angle E O A=60^{\circ}$.
6. Draw the ray OF passing through D.

Then $\angle \mathrm{FOE}=60^{\circ}$.
7. Next, taking C and D as centres and with the radius more than $\frac{1}{2} C D$, draw arcs to intersect each other, say at G.
8. Draw the ray OG intersecting the arc drawn in step 1 at H . This ray $O G$ is the bisector of the angle $F O E$, i.e., $\angle F O G=\angle E O G=\frac{1}{2}$ $\angle F O E=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$.

Thus, $\angle \mathrm{GOA}=\angle \mathrm{GOE}+\angle \mathrm{EOA}=30^{\circ}+60^{\circ}=90^{\circ}$.
$\therefore \angle \mathrm{B}^{\prime} O H=90^{\circ}$.
9. Next, taking B^{\prime} and H as centres and with the radius more than. $\frac{1}{2} B^{\prime} H$, draw arcs to intersect each other, say at I. 10. Draw the ray 01. This ray 01 is the bisector of the angle $\mathrm{B}^{\prime} \mathrm{OG}$, i.e., $\angle \mathrm{B}^{\prime} \mathrm{OI}=\angle \mathrm{GOI}=\frac{1}{2} \angle \mathrm{~B}^{\prime} \mathrm{OG}=\frac{1}{2}\left(90^{\circ}\right)=45^{\circ}$.

Thus, $\angle \mathrm{IOA}=\angle \mathrm{IOG}+\angle \mathrm{GOA}=45^{\circ}+90^{\circ}=135^{\circ}$.
On measuring the $\angle I O A$ by protractor, we find that $\angle I O A=135^{\circ}$.
Thus the construction is verified.

Question-5

Construct an equilateral triangle, given its side and justify the Construction.

Solution:
Given: Side (say 6 cm) of an equilateral triangle .
Required: To construct the equilateral triangle and justify the construction.
Steps of Construction:

1. Take a ray $A X$ with initial point A.

2. Taking B as centre and with the same radius as before, draw an arc intersecting the previously drawn arc, say at a point C.
3. Join AC and BC.

Justification:

$A B=B C$	I By construction
$A B=A C$	I By construction

$\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{CA}$
$\therefore \Delta \mathrm{ABC}$ is an equilateral triangle.
\therefore The construction is justified.

In countries like USA and Canada, temperature is measured in Fahrenheit, Whereas in countries like India. It is measured in Celsius. Here is a linear equation that converts Fahrenheit to Celsius
$F=\left(\frac{9}{5}\right) C+32$
Is there a temperature which is numerically the same in both Fahrenheit and Celsius? If yes, find it?

Solution:-

Let the temperature be x numerically. Then,
$F=\left(\frac{9}{5}\right) C+32$
$\Rightarrow x=\left(\frac{9}{5}\right) x+32$
$\Rightarrow\left(\frac{9}{5}\right) x-x=-32$
$\Rightarrow x=-\frac{32 \times 5}{4}$
$\Rightarrow \quad\left(\frac{4}{5}\right) x=-32$
$\Rightarrow \quad x=\frac{-32 X 5}{4}$
$\Rightarrow x=-40$

\therefore Numerical value of required temperature $=-40$

