## Study Material <br> Downloaded from Vedantu

## FREE LIVE ONLINE

## About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.


Awesome Master Teachers


Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu


Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu


Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu


My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha


Hours of LIVE Learning


9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

## Vedantu

## FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

## Register for FREE

Vedanta

# Download Vedantu's App \& Get 

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports


## Question 1:

Which of the following figures lie on the same base and between the same parallels. In such a case, write the common base and the two parallels.

(i)

(ii)

(iii)

(iv)

(v)


## Solution 1:

(i)


Yes.It can be observed that trapezium $A B C D$ and triangle PCD have a common base $C D$ and these are lying between the same parallel lines AB and CD .
(ii)


No. It can be observed that parallelogram PQRS and trapezium MNRS have a common base RS. However, their vertices, (i.e., opposite to the common base) $\mathrm{P}, \mathrm{Q}$ of parallelogram and $\mathrm{M}, \mathrm{N}$ of trapezium, are not lying on the same line.

# Vedantu <br> <br> Study Materials 

 <br> <br> Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper
(iii)


Yes. It can be observed that parallelogram PQRS and triangle TQR have a common base QR and they are lying between the same parallel lines PS and QR.
(iv)


No. It can be observed that parallelogram ABCD and triangle PQR are lying between same parallel lines AD and BC . However, these do not have any common base.
(v)


Yes. It can be observed that parallelogram $A B C D$ and parallelogram $A P Q D$ have a common base AD and these are lying between the same parallel lines AD and BQ .
(vi)


No. It can be observed that parallelogram PBCS and PQRS are lying on the same base PS.
However, these do not lie between the same parallel lines.

## Exercise (9.2)

## Question 1:

In the given figure, $A B C D$ is parallelogram, $A E \perp D C$ and $C F \perp A D$. If $A B=16 \mathrm{~cm}, A E=8 \mathrm{~cm}$ and $C F=10$ cm , find AD.


## Solution 1:

In parallelogram $\mathrm{ABCD}, \mathrm{CD}=\mathrm{AB}=16 \mathrm{~cm}$
[Opposite sides of a parallelogram are equal]
We know that
Area of a parallelogram $=$ Base $\times$ Corresponding altitude
Area of parallelogram $\mathrm{ABCD}=\mathrm{CD} \times \mathrm{AE}=\mathrm{AD} \times \mathrm{CF}$
$16 \mathrm{~cm} \times 8 \mathrm{~cm}=\mathrm{AD} \times 10 \mathrm{~cm}$
$\mathrm{AD}=\frac{16 \times 8}{10} \mathrm{~cm}=12.8 \mathrm{~cm}$
Thus, the length of AD is 12.8 cm .

## Question 2:

If $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are respectively the mid-points of the sides of a parallelogram ABCD show that $\operatorname{ar}(\mathrm{EFGH})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD})$

## Solution 2:



Let us join HF.

In parallelogram ABCD ,
$\mathrm{AD}=\mathrm{BC}$ and $\mathrm{AD} \| \mathrm{BC}$ (Opposite sides of a parallelogram are equal and parallel)
$\mathrm{AB}=\mathrm{CD}$ (Opposite sides of a parallelogram are equal)
$\Rightarrow \frac{1}{2} \mathrm{AD}=\frac{1}{2} \mathrm{BC}$ and $\mathrm{AH} \| \mathrm{BF}$
$\Rightarrow \mathrm{AH}=\mathrm{BF}$ and $\mathrm{AH} \| \mathrm{BF}(\because \mathrm{H}$ and F are the mid-points of AD and BC$)$
Therefore, ABFH is a parallelogram.
Since $\triangle$ HEF and parallelogram ABFH are on the same base HF and between the same parallel lines $A B$ and $H F$,
$\therefore \operatorname{Area}(\triangle \mathrm{HEF})=\frac{1}{2} \operatorname{Area}(\mathrm{ABFH})$
Similarly, it can be proved that
$\operatorname{Area}(\triangle \mathrm{HGF})=\frac{1}{2} \operatorname{Area}(\mathrm{HDCF})$
On adding Equations (1) and (2), we obtain
$\operatorname{Area}(\triangle \mathrm{HEF})+\operatorname{Area}(\triangle \mathrm{HGF})=\frac{1}{2} \operatorname{Area}(\mathrm{ABFH})+\frac{1}{2} \operatorname{Area}(\mathrm{HDCF})$
$=\frac{1}{2}[$ Area $(\mathrm{ABFH})+\operatorname{Area}(\mathrm{HDCF})]$
$\Rightarrow \operatorname{Area}(\mathrm{EFGH})=\frac{1}{2} \operatorname{Area}(\mathrm{ABCD})$

## Question 3:

P and Q are any two points lying on the sides DC and AD respectively of a parallelogram $A B C D$. Show that ar $(A P B)=$ ar $(B Q C)$.

## Solution 3:



It can be observed that $\triangle \mathrm{BQC}$ and parallelogram ABCD lie on the same base BC and these are between the same parallel lines AD and BC .
$\therefore$ Area $(\triangle \mathrm{BQC})=\frac{1}{2} \operatorname{Area}(\mathrm{ABCD})$
Similarly, $\triangle \mathrm{APB}$ and parallelogram ABCD lie on the same base AB and between the same parallel lines AB and DC .
$\therefore$ Area $(\triangle \mathrm{APB})=\frac{1}{2} \operatorname{Area}(\mathrm{ABCD})$
From Equations (1) and (2), we obtain
$\operatorname{Area}(\triangle \mathrm{BQC})=\operatorname{Area}(\triangle \mathrm{APB})$

## Question 4:

In the given figure, P is a point in the interior of a parallelogram ABCD . Show that
(i) $\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD})$
(ii) ar $(\mathrm{APD})+$ ar $(\mathrm{PBC})=$ ar $(\mathrm{APB})+$ ar $(\mathrm{PCD})$
[Hint: Through. P , draw a line parallel to AB ]


## Solution 4:


(i) Let us draw a line segment EF, passing through point P and parallel to line segment AB . In parallelogram ABCD ,
$\mathrm{AB} \| \mathrm{EF}$ (By construction)
ABCD is a parallelogram.
$\therefore \mathrm{AD} \| \mathrm{BC}$ (Opposite sides of a parallelogram)
$\Rightarrow \mathrm{AE} \| \mathrm{BF}$
From Equations (1) and (2), we obtain
$\mathrm{AB} \| \mathrm{EF}$ and $\mathrm{AE} \| \mathrm{BF}$
Therefore, quadrilateral ABFE is a parallelogram.
It can be observed that $\triangle \mathrm{APB}$ and parallelogram ABFE are lying on the same base AB and between the same parallel lines AB and EF .
$\therefore$ Area $(\triangle \mathrm{APB})=\frac{1}{2} \operatorname{Area}(\mathrm{ABFE})$
Similarly, for $\triangle \mathrm{PCD}$ and parallelogram EFCD ,
$\operatorname{Area}(\triangle \mathrm{PCD})=\frac{1}{2} \operatorname{Area}(\mathrm{EFCD})$
Adding Equations (3) and (4), we obtain
$\operatorname{Area}(\triangle \mathrm{APB})+\operatorname{Area}(\triangle \mathrm{PCD})=\frac{1}{2}[\operatorname{Area}(\mathrm{ABFE})+\operatorname{Area}(\mathrm{EFCD})]$
$\operatorname{Area}(\triangle \mathrm{APB})+\operatorname{Area}(\triangle \mathrm{PCD})=\frac{1}{2} \operatorname{Area}(\mathrm{ABCD})$
(ii)


Let us draw a line segment MN , passing through point P and parallel to line segment AD .
In parallelogram ABCD ,
MN || AD (By construction)
ABCD is a parallelogram.
$\therefore \mathrm{AB} \| \mathrm{DC}$ (Opposite sides of a parallelogram)
$\Rightarrow \mathrm{AM} \| \mathrm{DN}$

From Equations (6) and (7), we obtain
$\mathrm{MN} \| \mathrm{AD}$ and $\mathrm{AM}|\mid \mathrm{DN}$

Therefore, quadrilateral AMND is a parallelogram.
It can be observed that $\triangle \mathrm{APD}$ and parallelogram AMND are lying on the same base AD and between the same parallel lines AD and MN .
$\therefore$ Area $(\triangle \mathrm{APD})=\frac{1}{2} \operatorname{Area}(\mathrm{AMND})$

Similarly, for $\triangle \mathrm{PCB}$ and parallelogram MNCB,
$\operatorname{Area}(\triangle \mathrm{PCB})=\frac{1}{2} \operatorname{Area}(\mathrm{MNCB})$
Adding Equations (8) and (9), we obtain
$\operatorname{Area}(\triangle \mathrm{APD})+\operatorname{Area}(\triangle \mathrm{PCB})=\frac{1}{2}[\operatorname{Area}(\mathrm{AMND})+\operatorname{Area}(\mathrm{MNCB})]$
$\operatorname{Area}(\triangle \mathrm{APD})+\operatorname{Area}(\triangle \mathrm{PCB})=\frac{1}{2} \operatorname{Area}(\mathrm{ABCD})$

On comparing Equations (5) and (10), we obtain
$\operatorname{Area}(\triangle \mathrm{APD})+\operatorname{Area}(\triangle \mathrm{PBC})=\operatorname{Area}(\triangle \mathrm{APB})+\operatorname{Area}(\triangle \mathrm{PCD})$

## Question 5:

In the given figure, PQRS and ABRS are parallelograms and X is any point on side BR . Show that
(i) ar $(\mathrm{PQRS})=$ ar $(\mathrm{ABRS})$
(ii) $\operatorname{ar}(\triangle \mathrm{PXS})=\frac{1}{2}$ ar $(\mathrm{PQRS})$


## Solution 5:

(i) It can be observed that parallelogram PQRS and ABRS lie on the same base SR and also, these lie in between the same parallel lines SR and PB.
$\therefore$ Area $(\mathrm{PQRS})=$ Area $(\mathrm{ABRS})$
(ii) Consider $\triangle \mathrm{AXS}$ and parallelogram ABRS.

As these lie on the same base and are between the same parallel lines AS and BR,
$\therefore$ Area $(\triangle \mathrm{AXS})=\frac{1}{2}$ Area $(\mathrm{ABRS})$
From Equations (1) and (2), we obtain
$\operatorname{Area}(\triangle \mathrm{AXS})=\frac{1}{2} \operatorname{Area}(\mathrm{PQRS})$

## Question 6:

A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q . In how many parts the field is divided? What are the shapes of
these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?

## Solution 6:



From the figure, it can be observed that point A divides the field into three parts.
These parts are triangular in shape $-\triangle \mathrm{PSA}, \triangle \mathrm{PAQ}$, and $\triangle \mathrm{QRA}$
Area of $\triangle \mathrm{PSA}+$ Area of $\triangle \mathrm{PAQ}+$ Area of $\Delta \mathrm{QRA}=$ Area of parallelogram PQRS

We know that if a parallelogram and a triangle are on the same base and between the same parallels, then the area of the triangle is half the area of the parallelogram.
$\therefore$ Area $(\triangle \mathrm{PAQ})=\frac{1}{2}$ Area $(\mathrm{PQRS})$
From Equations (1) and (2), we obtain
$\operatorname{Area}(\triangle \mathrm{PSA})+\operatorname{Area}(\triangle \mathrm{QRA})=\frac{1}{2} \operatorname{Area}(\mathrm{PQRS})$
Clearly, it can be observed that the farmer must sow wheat in triangular part PAQ and pulses in other two triangular parts PSA and QRA or wheat in triangular parts PSA and QRA and pulses in triangular parts PAQ.

## Exercise (9.3)

## Question 1:

In the given figure, E is any point on median AD of a $\triangle \mathrm{ABC}$. Show that ar $(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACE})$


## Solution 1:

AD is the median of $\triangle \mathrm{ABC}$. Therefore, it will divide $\triangle \mathrm{ABC}$ into two triangles of equal areas.
$\therefore$ Area $(\triangle \mathrm{ABD})=\operatorname{Area}(\triangle \mathrm{ACD})$
ED is the median of $\triangle \mathrm{EBC}$.
$\therefore$ Area $(\triangle \mathrm{EBD})=\operatorname{Area}(\triangle \mathrm{ECD})$
On subtracting Equation (2) from Equation (1), we obtain
$\operatorname{Area}(\triangle \mathrm{ABD})-\operatorname{Area}(\mathrm{EBD})=\operatorname{Area}(\triangle \mathrm{ACD})-\operatorname{Area}(\triangle \mathrm{ECD})$
$\operatorname{Area}(\triangle \mathrm{ABE})=\operatorname{Area}(\triangle \mathrm{ACE})$

Question 2: In a triangle $\mathrm{ABC}, \mathrm{E}$ is the mid-point of median AD .
Show that $\operatorname{ar}(\triangle \mathrm{BED})=1 / 4 \operatorname{ar}(\triangle \mathrm{ABC})$.

## Solution 2 :

Given: $\mathrm{A} \triangle \mathrm{ABC}, \mathrm{AD}$ is the median and E is the mid-point of median AD .


To prove: $\operatorname{ar}(\triangle \mathrm{BED})=1 / 4 \operatorname{ar}(\Delta \mathrm{ABC})$
Proof: In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the median.
$\therefore$ ar $(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ADC})$
$[\therefore$ Median divides a $\Delta$ into two $\Delta$ s of equal area]
$\operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$
In $\triangle \mathrm{ABD}, \mathrm{BE}$ is the median.
ar $(\triangle \mathrm{BED})=\operatorname{ar}(\triangle \mathrm{BAE})$
$\therefore \operatorname{ar}(\triangle \mathrm{BED})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABD})$
$=\operatorname{ar}(\triangle \mathrm{BED})=\frac{1}{2}\left[\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})\right]=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$

## Question 3:

Show that the diagonals of a parallelogram divide it into four triangles of equal area.

## Solution 3:



We know that diagonals of parallelogram bisect each other.
Therefore, O is the mid-point of AC and BD .

BO is the median in $\triangle \mathrm{ABC}$. Therefore, it will divide it into two triangles of equal areas.
$\therefore$ Area $(\triangle \mathrm{AOB})=\operatorname{Area}(\triangle \mathrm{BOC})$

In $\triangle \mathrm{BCD}, \mathrm{CO}$ is the median.
$\therefore$ Area $(\triangle \mathrm{BOC})=\operatorname{Area}(\Delta \mathrm{COD})$

Similarly, $\operatorname{Area}(\triangle C O D)=\operatorname{Area}(\triangle \mathrm{AOD})$

From Equations (1), (2), and (3), we obtain
$\operatorname{Area}(\triangle \mathrm{AOB})=\operatorname{Area}(\triangle \mathrm{BOC})=\operatorname{Area}(\Delta \mathrm{COD})=\operatorname{Area}(\triangle \mathrm{AOD})$

Therefore, it is evident that the diagonals of a parallelogram divide it into four triangles of equal area.

## Question 4:

In the given figure, $A B C$ and $A B D$ are two triangles on the same base $A B$. If line-segment $C D$ is bisected by $A B$ at $O$, show that ar $(A B C)=$ ar $(A B D)$.


## Solution 4:

Consider $\triangle \mathrm{ACD}$.

Line-segment $C D$ is bisected by $A B$ at $O$. Therefore, $A O$ is the median of $\triangle A C D$.
$\therefore$ Area $(\triangle \mathrm{ACO})=\operatorname{Area}(\triangle \mathrm{ADO})$
... (1)

Considering $\triangle \mathrm{BCD}, \mathrm{BO}$ is the median.
$\therefore$ Area $(\triangle \mathrm{BCO})=\operatorname{Area}(\triangle \mathrm{BDO})$

Adding Equations (1) and (2), we obtain

Area $(\triangle \mathrm{ACO})+\operatorname{Area}(\triangle \mathrm{BCO})=\operatorname{Area}(\triangle \mathrm{ADO})+\operatorname{Area}(\triangle \mathrm{BDO})$
$\Rightarrow \operatorname{Area}(\triangle \mathrm{ABC})=\operatorname{Area}(\triangle \mathrm{ABD})$

## Question 5:

$D, E$ and $F$ are respectively the mid-points of the sides $B C, C A$ and $A B$ of a $\triangle A B C$. Show that:
(i) BDEF is a parallelogram.
(ii) $\operatorname{ar}(\mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$
(iii) $\operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$

## Solution 5:

(i) F is the mid-point of AB and E is the mid-point of AC .
$\therefore \mathrm{FE} \| \mathrm{BC}$ and $\mathrm{FE}=\frac{1}{2} \mathrm{BD}$


Line joining the mid-points of two sides of a triangle is parallel to the third and half of It
$\therefore \mathrm{FE} \| \mathrm{BD}[\mathrm{BD}$ is the part of BC$]$

And FE = BD
Also, D is the mid-point of BC.
$\therefore \mathrm{BD}=\frac{1}{2} \mathrm{BC}$

## And $\mathrm{FE} \| \mathrm{BC}$ and $\mathrm{FE}=\mathrm{BD}$

Again E is the mid-point of AC and D is the mid-point of BC .
$\therefore \mathrm{DE} \| \mathrm{AB}$ and $\mathrm{DE}=\frac{1}{2} \mathrm{AB}$
$D E \| A B[B F$ is the part of $A B]$

And $\mathrm{DE}=\mathrm{BF}$

Again F is the mid-point of $A B$.
$\therefore \mathrm{BF}=\frac{1}{2} \mathrm{AB}$
But $\mathrm{DE}=\frac{1}{2} \mathrm{AB}$
$\therefore \mathrm{DE}=\mathrm{BF}$
Now we have $\mathrm{FE} \| \mathrm{BD}$ and $\mathrm{DE} \| \mathrm{BF}$
And $\mathrm{FE}=\mathrm{BD}$ and $\mathrm{DE}=\mathrm{BF}$

Therefore, BDEF is a parallelogram.
(ii) BDEF is a parallelogram.
$\therefore \operatorname{ar}(\triangle \mathrm{BDF})=\operatorname{ar}(\triangle \mathrm{DEF})$
[diagonals of parallelogram divides it in two triangles of equal area]
DCEF is also parallelogram.
$\therefore$ ar $(\triangle \mathrm{DEF})=\operatorname{ar}(\triangle \mathrm{DEC})$

Also, AEDF is also parallelogram.
$\therefore \operatorname{ar}(\triangle \mathrm{AFE})=\operatorname{ar}(\triangle \mathrm{DEF})$

From eq. (i), (ii) and (iii),
$\operatorname{ar}(\triangle \mathrm{DEF})=\operatorname{ar}(\triangle \mathrm{BDF})=\operatorname{ar}(\triangle \mathrm{DEC})=\operatorname{ar}(\triangle \mathrm{AFE})$ $\qquad$ (iv)

Now, $\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{BDF})+\operatorname{ar}(\triangle \mathrm{DEC})+\operatorname{ar}(\triangle \mathrm{AFE})$
$\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{DEF})$
[Using (iv) \& (v)]

$$
\operatorname{ar}(\triangle \mathrm{ABC})=4 \times \operatorname{ar}(\triangle \mathrm{DEF})
$$

$$
\operatorname{ar}(\triangle \mathrm{DEF})=\frac{1}{4} \text { ar }(\triangle \mathrm{ABC})
$$

(iii) $\operatorname{ar}(\|$ gm BDEF $)=\operatorname{ar}(\triangle \mathrm{BDF})+\operatorname{ar}(\triangle \mathrm{DEF})=\operatorname{ar}(\triangle \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{DEF})$ [Using (iv)] $\operatorname{ar}(\| \mathrm{gm} \mathrm{BDEF})=2 \operatorname{ar}(\triangle \mathrm{DEF})$
$\operatorname{ar}(\| g m$ BDEF $)=2 \times \frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$
$\operatorname{ar}(\|$ gm BDEF $)=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$

## Question 6:

In the given figure, diagonals AC and BD of quadrilateral ABCD intersect at O such that $\mathrm{OB}=$ $O D$. If $A B=C D$, then show that:
(i) $\operatorname{ar}(\mathrm{DOC})=\operatorname{ar}(\mathrm{AOB})$
(ii) ar $(\mathrm{DCB})=$ ar $(\mathrm{ACB})$
(iii) $\mathrm{DA} \| \mathrm{CB}$ or ABCD is a parallelogram.
[Hint: From D and B, draw perpendiculars to AC.]


## Solution 6:



Let us draw $\mathrm{DN} \perp \mathrm{AC}$ and $\mathrm{BM} \perp \mathrm{AC}$.
(i) In $\triangle \mathrm{DON}$ and $\triangle \mathrm{BOM}$,
$\angle \mathrm{DNO}=\angle \mathrm{BMO}$ (By construction)
$\angle \mathrm{DON}=\angle \mathrm{BOM}$ (Vertically opposite angles)
$\mathrm{OD}=\mathrm{OB}$ (Given)

By AAS congruence rule,
$\triangle \mathrm{DON} \cong \triangle \mathrm{BOM}$
$\mathrm{DN}=\mathrm{BM}$

We know that congruent triangles have equal areas.
$\operatorname{Area}(\triangle \mathrm{DON})=\operatorname{Area}(\triangle \mathrm{BOM})$

In $\triangle \mathrm{DNC}$ and $\triangle \mathrm{BMA}$,
$\angle \mathrm{DNC}=\angle \mathrm{BMA}$ (By construction)
$\mathrm{CD}=\mathrm{AB}$ (given)
DN $=\mathrm{BM}$ [Using Equation (1)]
$\therefore \triangle \mathrm{DNC} \cong \triangle \mathrm{BMA}$ (RHS congruence rule)
$\therefore$ Area $(\triangle \mathrm{DNC})=\operatorname{Area}(\triangle \mathrm{BMA})$

On adding Equations (2) and (3), we obtain
$\operatorname{Area}(\triangle \mathrm{DON})+\operatorname{Area}(\triangle \mathrm{DNC})=\operatorname{Area}(\triangle \mathrm{BOM})+\operatorname{Area}(\triangle \mathrm{BMA})$
Therefore, $\operatorname{Area}(\triangle \mathrm{DOC})=\operatorname{Area}(\triangle \mathrm{AOB})$
(ii) We obtained,
$\operatorname{Area}(\triangle \mathrm{DOC})=\operatorname{Area}(\triangle \mathrm{AOB})$
$\therefore \operatorname{Area}(\triangle \mathrm{DOC})+\operatorname{Area}(\triangle \mathrm{OCB})=\operatorname{Area}(\triangle \mathrm{AOB})+\operatorname{Area}(\triangle \mathrm{OCB})$
(Adding Area ( $\triangle \mathrm{OCB}$ ) to both sides)
$\therefore$ Area $(\triangle \mathrm{DCB})=\operatorname{Area}(\triangle \mathrm{ACB})$
(iii) We obtained,
$\operatorname{Area}(\triangle \mathrm{DCB})=\operatorname{Area}(\triangle \mathrm{ACB})$
If two triangles have the same base and equal areas, then these will lie between the same parallels.
$\therefore \mathrm{DA} \| \mathrm{CB}$

In quadrilateral ABCD , one pair of opposite sides is equal $(\mathrm{AB}=\mathrm{CD})$ and the other pair of opposite sides is parallel (DA \|CB).

Therefore, ABCD is a parallelogram.

## Question 7:

$D$ and $E$ are points on sides $A B$ and $A C$ respectively of $\triangle A B C$ such that ar $(\mathrm{DBC})=\operatorname{ar}(\mathrm{EBC})$. Prove that $\mathrm{DE} \| \mathrm{BC}$.

## Solution 7:



Since $\triangle B C E$ and $\triangle B C D$ are lying on a common base $B C$ and also have equal areas, $\triangle B C E$ and $\triangle \mathrm{BCD}$ will lie between the same parallel lines.
$\therefore \mathrm{DE} \| \mathrm{BC}$

## Question 8:

$X Y$ is a line parallel to side $B C$ of a triangle $A B C$. If $B E \| A C$ and $C F \| A B$ meet $X Y$ at $E$ and $F$ respectively, show that
ar $(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACF})$

## Solution 8:



It is given that
$X Y\|B C=E Y\| B C$
$\mathrm{BE}\|\mathrm{AC}=\mathrm{BE}\| \mathrm{CY}$
Therefore, EBCY is a parallelogram.
It is given that
$\mathrm{XY}\|\mathrm{BC}=\mathrm{XF}\| \mathrm{BC}$
$\mathrm{FC}\|\mathrm{AB}=\mathrm{FC}\| \mathrm{XB}$
Therefore, BCFX is a parallelogram.

Parallelograms EBCY and BCFX are on the same base BC and between the same parallels BC and EF.
$\therefore$ Area $(\mathrm{EBCY})=\frac{1}{2}$ Area $(\mathrm{BCFX})$
Consider parallelogram EBCY and $\triangle \mathrm{AEB}$
These lie on the same base BE and are between the same parallels BE and AC.
$\therefore \operatorname{Area}(\triangle \mathrm{ABE})=\frac{1}{2} \operatorname{Area}(\mathrm{EBCY})$
Also, parallelogram $\triangle \mathrm{CFX}$ and $\triangle \mathrm{ACF}$ are on the same base CF and between the same parallels CF and AB .
$\therefore$ Area $(\triangle \mathrm{ACF})=\frac{1}{2} \operatorname{Area}(\mathrm{BCFX})$
From Equations (1), (2), and (3), we obtain
$\operatorname{Area}(\triangle \mathrm{ABE})=\operatorname{Area}(\triangle \mathrm{ACF})$

## Question 9:

The side AB of a parallelogram ABCD is produced to any point P . A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed (see the following figure $)$. Show that ar $(\mathrm{ABCD})=$ ar $(\mathrm{PBQR})$.
[Hint: Join AC and PQ. Now compare area (ACQ) and area (APQ)]


## Solution 9:



Let us join AC and PQ.
$\triangle \mathrm{ACQ}$ and $\triangle \mathrm{AQP}$ are on the same base AQ and between the same parallels AQ and CP .
$\operatorname{Area}(\triangle \mathrm{ACQ})=\operatorname{Area}(\triangle \mathrm{APQ})$
$\operatorname{Area}(\triangle \mathrm{ACQ})-\operatorname{Area}(\triangle \mathrm{ABQ})=\operatorname{Area}(\triangle \mathrm{APQ})-\operatorname{Area}(\triangle \mathrm{ABQ})$
$\operatorname{Area}(\triangle \mathrm{ABC})=\operatorname{Area}(\triangle \mathrm{QBP})$

Since AC and PQ are diagonals of parallelograms ABCD and PBQR respectively,
$\operatorname{Area}(\triangle \mathrm{ABC})=\frac{1}{2} \operatorname{Area}(\mathrm{ABCD})$
$\operatorname{Area}(\triangle \mathrm{QBP})=\frac{1}{2} \operatorname{Area}(\mathrm{PBQR})$
From Equations (1), (2), and (3), we obtain
$\frac{1}{2} \operatorname{Area}(\mathrm{ABCD})=\frac{1}{2} \operatorname{Area}(\mathrm{PBQR})$
Area $(\mathrm{ABCD})=\operatorname{Area}(\mathrm{PBQR})$

## Question 10:

Diagonals AC and BD of a trapezium ABCD with $\mathrm{AB} \| \mathrm{DC}$ intersect each other at O . Prove that ar $(\mathrm{AOD})=\operatorname{ar}(\mathrm{BOC})$.

## Solution 10:



It can be observed that $\triangle \mathrm{DAC}$ and $\triangle \mathrm{DBC}$ lie on the same base DC and between the same parallels AB and CD.
$\operatorname{Area}(\triangle \mathrm{DAC})=\operatorname{Area}(\triangle \mathrm{DBC})$
$\operatorname{Area}(\triangle \mathrm{DAC})-\operatorname{Area}(\triangle \mathrm{DOC})=\operatorname{Area}(\triangle \mathrm{DBC})-\operatorname{Area}(\triangle \mathrm{DOC})$
$\operatorname{Area}(\triangle \mathrm{AOD})=\operatorname{Area}(\triangle \mathrm{BOC})$

## Question 11:

In the given figure, ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show that
(i) $\operatorname{ar}(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF})$
(ii) ar $(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE})$


## Solution 11:

(i) $\triangle \mathrm{ACB}$ and $\triangle \mathrm{ACF}$ lie on the same base AC and are between

The same parallels AC and BF .
$\operatorname{Area}(\triangle \mathrm{ACB})=\operatorname{Area}(\triangle \mathrm{ACF})$
(ii) It can be observed that
$\operatorname{Area}(\triangle \mathrm{ACB})=\operatorname{Area}(\triangle \mathrm{ACF})$
Area $(\triangle \mathrm{ACB})+\operatorname{Area}(\mathrm{ACDE})=\operatorname{Area}(\triangle \mathrm{ACF})+\operatorname{Area}(\mathrm{ACDE})$
Area $(\mathrm{ABCDE})=\operatorname{Area}(\mathrm{AEDF})$

## Question 12:

A villager Itwaari has a plot of land of the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Itwaari agrees to the above proposal with the condition that he should be given equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented.

## Solution 12:



Let quadrilateral ABCD be the original shape of the field.
The proposal may be implemented as follows.
Join diagonal BD and draw a line parallel to BD through point A .
Let it meet the extended side CD of ABCD at point E .
Join BE and AD . Let them intersect each other at O .
Then, portion $\triangle \mathrm{AOB}$ can be cut from the original field so that the new shape of the field will be $\triangle B C E$. (See figure).

We have to prove that the area of $\triangle \mathrm{AOB}$ (portion that was cut so as to construct Health Centre) is equal to the area of $\triangle \mathrm{DEO}$ (portion added to the field so as to make the area of the new field so formed equal to the area of the original field).


It can be observed that $\triangle \mathrm{DEB}$ and $\triangle \mathrm{DAB}$ lie on the same base BD and are between the same parallels BD and AE .
$\operatorname{Area}(\triangle \mathrm{DEB})=\operatorname{Area}(\triangle \mathrm{DAB})$
$\operatorname{Area}(\triangle \mathrm{DEB})-\operatorname{Area}(\triangle \mathrm{DOB})=\operatorname{Area}(\triangle \mathrm{DAB})-\operatorname{Area}(\triangle \mathrm{DOB})$
$\operatorname{Area}(\triangle \mathrm{DEO})=\operatorname{Area}(\triangle \mathrm{AOB})$

## Question 13:

$A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at $X$ and $B C$ at $Y$.
Prove that ar $(\mathrm{ADX})=\operatorname{ar}(\mathrm{ACY})$.
[Hint: Join CX.]

## Solution 13:



It can be observed that $\triangle \mathrm{ADX}$ and $\triangle \mathrm{ACX}$ lie on the same base AX and are between the same parallels AB and DC .
$\operatorname{Area}(\triangle \mathrm{ADX})=\operatorname{Area}(\triangle \mathrm{ACX})$
$\triangle \mathrm{ACY}$ and $\triangle \mathrm{ACX}$ lie on the same base AC and are between the same parallels AC and XY .
$\operatorname{Area}(\triangle \mathrm{ACY})=\operatorname{Area}(\mathrm{ACX})$
From Equations (1) and (2), we obtain
$\operatorname{Area}(\triangle \mathrm{ADX})=\operatorname{Area}(\triangle \mathrm{ACY})$

## Question 14:

In the given figure, $\mathrm{AP}\|\mathrm{BQ}\| \mathrm{CR}$. Prove that ar $(\mathrm{AQC})=\operatorname{ar}(\mathrm{PBR})$.

## Solution 14:



Since $\triangle A B Q$ and $\triangle P B Q$ lie on the same base $B Q$ and are between the same parallels $A P$ and $B Q$,
$\therefore$ Area $(\triangle \mathrm{ABQ})=\operatorname{Area}(\triangle \mathrm{PBQ})$
Again, $\triangle \mathrm{BCQ}$ and $\triangle \mathrm{BRQ}$ lie on the same base BQ and are between the same parallels BQ and CR.
$\therefore \operatorname{Area}(\triangle \mathrm{BCQ})=\operatorname{Area}(\triangle \mathrm{BRQ})$
On adding Equations (1) and (2), we obtain
$\operatorname{Area}(\triangle \mathrm{ABQ})+\operatorname{Area}(\triangle \mathrm{BCQ})=\operatorname{Area}(\triangle \mathrm{PBQ})+\operatorname{Area}(\triangle \mathrm{BRQ})$
$\therefore$ Area $(\triangle \mathrm{AQC})=\operatorname{Area}(\triangle \mathrm{PBR})$

## Question 15:

Diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that ar $(\mathrm{AOD})=\mathrm{ar}$ $(B O C)$. Prove that $A B C D$ is a trapezium.

## Solution 15:



It is given that
$\operatorname{Area}(\triangle \mathrm{AOD})=\operatorname{Area}(\triangle \mathrm{BOC})$
$\operatorname{Area}(\triangle \mathrm{AOD})+\operatorname{Area}(\triangle \mathrm{AOB})=\operatorname{Area}(\triangle \mathrm{BOC})+\operatorname{Area}(\triangle \mathrm{AOB})$
$\operatorname{Area}(\triangle \mathrm{ADB})=\operatorname{Area}(\triangle \mathrm{ACB})$
We know that triangles on the same base having areas equal to each other lie between the same parallels.

Therefore, these triangles, $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ACB}$, are lying between the same parallels.
i.e., $A B \| C D$

Therefore, $A B C D$ is a trapezium.

## Question 16:

In the given figure, $\operatorname{ar}(\mathrm{DRC})=\mathrm{ar}(\mathrm{DPC})$ and ar $(\mathrm{BDP})=\operatorname{ar}(\mathrm{ARC})$. Show that both the quadrilaterals ABCD and DCPR are trapeziums.

## Solution 16:

It is given that
$\operatorname{Area}(\triangle \mathrm{DRC})=\operatorname{Area}(\triangle \mathrm{DPC})$


As $\triangle \mathrm{DRC}$ and $\triangle \mathrm{DPC}$ lie on the same base DC and have equal areas, therefore, they must lie between the same parallel lines.
$\therefore \mathrm{DC} \| \mathrm{RP}$
Therefore, DCPR is a trapezium.
It is also given that
Area $(\triangle \mathrm{BDP})=\operatorname{Area}(\triangle \mathrm{ARC})$
Area $(\triangle \mathrm{BDP})-\operatorname{Area}(\triangle \mathrm{DPC})=\operatorname{Area}(\triangle \mathrm{ARC})-\operatorname{Area}(\triangle \mathrm{DRC})$
$\therefore$ Area $(\triangle \mathrm{BDC})=$ Area $(\triangle \mathrm{ADC})$
Since $\triangle \mathrm{BDC}$ and $\triangle \mathrm{ADC}$ are on the same base CD and have equal areas, they must lie between the same parallel lines.
$\therefore \mathrm{AB} \| \mathrm{CD}$
Therefore, ABCD is a trapezium.

## Vedantu

## Question 1:

Parallelogram $A B C D$ and rectangle $A B E F$ are on the same base $A B$ and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.

Solution 1: As the parallelogram and the rectangle have the same base and equal area, therefore, these will also lie between the same parallels.
Consider the parallelogram ABCD and rectangle ABEF as follows.


Here, it can be observed that parallelogram $A B C D$ and rectangle $A B E F$ are between the same parallels AB and CF.
We know that opposite sides of a parallelogram or a rectangle are of equal lengths.
Therefore,
$\mathrm{AB}=\mathrm{EF}$ (For rectangle)
$\mathrm{AB}=\mathrm{CD}$ (For parallelogram)
$\therefore \mathrm{CD}=\mathrm{EF}$
$\therefore \mathrm{AB}+\mathrm{CD}=\mathrm{AB}+\mathrm{EF}$
Of all the line segments that can be drawn to a given line from a point not lying on it, the perpendicular line segment is the shortest.
$\therefore \mathrm{AF}<\mathrm{AD}$
And similarly, $\mathrm{BE}<\mathrm{BC}$
$\therefore \mathrm{AF}+\mathrm{BE}<\mathrm{AD}+\mathrm{BC}$
From Equations (1) and (2), we obtain
$\mathrm{AB}+\mathrm{EF}+\mathrm{AF}+\mathrm{BE}<\mathrm{AD}+\mathrm{BC}+\mathrm{AB}+\mathrm{CD}$
Perimeter of rectangle ABEF < Perimeter of parallelogram ABCD .

## Question 2:

In the following figure, D and E are two points on BC such that $\mathrm{BD}=\mathrm{DE}=\mathrm{EC}$. Show that $\operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC})$.


Can you now answer the question that you have left in the 'Introduction' of this chapter, whether the field of Budhia has been actually divided into three parts of equal area?
[Remark: Note that by taking $\mathrm{BD}=\mathrm{DE}=\mathrm{EC}$, the triangle ABC is divided into three triangles $\mathrm{ABD}, \mathrm{ADE}$ and AEC of equal areas. In the same way, by dividing BC into n equal parts and joining the points of division so obtained to the opposite vertex of $B C$, you can divide $\triangle \mathrm{ABC}$ into $n$ triangles of equal areas.]

## Solution 2:

Let us draw a line segment $\mathrm{AL} \perp \mathrm{BC}$.


We know that,
Area of a triangle $=\frac{1}{2} \times$ Base $\times$ Altitude
$\operatorname{Area}(\triangle \mathrm{ADE})=\frac{1}{2} \times \mathrm{DE} \times \mathrm{AL}$
$\operatorname{Area}(\triangle \mathrm{ABD})=\frac{1}{2} \times \mathrm{BD} \times \mathrm{AL}$
$\operatorname{Area}(\triangle \mathrm{AEC})=\frac{1}{2} \times \mathrm{EC} \times \mathrm{AL}$
It is given that $\mathrm{DE}=\mathrm{BD}=\mathrm{EC}$
$\frac{1}{2} \times \mathrm{DE} \times \mathrm{AL}=\frac{1}{2} \times \mathrm{BD} \times \mathrm{AL}=\frac{1}{2} \times \mathrm{EC} \times \mathrm{AL}$
$\operatorname{Area}(\triangle \mathrm{ADE})=\operatorname{Area}(\triangle \mathrm{ABD})=\operatorname{Area}(\triangle \mathrm{AEC})$
It can be observed that Budhia has divided her field into 3 equal parts.

## Question 3:

In the following figure, $\mathrm{ABCD}, \mathrm{DCFE}$ and ABFE are parallelograms.
Show that ar $(\triangle \mathrm{ADE})=\operatorname{ar}(\triangle \mathrm{BCF})$.


## Solution 3:

It is given that ABCD is a parallelogram. We know that opposite sides of a parallelogram are equal.
$\therefore \mathrm{AD}=\mathrm{BC} . .$. (1)
Similarly, for parallelograms DCEF and ABFE, it can be proved that
$\mathrm{DE}=\mathrm{CF} . .$. (2)
And, $\mathrm{EA}=\mathrm{FB}$... (3)
In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{BCF}$,
$\mathrm{AD}=\mathrm{BC}$ [Using equation (1)]
$\mathrm{DE}=\mathrm{CF}$ [Using equation (2)]
$\mathrm{EA}=\mathrm{FB}$ [Using equation (3)]
$\therefore \triangle \mathrm{ADE} \cong \triangle \mathrm{BCF}$ (SSS congruence rule)
$\therefore$ Area $(\triangle \mathrm{ADE})=\operatorname{Area}(\triangle \mathrm{BCF})$

## Question 4:

In the following figure, ABCD is parallelogram and BC is produced to a point Q such that $\mathrm{AD}=$ $C Q$. If $A Q$ intersect $D C$ at $P$, show that ar $(\triangle B P C)=\operatorname{ar}(\triangle D P Q)$.

[Hint: Join AC.]

## Solution 4:

It is given that $A B C D$ is a parallelogram.
$\mathrm{AD} \| \mathrm{BC}$ and $\mathrm{AB} \| \mathrm{DC}($ Opposite sides of a parallelogram are parallel to each other) Join point A to point C.


Consider $\triangle \mathrm{APC}$ and $\triangle \mathrm{BPC}$
$\triangle \mathrm{APC}$ and $\triangle \mathrm{BPC}$ are lying on the same base PC and between the same parallels PC and AB. Therefore,
$\operatorname{Area}(\triangle \mathrm{APC})=\operatorname{Area}(\triangle \mathrm{BPC})$
In quadrilateral ACDQ , it is given that
$\mathrm{AD}=\mathrm{CQ}$
Since ABCD is a parallelogram,
$\mathrm{AD} \| \mathrm{BC}$ (Opposite sides of a parallelogram are parallel)
CQ is a line segment which is obtained when line segment BC is produced.
$\therefore \mathrm{AD} \| \mathrm{CQ}$
We have,
$\mathrm{AC}=\mathrm{DQ}$ and $\mathrm{AC} \| \mathrm{DQ}$
Hence, ACQD is a parallelogram.
Consider BDCQ and BACQ
These are on the same base CQ and between the same parallels CQ and AD.
Therefore,
$\operatorname{Area}(\triangle \mathrm{DCQ})=\operatorname{Area}(\triangle \mathrm{ACQ})$
$\therefore$ Area $(\triangle \mathrm{DCQ})-\operatorname{Area}(\triangle \mathrm{PQC})=\operatorname{Area}(\triangle \mathrm{ACQ})-\operatorname{Area}(\triangle \mathrm{PQC})$
$\therefore$ Area $(\triangle \mathrm{DPQ})=\operatorname{Area}(\triangle \mathrm{APC})$.
From equations (1) and (2), we obtain
$\operatorname{Area}(\triangle \mathrm{BPC})=\operatorname{Area}(\triangle \mathrm{DPQ})$

## Question 5:

In the following figure, ABC and BDE are two equilateral triangles such that D is the mid-point of $B C$. If $A E$ intersects $B C$ at $F$, show that
(i) $\quad \operatorname{ar}(B D E)=\frac{1}{4} \operatorname{ar}(A B C)$
(ii) $\quad \operatorname{ar}(\mathrm{BDE})=\frac{1}{2}$ ar (BAE)
(iii) $\operatorname{ar}(\mathrm{ABC})=2$ ar ( BEC )
(iv) $\quad \operatorname{ar}(\mathrm{BFE})=\operatorname{ar}(\mathrm{AFD})$
(v) $\quad \operatorname{ar}(\mathrm{BFE})=2$ ar (FED)
(vi) $\quad$ ar $(\mathrm{FED})=\frac{1}{8}$ ar (AFC)

[Hint: Join EC and AD. Show that BE \| AC and DE \| AB etc.]

## Solution 5:

(i) Let $G$ and $H$ be the mid-points of side $A B$ and $A C$ respectively. Line segment GH is joining the mid-points and is parallel to third side. Therefore, BC will be half of the length of BC (mid-point theorem).

$\therefore \mathrm{GH}=\frac{1}{2} \mathrm{BC}$ and $\mathrm{GH} \| \mathrm{BD}$
$\therefore \mathrm{GH}=\mathrm{BD}=\mathrm{DC}$ and $\mathrm{GH} \| \mathrm{BD}(\mathrm{D}$ is the mid-point of BC$)$

Similarly,

- $\mathrm{GD}=\mathrm{HC}=\mathrm{HA}$
- $\mathrm{HD}=\mathrm{AG}=\mathrm{BG}$

Therefore, clearly $\triangle \mathrm{ABC}$ is divided into 4 equal equilateral triangles viz $\Delta \mathrm{BGD}, \triangle \mathrm{AGH}, \triangle \mathrm{DHC}$ and $\triangle \mathrm{GHD}$
In other words, $\Delta \mathrm{BGD}=\frac{1}{4} \Delta \mathrm{ABC}$

Now consider $\triangle \mathrm{BDG}$ and $\triangle \mathrm{BDE}$
$\mathrm{BD}=\mathrm{BD}$ (Common base)
As both triangles are equilateral triangle, we can say
$\mathrm{BG}=\mathrm{BE}$
$\mathrm{DG}=\mathrm{DE}$

Therefore, $\Delta \mathrm{BDG} \cong \triangle \mathrm{BDE}$ [By SSS congruency]
Thus, area $(\triangle \mathrm{BDG})=$ area $(\triangle \mathrm{BDE})$
ar $(\triangle \mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$
Hence proved

(ii) $\quad$ Area $(\triangle \mathrm{BDE})=\operatorname{Area}(\triangle \mathrm{AED})($ Common base DE and $\mathrm{DE} \| \mathrm{AB})$ $\operatorname{Area}(\triangle \mathrm{BDE})-\operatorname{Area}(\triangle \mathrm{FED})=\operatorname{Area}(\triangle \mathrm{AED})-\operatorname{Area}(\triangle \mathrm{FED})$
$\operatorname{Area}(\triangle \mathrm{BEF})=\operatorname{Area}(\triangle \mathrm{AFD})$

Now, Area $(\triangle \mathrm{ABD})=$ Area $(\triangle \mathrm{ABF})+\operatorname{Area}(\triangle \mathrm{AFD})$
Area $(\triangle \mathrm{ABD})=\operatorname{Area}(\triangle \mathrm{ABF})+\operatorname{Area}(\triangle \mathrm{BEF})[$ From equation (1)]
Area $(\triangle \mathrm{ABD})=\operatorname{Area}(\triangle \mathrm{ABE})$
AD is the median in $\triangle \mathrm{ABC}$.

$$
\begin{align*}
\operatorname{ar}(\triangle \mathrm{ABD})= & \frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC}) \\
& =\frac{4}{2} \operatorname{ar}(\triangle \mathrm{BDE}) \tag{3}
\end{align*}
$$

$\operatorname{ar}(\triangle \mathrm{ABD})=2 \operatorname{ar}(\triangle \mathrm{BDE})$
From (2) and (3), we obtain
2 ar $(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{ABE})$
$\operatorname{ar}(\mathrm{BDE})=\frac{1}{2}$ ar $(\mathrm{BAE})$
(iii)

```
ar (\triangleABE) = ar (\triangleBEC) (Common base BE and BE|AC)
ar}(\triangle\textrm{ABF})+\operatorname{ar}(\triangle\textrm{BEF})=\operatorname{ar}(\triangle\textrm{BEC}
```

```
Using equation (1), we obtain
ar (\triangleABF)+ ar (\triangleAFD) = ar (\triangleBEC)
ar (\triangleABD) = ar-(\triangleBEC)
\frac{1}{2}}\operatorname{ar}(\triangleABC)=\operatorname{ar}(\triangleBEC
ar}(\triangleABC)=2\operatorname{ar}(\triangle\textrm{BEC}
```

(iv) It is seen that $\triangle \mathrm{BDE}$ and ar $\triangle \mathrm{AED}$ lie on the same base (DE) and between the parallels DE and AB .
$\therefore$ ar $(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{AED})$
$\therefore$ ar $(\triangle \mathrm{BDE})-\operatorname{ar}(\triangle \mathrm{FED})=\operatorname{ar}(\triangle \mathrm{AED})-\operatorname{ar}(\triangle \mathrm{FED})$
$\therefore$ ar $(\triangle \mathrm{BFE})=\operatorname{ar}(\triangle \mathrm{AFD})$
(v) Let h be the height of vertex E , corresponding to the side BD in $\triangle \mathrm{BDE}$.

Let H be the height of vertex A , corresponding to the side BC in $\triangle \mathrm{ABC}$.
In (i), it was shown that $\operatorname{ar}(B D E)=\frac{1}{4} \operatorname{ar}(A B C)$
In (iv), it was shown that ar $(\triangle \mathrm{BFE})=$ ar $(\triangle \mathrm{AFD})$.
$\therefore$ ar $(\triangle \mathrm{BFE})=$ ar $(\triangle \mathrm{AFD})$

$$
=2 \text { ar ( } \triangle \mathrm{FED})
$$

Hence,
(vi)
$\operatorname{ar}\left(\Delta_{\mathrm{AFC}}\right)=\operatorname{ar}\left(\Delta_{\mathrm{AFD}}\right)+\operatorname{ar}\left(\Delta_{\mathrm{ADC}}\right)=2 \operatorname{ar}\left(\Delta_{\mathrm{FED}}\right)+\frac{1}{2} \operatorname{ar}\left(\Delta_{\mathrm{ABC}}\right)[$ using $(\mathrm{v})$
$=2 \operatorname{ar}(\Delta \mathrm{FED})+\frac{1}{2}[4 \times \operatorname{ar}(\Delta \mathrm{BDE})]$ [Using result of part (i)]
$=2 \operatorname{ar}(\Delta \mathrm{FED})+2 \operatorname{ar}(\Delta \mathrm{BDE})=2 \operatorname{ar}\left(\Delta_{\mathrm{FED}}\right)+2 \operatorname{ar}(\Delta \mathrm{AED})$
[ $\Delta$ BDE and $\Delta$ AED are on the same base and between same parallels]
$=2 \operatorname{ar}\left(\Delta_{\mathrm{FED}}\right)+2\left[\operatorname{ar}(\Delta \mathrm{AFD})+\operatorname{ar}\left(\Delta_{\mathrm{FED}}\right)\right]$
$=2 \operatorname{ar}(\Delta$ FED $)+2 \operatorname{ar}(\Delta \mathrm{AFD})+2 \operatorname{ar}\left({ }^{\Delta} \mathrm{FED}\right)$ [Using (viii)]
$=4 \operatorname{ar}\left({ }^{\Delta}\right.$ FED $)+4 \operatorname{ar}\left({ }^{\Delta}\right.$ FED $)$
$\Rightarrow \operatorname{ar}(\Delta \mathrm{AFC})=8$ ar $(\Delta \mathrm{FED})$
$\Rightarrow \operatorname{ar}\left(\Delta^{\mathrm{FED}}\right)=\frac{1}{8} \operatorname{ar}\left(\Delta_{\mathrm{AFC}}\right)$

## Question 6:

Diagonals AC and BD of a quadrilateral ABCD intersect each other at P . Show that [Hint: From A and C, draw perpendiculars to BD]

## Solution 6:

Given: A quadrilateral ABCD , in which diagonals AC and BD intersect each other at point E .


To Prove: $\operatorname{ar}(\triangle \mathrm{AED}) \times \operatorname{ar}(\triangle B E C)$
$=\operatorname{ar}(\triangle A B E) \times \operatorname{ar}(\triangle C D E)$
Construction: From A, draw $A M \perp B D$ AM BD and from C, draw $C N \perp B D$.

$$
\begin{align*}
& \text { Proof : } \operatorname{ar}(\triangle \mathrm{ABE})=\frac{1}{2} \times \mathrm{BE} \times \mathrm{AM} .  \tag{i}\\
& \operatorname{ar}(\triangle \mathrm{AED})=\frac{1}{2} \times \mathrm{DE} \times \mathrm{AM} \ldots \ldots \ldots . . . \tag{ii}
\end{align*}
$$

Dividing eq.(ii) by (i), we get,
$\frac{\operatorname{ar}(\triangle \mathrm{AED})}{\operatorname{ar}(\triangle \mathrm{ABE})}=\frac{\frac{1}{2} \times \mathrm{DE} \times \mathrm{AM}}{\frac{1}{2} \times \mathrm{BE} \times \mathrm{AM}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{AED})}{\operatorname{ar}(\triangle \mathrm{ABE})}=\frac{\mathrm{DE}}{\mathrm{BE}}$
Similarly $\frac{\operatorname{ar}(\triangle \mathrm{CDE})}{\operatorname{ar}(\triangle \mathrm{BEC})}=\frac{\mathrm{DE}}{\mathrm{BE}}$
From eq.(iii) and (iv), we get
$\frac{\operatorname{ar}(\triangle \mathrm{AED})}{\operatorname{ar}(\triangle \mathrm{ABE})}=\frac{\operatorname{ar}(\triangle \mathrm{CDE})}{\operatorname{ar}(\triangle \mathrm{BEC})}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{AED}) \times \operatorname{ar}(\triangle \mathrm{BEC})=\operatorname{ar}(\triangle \mathrm{ABE}) \times \operatorname{ar}(\triangle \mathrm{CDE})$

Hence proved.

## Question 7:

$P$ and $Q$ are respectively the mid-points of sides $A B$ and $B C$ of a triangle $A B C$ and $R$ is the mid-point of AP, show that
(i) $\operatorname{ar}(\mathbf{P R Q})=\frac{1}{2} \operatorname{ar}(A R C)$
(ii) $\operatorname{ar}($ RQC $)=\frac{3}{8}$ ar (ABC)
(iii) $\operatorname{ar}(\mathbf{P B Q})=\operatorname{ar}(\mathrm{ARC})$

## Solution 7:

(i) PC is the median of $\triangle \mathrm{ABC}$.
$\therefore$ ar $(\triangle \mathrm{BPC})=\operatorname{ar}(\triangle \mathrm{APC})$
RC is the median $\Delta$ of APC.
$\therefore \operatorname{ar}(\Delta \mathrm{ARC})=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{APC})$
[Median divides the triangle into two triangles of equal area] PQ is the median of $\Delta \mathrm{BPC}$.

$\therefore$ ar $(\Delta \mathrm{PQC})=\frac{1}{2}$ ar $(\Delta \mathrm{BPC})$
From eq. (i) and (iii), we get,
$\operatorname{ar}(\Delta \mathrm{PQC})=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{APC})$
From eq. (ii) and (iv), we get,
ar $(\Delta \mathrm{PQC})=\operatorname{ar}(\Delta \mathrm{ARC})$ $\qquad$
We are given that P and Q are the mid-points of AB and BC respectively.
$\therefore \mathrm{PQ}{ }^{\|} \mathrm{AC}$ and $\mathrm{PA}=\frac{1}{2} \mathrm{AC}$
$\Rightarrow \operatorname{ar}(\Delta \mathrm{APQ})=\operatorname{ar}\left(\Delta^{2} \mathrm{PQC}\right)$ $\qquad$ (vi) [triangles between same parallel are equal in area]

From eq. (v) and (vi), we get
$\operatorname{ar}(\Delta \mathrm{APQ})=\operatorname{ar}(\Delta \mathrm{ARC})$ $\qquad$
$R$ is the mid-point of AP. Therefore RQ is the median of $\Delta \mathrm{APQ}$.
$\therefore \operatorname{ar}(\Delta \mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{APQ})$ $\qquad$
From (vii) and (viii), we get,
ar $(\Delta \mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{ARC})$
(ii) PQ is the median of $\Delta \mathrm{BPC}$
$\therefore$ ar $(\triangle \mathrm{PQC})=\frac{1}{2}$ ar $(\Delta \mathrm{BPC})=\frac{1}{2} \times \frac{1}{2}$ ar $(\Delta \mathrm{ABC})=\frac{1}{4}$ ar $(\Delta \mathrm{ABC})$
Also ar $(\Delta \mathrm{PRC})=\frac{1}{2}$ ar $(\Delta \mathrm{APC})[\mathrm{Using}$ (iv)]
$\Rightarrow$ ar $(\Delta \mathrm{PRC})=\frac{1}{2} \times \frac{1}{2}$ ar $(\Delta \mathrm{ABC})=\frac{1}{4}$ ar $(\Delta \mathrm{ABC})$
Adding eq. (ix) and (x), we get,
$\operatorname{ar}(\Delta \mathrm{PQC})+\operatorname{ar}(\Delta \mathrm{PRC})=\left(\frac{1}{4}+\frac{1}{4}\right)$ ar $(\Delta \mathrm{ABC})$
$\Rightarrow \operatorname{ar}($ quad. PQCR$)=\frac{1}{2}$ ar $(\Delta \mathrm{ABC})$
Subtracting ar ( $\Delta \mathrm{PRQ}$ ) from the both sides,
$\operatorname{ar}($ quad. PQCR$)-\operatorname{ar}(\Delta \mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{ABC})-\operatorname{ar}(\Delta \mathrm{PRQ})$
$\Rightarrow \operatorname{ar}(\Delta \mathrm{RQC})=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{ABC})-\frac{1}{2}$ ar $(\Delta \mathrm{ARC})$ [Using result (i)]
$\Rightarrow \operatorname{ar}(\Delta \mathrm{ARC})=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{ABC})-\frac{1}{2} \times \frac{1}{2}$ ar $(\Delta \mathrm{APC})$
$\Rightarrow \operatorname{ar}\left(\Delta^{\mathrm{RQC}}\right)=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{ABC})-\frac{1}{4} \operatorname{ar}(\Delta \mathrm{APC})$
$\Rightarrow \operatorname{ar}(\Delta \mathrm{RQC})=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{ABC})-\frac{1}{4} \times \frac{1}{2}$ ar $(\Delta \mathrm{ABC})[\mathrm{PC}$ is median of $\Delta \mathrm{ABC}]$
$\Rightarrow \operatorname{ar}\left(\Delta^{\mathrm{RQC}}\right)=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{ABC})-\frac{1}{8}$ ar $(\Delta \mathrm{ABC})$
$\Rightarrow \operatorname{ar}(\Delta \mathrm{RQC})=\left(\frac{1}{2}-\frac{1}{8}\right) \times \operatorname{ar}(\Delta \mathrm{ABC})$
$\Rightarrow \operatorname{ar}(\Delta \mathrm{RQC})=\frac{3}{8}$ ar $(\Delta \mathrm{ABC})$
(iii) $\operatorname{ar}(\Delta \mathrm{PRQ})=\frac{1}{2}$ ar $(\Delta \mathrm{ARC})[$ Using result (i) $] \Rightarrow 2 \operatorname{ar}(\Delta \mathrm{PRQ})=\operatorname{ar}(\Delta \mathrm{ARC}) . .(\mathrm{xii})$
$\operatorname{ar}(\Delta \mathrm{PRQ})=\frac{1}{2}$ ar $(\Delta \mathrm{APQ})[\mathrm{RQ}$ is the median of $\Delta \mathrm{APQ}]$ $\qquad$
But ar $(\Delta \mathrm{APQ})=\operatorname{ar}(\Delta \mathrm{PQC})[$ Using reason of eq. (vi)] $\qquad$ (xiv)

From eq. (xiii) and (xiv), we get,
$\operatorname{ar}(\Delta \mathrm{PRQ})=\frac{1}{2}$ ar $(\Delta \mathrm{PQC})$
But ar $(\Delta \mathrm{BPQ})=\operatorname{ar}\left(\Delta^{\mathrm{PQC}}\right)\left[\mathrm{PQ}\right.$ is the median of $\left.\Delta_{\mathrm{BPC}}\right]$ $\qquad$
From eq. (xv) and (xvi), we get,
$\operatorname{ar}(\Delta \mathrm{PRQ})=\frac{1}{2} \operatorname{ar}\left(\Delta^{\mathrm{BPQ}}\right)$ $\qquad$ (xvii)

Now from (xii) and (xvii), we get,
$2 \times \frac{1}{2} \operatorname{ar}(\triangle B P Q)=\operatorname{ar}(\Delta \mathrm{ARC}) \Rightarrow \operatorname{ar}\left(\Delta_{\mathrm{BPQ}}\right)=\operatorname{ar}\left(\Delta^{\mathrm{ARC}}\right)$

Question 8: In the following figure, ABC is a right triangle right angled at A . $\mathrm{BCED}, \mathrm{ACFG}$ and ABMN are squares on the sides $\mathrm{BC}, \mathrm{CA}$ and AB respectively. Line segment $\mathrm{AX} \perp \mathrm{DE}$ meets BC at Y .


Show that:
(i) $\triangle \mathrm{MBC} \cong \triangle \mathrm{ABD}$
(ii) $\operatorname{ar}(\mathrm{BYXD})=2 \operatorname{ar}(\mathrm{MBC})$
(iii) $\operatorname{ar}(\mathrm{BYXD})=2 \operatorname{ar}(\mathrm{ABMN})$
(iv) $\triangle \mathrm{FCB} \cong \triangle \mathrm{ACE}$
(v) $\operatorname{ar}(\mathrm{CYXE})=2 \operatorname{ar}(\mathrm{FCB})$
(vi) $\operatorname{ar}($ CYXE $)=\operatorname{ar}(\mathrm{ACFG})$
(vii) $\operatorname{ar}(\mathrm{BCED})=\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG})$

Note: Result (vii) is the famous Theorem of Pythagoras. You shall learn a simpler proof of this theorem in class X.

Solution 8: (i) We know that each angle of a square is $90^{\circ}$.
Hence, $\angle \mathrm{ABM}=\angle \mathrm{DBC}=90^{\circ}$
$\therefore \angle \mathrm{ABM}+\angle \mathrm{ABC}=\angle \mathrm{DBC}+\angle \mathrm{ABC}$
$\therefore \angle \mathrm{MBC}=\angle \mathrm{ABD}$

In $\triangle \mathrm{MBC}$ and $\triangle \mathrm{ABD}$,
$\angle \mathrm{MBC}=\angle \mathrm{ABD}$ (Proved above)
$\mathrm{MB}=\mathrm{AB}$ (Sides of square ABMN )
$B C=B D$ (Sides of square BCED)
$\therefore \triangle \mathrm{MBC} \cong \triangle \mathrm{ABD}$ (SAS congruence rule)
(ii) We have
$\triangle \mathrm{MBC} \cong \triangle \mathrm{ABD}$
$\therefore$ ar $(\triangle \mathrm{MBC})=\operatorname{ar}(\triangle \mathrm{ABD})$
It is given that $\mathrm{AX} \perp \mathrm{DE}$ and $\mathrm{BD} \perp \mathrm{DE}$ (Adjacent sides of square BDEC )
$\therefore \mathrm{BD} \| \mathrm{AX}$ (Two lines perpendicular to same line are parallel to each other)
$\triangle \mathrm{ABD}$ and parallelogram BYXD are on the same base BD and between the same parallels BD and $A X$.
Area $(\triangle \mathrm{YXD})=2$ Area ( $\triangle \mathrm{MBC}$ ) [Using equation (1)] ... (2)
(iii) $\triangle \mathrm{MBC}$ and parallelogram ABMN are lying on the same base MB and between same parallels MB and NC.
$2 \operatorname{ar}(\triangle \mathrm{MBC})=\operatorname{ar}(\mathrm{ABMN})$
ar $(\triangle \mathrm{YXD})=\operatorname{ar}(\mathrm{ABMN})[$ Using equation (2)] ... (3)
(iv) We know that each angle of a square is $90^{\circ}$.
$\therefore \angle \mathrm{FCA}=\angle \mathrm{BCE}=90^{\circ}$
$\therefore \angle \mathrm{FCA}+\angle \mathrm{ACB}=\angle \mathrm{BCE}+\angle \mathrm{ACB}$
$\therefore \angle \mathrm{FCB}=\angle \mathrm{ACE}$
In $\triangle \mathrm{FCB}$ and $\triangle \mathrm{ACE}$,
$\angle \mathrm{FCB}=\angle \mathrm{ACE}$
$\mathrm{FC}=\mathrm{AC}$ (Sides of square ACFG)
$\mathrm{CB}=\mathrm{CE}$ (Sides of square BCED)
$\Delta \mathrm{FCB} \cong \triangle \mathrm{ACE}$ (SAS congruence rule)
(v) It is given that $\mathrm{AX} \perp \mathrm{DE}$ and $\mathrm{CE} \perp \mathrm{DE}$ (Adjacent sides of square BDEC )

Hence, $\mathrm{CE} \| \mathrm{AX}$ (Two lines perpendicular to the same line are parallel to each other)
Consider BACE and parallelogram CYXE
BACE and parallelogram CYXE are on the same base CE and between the same parallels CE and AX.
$\therefore$ ar $(\triangle \mathrm{YXE})=2$ ar $(\triangle \mathrm{ACE})$
We had proved that
$\therefore \triangle \mathrm{FCB} \cong \triangle \mathrm{ACE}$
ar $(\triangle \mathrm{FCB}) \cong \operatorname{ar}(\triangle \mathrm{ACE}) \ldots$... (5)
On comparing equations (4) and (5), we obtain
ar $(\mathrm{CYXE})=2$ ar ( $\triangle \mathrm{FCB}$ ) ... (6)
(vi) Consider BFCB and parallelogram ACFG

BFCB and parallelogram ACFG are lying on the same base CF and between the same parallels CF and BG.
$\therefore \operatorname{ar}(\mathrm{ACFG})=2$ ar $(\triangle \mathrm{FCB})$
$\therefore$ ar $(\mathrm{ACFG})=$ ar (CYXE) [Using equation (6)] ... (7)
(vii) From the figure, it is evident that
$\operatorname{ar}(\triangle \mathrm{CED})=\operatorname{ar}(\triangle \mathrm{YXD})+\operatorname{ar}(\mathrm{CYXE})$
$\therefore$ ar $(\triangle C E D)=$ ar $(A B M N)+\operatorname{ar}(A C F G)$ [Using equations (3) and (7)].

# Thank You for downloading the PDF 

## FREE LIVE ONLINE

# MASTER CLASSES 

## FREE Webinars by Expert Teachers

## Vedantu

## FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

## Register for FREE

