NCERT SOLUTIONS
 CLASS-IX MATHS

 CHAPTER-9 AREAS OF PARALLELOGRAMS AND

 CHAPTER-9 AREAS OF PARALLELOGRAMS AND
 Exercise-9.2

 TRIANGLES

 TRIANGLES
 Q.1.In the given figure, $P Q R S$ is a parallelogram, $P E \perp S R$ and $R F \perp P S$.If $P Q=16 \mathrm{~cm}, P E=8 \mathrm{~cm} \& R F=10 \mathrm{~cm}$. Calculate $A D$.

Solution:

Area of the parallelogram $P Q R S=P Q R S=R S \times P E$

$$
\begin{aligned}
& =16 \times 8 \mathrm{~cm}^{2}(\text { because } P Q=R S, P Q R S \text { is a parallelogram }) \\
& =128 \mathrm{~cm}^{2}
\end{aligned}
$$

Now, area of parallelogram $\mathrm{PQRS}=P S \times R F$

$$
\begin{equation*}
=P S \times 10 \mathrm{~cm}^{2} \tag{2}
\end{equation*}
$$

From equation (1) and (2), we get
$P S \times 10=128$
$\Rightarrow P S=\frac{128}{10}$
$\Rightarrow P S=12.8 \mathrm{~cm}$
Q. 2 If $E_{;} F_{i} G$ and H are the midn-points resnectively of the sides of a narallelogram $A B C D$ show that $\operatorname{Area}(E F G H)=\frac{1}{2} \operatorname{Area}(A B C D)$

Solution:

Lets join HF.
In the parallelogram, i.e $A B C D, A D=B C$ and $A D|\mid B C$ (because in a parallelogram the opposite sides are equal and parallel)
$A B=C D$ (opposite sides are equal)
$\Rightarrow \frac{1}{2} A D=\frac{1}{2} B C$

And $A H \| B F$
$\Rightarrow A H=B F$ and $A H \| B F$ (because The mid point of AD and BC are H and F)
therefore ABFH is a parallelogram.
Since $\triangle H E F$ and parallelogram ABFH are between the same parallel lines AB and HF , and are on the same base HF .
therefore Area $(\triangle H E F)=\frac{1}{2} \operatorname{Area}($ ABFH $) \ldots$
Similarly, we can prove that,
$\operatorname{Area}(\triangle H G F)=\frac{1}{2} \operatorname{Area}(H D F C) .$.
Add Equation (1) and Equation (2), we obtain
$\operatorname{Area}(\triangle H E F)+\operatorname{Area}(\triangle H G F)=\frac{1}{2} \operatorname{Area}(A B F H)+\frac{1}{2} \operatorname{Area}(H D C F)$
$=\frac{1}{2}[$ Area $(A B F H)+$ Area $(H D C F)]$
$\Rightarrow \operatorname{Area}(E F G H)=\frac{1}{2}(A B C D)$
$Q .3 . D C$ and $A D$ are two sides on which P and Q are two points lying respectively of a parallelogram $A B C D$. Prove that $\operatorname{area}(A P B)=\operatorname{area}(B Q C)$

Solution:

It is observed that, $\triangle B Q C$ and parallelogram $A B C D$ are between the same parallel lines $A D$ and $B C$ and lie on the same base $B C$.
thereforeArea $(\triangle B Q C)=\frac{1}{2} \operatorname{Area}(A B C D)$
Similarly, we can say that $\triangle A P B$ and parallelogram $A B C D$ lie between the same lines $A B$ and $D C$ that are parallel and on the same base $A B$.
therefore Area $(\triangle A P B)=\frac{1}{2} \operatorname{Area}(A B C D) \ldots$
Equating both the equations, i.e equation(1)andequation(2),we get
$\operatorname{Area}(\triangle B Q C)=\operatorname{Area}(\triangle A P B)$
Hence, proved.
Q.4. In the given figure, in the interior of a parallelogram $A B C D$, there exist a point P. Show that
(i) $\operatorname{area}(A P B)+\operatorname{area}(P C D)=\frac{1}{2} \operatorname{area}(A B C D)$
(ii) $\operatorname{area}(A P D)+\operatorname{area}(P B C)=\operatorname{area}(A P B)+\operatorname{area}(P C D)$
[Hint: Draw a line i.e. parallel to AB, through P]

A

Solution:

A line segment EF is drawn, parallel to line segment $A B$ and passing through point P.
In the parallelogram $A B C D$,
$A B \| E F \ldots$ (1) (as ABCD is a parallelogram)
therefore $A D \| B C$ (opposite sides of a parallelogram)
$\Rightarrow A E \| B F$.
By equating , Equation (1) and Equation(2), we get,
$A B \| E F$ and $A E \| B F$
Therefore, quad ABFE is a parallelogram.
Misplaced \& therefore $\operatorname{Area}(\triangle A P B)=\frac{1}{2} \operatorname{Area}(A B F E) \ldots$ (3)
Similarly, for $\triangle P C D$ and parallelogram EFCD,
$\operatorname{Area}(\triangle P C D)=\frac{1}{2} \operatorname{Area}(E F C D)$
Add equation(3) and equation(4), we get,
$\operatorname{Area}(\triangle A P B)+\operatorname{Area}(\triangle P C D)=\frac{1}{2}[\operatorname{Area}(A B E F)+\operatorname{Area}(E F C D)]$
$\operatorname{Area}(\triangle A P B)+\operatorname{Area}(\triangle P C D)=\frac{1}{2} \operatorname{Area}(A B C D)$.
(ii)

A line segment $M N$ is drawn, parallel to line segment $A D$ and passing through point P.
In the parallelogram $A B C D$,
$M N \| A D \ldots(6)$ (as $A B C D$ is a parallelogram)
there fore $A B \| D C($ opposite sides of a parallelogram)
$\Rightarrow A M \| D N$
By equating, Equation (6) and Equation(7) , we get,
$M N \| A D$ and $A M \| D N$
Therefore, quad AMND AMND is a parallelogram.
It can be said that $\triangle A P D$ and parallelogram AMND are between the same parallel lines $A D$ and $M N$ and lying on the same base AD.
thereforeArea $(\triangle A P D)=\frac{1}{2} \operatorname{Area}(A M N D)$
Similarly, for $\triangle P C B$ and parallelogram MNCB,
$\operatorname{Area}(\triangle P C B)=\frac{1}{2} \operatorname{Area}(M N C B)$
Add equation(8) and equation(9), we get,
$\operatorname{Area}(\triangle A P D)+\operatorname{Area}(\triangle P C B)=\frac{1}{2}[\operatorname{Area}(A M N D)+\operatorname{Area}(M N C B)]$
$\operatorname{Area}(\triangle A P D)+\operatorname{Area}(\triangle P C B)=\frac{1}{2} \operatorname{Area}(A B C D)$

Now compare equation(5) with equation(10), we get
$\operatorname{Area}(\triangle A P D)+\operatorname{Area}(\triangle P B C)=\operatorname{Area}(\triangle A P B)+\operatorname{Area}(\triangle P C D)$
Q.5. In the figure given below X is a point on the side $B R$ and $A B R S$ and $P Q R S$ are parallelograms. Prove that (i) area $(P Q R S)=$ area $(A B R S)$
(ii) $\operatorname{area}(\triangle P X S)=\frac{1}{2} \operatorname{area}(P Q R S)$

Solution:

(i)It can be said that parallelogram $P Q R S$ and the parallelogram ABRS lie in between the same parallel lines $S R$ and $P B$ and also, on the same base SR.

```
thmmofmman \man(DNDG)- \man(ADDG) (1)
```

(ii)Consider $\triangle \bar{A} X \bar{X}$ and parailelogram $\bar{A} \bar{B} \bar{S} \bar{S}$.

As these lie on the same base and are between the same parallel lines AS and BR,
therefore $\frac{1}{2} \operatorname{Area}(\triangle A X S)=\operatorname{Area}(A B R S) \ldots$ (2)
By equating, equation (1) and equation(2), we get
$\operatorname{Area}(\triangle A X S)=\frac{1}{2} \operatorname{Area}(P Q R S)$
Q.6. A farmer had a field and that was in a parallelogram shape PQRS. He took a point A on $R S$ and he joined it to points P and Q. In how many parts the field is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should he do it?

Solution:

From the figure, it can be observed that point A divides the field into three parts.
The parts which are triangular in shape are $-\triangle P S A, \triangle P A Q$, and $\triangle Q R A$
Areaof $\triangle P S A+$ Areaof $\triangle P A Q+$ Areaof $\triangle Q R A=$ Area of parallelogram $P Q R S$
We know that if a parallelogram and a triangle are between the same parallels and on the same base, then the area of the triangle becomes half the area of the parallelogram.
thereforeArea $(\triangle P A Q)=\frac{1}{2} \operatorname{Area}(P Q R S) .$.
By equation, equation (i) and (ii), we get
$\operatorname{Area}(\triangle P S A)+\operatorname{Area}(\triangle Q R A)=\frac{1}{2} \operatorname{Area}(P Q R S)$
Clearly, it can be said that the farmer should sow wheat in triangular part PAQ and he should sow pulses in other two triangular parts PSA and QRA or wheat in triangular parts PSA and QRA and in triangular part PAQ he should sow pulses.

Exercise - 9.3

Q.1.In the given figure, E is any point on median $A D$ of a $\triangle A B C$. Prove that
$\operatorname{Area}(A B E)=\operatorname{Area}(A C E)$

Solution:

Given: AD is the median of $\triangle A B C$.
To Prove: $\operatorname{Area}(\triangle A B C)=\operatorname{Area}(\triangle A C E)$
Proof: In $\triangle A B C$,
$A D$ is a median.
therefore $\operatorname{Area}(\triangle A B D)=\operatorname{Area}(\triangle A C D) \ldots$ (i)
In $\triangle E B C$,
ED is a median.
thereforeArea $(\triangle E B D)=\operatorname{Area}(\triangle E C D)$
Subtracting equation (ii) from equation (i), we get
$\operatorname{Area}(\triangle A B D)-\operatorname{Area}(\triangle E B D)=\operatorname{Area}(\triangle A C D)-\operatorname{Area}(\triangle E C D)$
$\Rightarrow \operatorname{Area}(\triangle A B E)=\operatorname{Area}(\triangle A C E)$
Q.2.In a $\triangle A B C, E$ is the mid-point of median $A D$. Prove that Misplaced \& .

Solution:

Given: E is the mid-point of median AD in $\triangle A B C$.
To Prove: $\operatorname{Area}(\triangle B E D)=\operatorname{Area}(\triangle A B C)$
Proof: in $\triangle A B C$,
$A D$ is a median.
thereforeArea $(\triangle A B D)=\operatorname{Area}(\triangle A B C) \ldots$...(i) (because median of a triangle divides it into two triangles of equal area.)
In $\triangle A B D$,
$B E$ is a median.
thereforeArea $(\triangle B E D)=\operatorname{Area}(\triangle B E A)=\frac{1}{2} \operatorname{Area}(\triangle A B D)$
$\left.\operatorname{Area}(\triangle B E D)=\frac{1}{2} \operatorname{Area}(\triangle A B D)=\frac{1}{2} \cdot \frac{1}{2} \operatorname{Area}(\triangle A B C)(\operatorname{From}(i))\right) \operatorname{Area}(\triangle B E D)=\frac{1}{4} \operatorname{Area}(\triangle A B C)$
$=\frac{1}{4} \operatorname{Area}(\triangle A B C)$

Q.3. Show that the diagonals of a parallelogram divide it into four triangles of equal area.

- . ..

We know that diagonals of parallelogram bisect each other.
therefore O is the mid-point of $A C$ and $B D$.
$B O$ is the median in $\triangle A B C$. Therefore, it will divide it into two triangles of equal areas.
therefore $\operatorname{Area}(\triangle A O B)=\operatorname{Area}(\triangle B O C) \ldots$ (i)
In $\triangle B C D, \mathrm{CO}$ is the median.
therefore $\operatorname{Area}(\triangle B O C)=\operatorname{Area}(\triangle C O D)$
Similarly, $\operatorname{Area}(\triangle C O D)=\operatorname{Area}(\triangle A O D)$
By Equating equation(i), (ii) inline, and (iii), we get

$$
\operatorname{Area}(\triangle A O B)=\operatorname{Area}(\triangle B O C)=\operatorname{Area}(\triangle C O D)=\operatorname{Area}(\triangle A O D)
$$

Therefore, it is evident that the diagonals of a parallelogram divide it into four triangles of equal area.
Q.4. In figure, $A B C$ and $A B D$ are two triangles on the same base $A B$. If line segment $C D$ is bisected by $A B$ at O, show that $\operatorname{Area}(\triangle A B C)=\operatorname{Area}(\triangle A B D)$.

Solution:

Given: $\triangle A B C$ and $\triangle D B C$ are on the same base $A B$. Line segment $C D$ is bisected by $A B$ at O.
To Prove: $\operatorname{Area}(\triangle A B C)=\operatorname{Area}(\triangle A B D)$
Proof: Line-segment $C D$ is bisected by $A B$ at O .
Misplaced \& $A O$ is the median of $\triangle A C D$.
$\operatorname{Area}(\triangle A C O)=\operatorname{Area}(\triangle A D O)$

BU is the mealan or $\Delta D \cup \boldsymbol{D}$.
therefore Area $(\triangle B C O)=\operatorname{Area}(\triangle B D O)$
Adding (i) and (ii), we get
$\operatorname{Area}(\triangle A C O)+\operatorname{Area}(\triangle B C O)=\operatorname{Area}(\triangle A D O)+\operatorname{Area}(\triangle B D O)$
$\Rightarrow \operatorname{Area}(\triangle A B C)=\operatorname{Area}(\Delta A B D)$

Q.5. D, E and F are respectively the mid-points of the sides $B C, C A$ and $A B$ of a $\triangle A B C$.

Prove that
(i) BDEF is a parallelogram
(ii) $\operatorname{Area}(\triangle D E F)=\frac{1}{4} \operatorname{Area}(\triangle A B C)$
(iii) Area $(B D E F)=\frac{1}{2} \operatorname{Area}(\triangle A B C)$

Solution:

Given: D, E and F are respectively the mid-points of the sides $B C, C A$ and $A B$ of a $\triangle A B C$.
To Prove: (i) $B D E F$ is a parallelogram
(ii) $\operatorname{Area}(\triangle D E F)=\frac{1}{4} \operatorname{Area}(\triangle A B C)$
(iii) $\operatorname{Area}(B D E F)=\frac{1}{2} \operatorname{Area}(\triangle A B C)$

Proof: In $\triangle A B C$,
F is the mid-point of side $A B$ and E is the mid-point of side $A C$.
there fore $\mathrm{EF}\left||\mathrm{BC}| \operatorname{In}\right.$ a triangle, the line segment joining the mid-points of any two sides is parallel to the $3^{\text {rd }}$ side.
$\Rightarrow E F \| B D$
Similarly, $E F \| B D$
From (1) and (2), we can say that,
BDEF is a parallelogram.
(ii)As in (i), we can prove that

AFCE and AFDE are parallelograms.
FD is diagonal of the parallelogram BDEF.
therefore $\operatorname{Area}(\triangle F B D)=\operatorname{Area}(\triangle D E F)$
Similarly, $\operatorname{Area}(\triangle D E F)=\operatorname{Area}(\triangle F A E)$
$\operatorname{Area}(\triangle D E F)=\operatorname{Area}(\triangle D C E)$
From equation(3),(4) and (5), we have
$\operatorname{Area}(\Delta F B D)=\operatorname{Area}(\triangle D E F)=\operatorname{Area}(\triangle F A E)=\operatorname{Area}(\triangle D C E)$
there fore $\triangle A B C$ is divided into four non-overlapping triangles $\triangle F B D, \triangle D E F, \triangle F A E$ and $\triangle D C E$ therefore Area $(\triangle A B C)=\operatorname{Area}(\triangle F B D)+\operatorname{Area}(\triangle D E F)+\operatorname{Area}(\triangle F A E)+\operatorname{Area}(\triangle D C E)$
$=4 \operatorname{Area}(\triangle D E F) \quad($ From equation(6))
$\Rightarrow \operatorname{Area}(\triangle D E F)=\frac{1}{4} \operatorname{Area}(\triangle A B C)$
(iii) $\operatorname{Area}(B D E F)=\operatorname{Area}(\triangle F B D)+\operatorname{Area}(\triangle D E F)$ (From equation(3))
$==\operatorname{Area}(\triangle D E F)+\operatorname{Area}(\Delta D E F)$
$=2 \operatorname{Area}(\triangle D E F)$
$=2 \cdot \frac{1}{4} \operatorname{Area}(\triangle A B C)($ From equation $(7))$
$=\frac{1}{2} \operatorname{Area}(\triangle A B C)$
Q.6. In the given figure, diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O such that $O B=O D$. If $A B=C D$, then show that:
(i) $\operatorname{Arca}(\triangle D O C)=\operatorname{Arca}(\triangle A O B)$
(ii) $\operatorname{Area}(\triangle D C B)=\operatorname{Area}(\triangle A C B)$
(iii) $D A \| C B$ or $A B C D$ is a parallelogram.
[Hint: From D and B,draw perpendiculars to AC]

Solution:

Given: Diagonals $A C$ and $B D$ of quadrilateral $A B C D$ intersect at O such that $O B=O D$.
To Prove: If $A B=C D$, then
(i) $\operatorname{Area}(\triangle D O C)=\operatorname{Area}(\triangle A O B)$
(ii) $\operatorname{Arca}(\triangle D C B)=\operatorname{Area}(\triangle A C B)$
(iii) $D A \| C B$ or ABCD is a parallelogram.

Construction: Draw $D E \perp A C a n d B F \perp A C$.

Proof: In $\triangle D O N$ and $\triangle B O M$,
$\perp D N O=\perp B M O$ (By Construction)
$\perp D O N=\perp B O M$ (vertically opposite angles)
$O D=O B$ (Given)
By AAS congruence rule,
$\triangle D O N \perp \Delta B O M$
$\perp D N=\perp B M$.
We know that congruent triangles have equal areas.
$\operatorname{Area}(\triangle D O N)=\operatorname{Area}(\triangle B O M)$
In $\triangle D N C$ and $\triangle B M A$,
$\perp D N C=\perp B M A$ (By Construction)
$C D=A B$ (Given)
$D N=B M$ [using equation(1)]
$\Delta D N C \sim \Delta B M A$ (RHS congruence rule)
$\operatorname{Area}(\triangle D N C)=\operatorname{Area}(\triangle B M A)$
Add equation(2) and (3), we get
$\operatorname{Area}(\triangle D O N)+\operatorname{Area}(\triangle D N C)=\operatorname{Area}(\triangle B O M)+\operatorname{Area}(\triangle B M A)$ thereforeArea $(\triangle D O C)=\operatorname{Area}(\triangle A O B)$
(ii)We got,
$\operatorname{Area}(\triangle D O C)=\operatorname{Area}(\triangle A O B)$
Now, add $\operatorname{Area}(\triangle O C B)$ on both the sides.

$$
\Rightarrow \operatorname{Area}(\triangle D O C)+\operatorname{Area}(\triangle O C B)=\operatorname{Area}(\triangle A O B)+\operatorname{Area}(\triangle O C B) \Rightarrow \operatorname{Area}(\triangle D C B)=\operatorname{Area}(\triangle A C B)
$$

(iii)We got,
$\operatorname{Area}(\triangle D C B)=\operatorname{Area}(\triangle A C B)$
If two triangles have the same base and equal areas, then these will lie between the same parallels.

$D A \| C B \ldots \ldots$ (4)

In quadrilateral $A B C D$, one pair of opposite sides is equal $(A B=C D)$ and the other pair of opposite sides is parallel $(D A \| C B)$.
therefore $A B C D$ isaparallelogram.
Q.7. D and E are points on sides $A B$ and $A C$ respectively of $\triangle A B C$ such that Area $(\triangle D B C)=$ Area $(\triangle E B C)$ Prove that $D E$ || BC.

Solution:

Given : D and E are points on sides AB and AC respectively of $\triangle \mathrm{ABC}$ such that $\operatorname{Area}(\triangle D B C)=\operatorname{Area}(\triangle E B C)$.
To Prove: DE || BC
Proof: As $(\triangle D B C)$ and $(\triangle E B C)$ have equal area and are on the same base.
therefore $(\triangle D B C)$ and $(\triangle E B C)$ will lie between the same parallel lines.
therefore $D E \| B C$
Q.8. $X Y$ is a line parallel to side $B C$ of a triangle $A B C$. If $B E \| A C$ and $C F \| A B$ meet $X Y$ at E and E respectively, show that $\operatorname{Area}(\triangle A B E)=\operatorname{Area}(\triangle A C F)$

Solution:

Given: $X Y$ is a line parallel to side $B C$ of a triangle $A B C$. If $B E \| A C$ and $C F \| A B$ meet $X Y$ at E and E respectively.
To Prove: $\operatorname{Area}(\triangle A B E)=\operatorname{Area}(\triangle A C F)$
Proof: $\mathrm{XY}|\mid \mathrm{BC}$ (given)
And $\mathrm{CF} \| \mathrm{BX}$ (because $\mathrm{CF} \| \mathrm{AB}$ (given))
therefore BCFX is a parallelogram.
$B C=X F$
$B C=X Y+Y F$
Again,
$\mathrm{XY} \| \mathrm{BC}$ (because $\mathrm{BE} \| \mathrm{AC}$)
And $B E \| C Y$
therefore BCYE is a parallelogram
therefore $\mathrm{BC}=\mathrm{YE}$ (becauseopposite sides of a parallelogram are equal)
$\Rightarrow B C=X Y+X E$
From (1) and (2) ,
$X Y+Y F=X Y+X E$
$\Rightarrow Y F=X E$
$\Rightarrow X F=Y F$
there fore $\triangle A X E$ and $\triangle A Y F$ have equal bases $(X E=Y F)$ on the same line $E F$ and have common vertex A.
there fore Their altitudes are also the same.
therefore Area $(\triangle A X E)=\operatorname{Area}(\triangle A F Y)$
therefore therefore $\triangle B X E$ and $\triangle B X E$ have equal bases $(\mathrm{XE}=\mathrm{YF})$ on the same line EF and are between the same parallels EF and $B C(X Y \| B C)$.
therefore $\operatorname{Area}(\triangle B E X)=\operatorname{Area}(\triangle C F Y)$ (becauseTwo triangles on the same base(or equal bases) and between the same parallels are equal in area)

Add the corresponding sides of (4) and (5), we get
$\operatorname{Area}(\triangle A X E)+\operatorname{Area}(\triangle B X E)=\operatorname{Area}(\triangle A F Y)+\operatorname{Area}(\triangle C F Y)$
$\Rightarrow \operatorname{Area}(\triangle A B E)=\operatorname{Area}(\triangle A C F)$
Q.9. The side $A B$ of a parallelogram $A B C D$ is produced to any point P. A line through A and parallel to $C P$ meets $C B$ produced at Q and then parallelogram PBQR is completed (see the following figure). Show that Area $($ Parallelogram $A B C D)=$ Area $($ ParallelogramPBQR $)$.
[Hint: Join AC and PQ. Now compare $\operatorname{Area}(\triangle A C Q)$ and Area $(\triangle A P Q)$]

Solution:

Given: The side $A B$ of a parallelogram $A B C D$ is produced to any point P. A line through A and parallel to $C P$ meets $C B$ produced at Q and then parallelogram PBQR is completed.

To Prove: Area(Parallelogram ABCD) $=$ Area(Parallelogram PBQR).
Construction: Join $A C$ and $P Q$.

Proof: $A C$ is a diagonal of parallelogram $A B C D$
therefore Area $(\triangle A B C)=\frac{1}{2}$ Area $($ parallelogram $A B C D)$
$P Q$ is a diagonal of parallelogram BQRP
thereforeArea $(\triangle B P Q)=\frac{1}{2}$ Area $($ parallelogramBQRP $)$ \qquad
$\triangle A C Q$ and $\triangle A P Q$ are on the same base $A Q$ and between the same parallels $A Q$ and $C P$.
thereforeArea $(\triangle A C Q)=\operatorname{Area}(\triangle A P Q)$
Now, substract $\operatorname{Area}(\triangle A B Q)$ from both the sides.
$\Rightarrow \operatorname{Area}(\triangle A C Q)-\operatorname{Area}(\triangle A B Q)=\operatorname{Area}(\triangle A P Q)-\operatorname{Area}(\triangle A B Q)$
$\Rightarrow \operatorname{Area}(\triangle A B C)=\operatorname{Area}(\triangle B P Q)$
$\Rightarrow \frac{1}{2}$ Area $($ parallelogram $A B C D)=\frac{1}{2}$ Area $($ parallelogram $P B Q R)$
\Rightarrow Arca $($ parallelogram $A B C D)=$ Arca $($ parallelogram $P B Q R) \quad[F r o m(1)$ and (2)]
Q.10. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at O. Prove that $\operatorname{Area}(\triangle A O D)=\operatorname{Area}(\triangle B O C)$.

Solution:

D

Given: Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at O.
To Prove: $\operatorname{Area}(\triangle A O D)=\operatorname{Area}(\triangle B O C)$.
Proof: $\triangle A B D$ and $\triangle A B C$ are on the same base AB and between the same parallels AB and DC .
thereforeArea $(\triangle A B D)=\operatorname{Area}(\triangle A B C)$
Now, substract $\operatorname{Area}(\triangle A O B)$ from both the sides;
$\Rightarrow \operatorname{Area}(\triangle A B D)-\operatorname{Area}(\triangle A O B)=\operatorname{Area}(\triangle A B C)-\operatorname{Area}(\triangle A O B)$
$\Rightarrow \operatorname{Area}(\triangle A O D)=\operatorname{Area}(\triangle B O C)$
Q.11. In the given figure, $A B C D E$ is a pentagon. A line through B parallel to $A C$ meets $D C$ produced at F. Show that
(i) $\operatorname{Area}(\triangle A C B)=\operatorname{Area}(\triangle A C F)$
(ii) $\operatorname{Area}(A E D F)=\operatorname{Area}(A B C D E)$

Solution:
Given: $A B C D E$ is a pentagon. A line through B parallel to $A C$ meets $D C$ produced at F.
To Prove: (i) $\operatorname{Area}(\triangle A C B)=\operatorname{Area}(\triangle A C F)$
(ii) $\operatorname{Area}(A E D F)=\operatorname{Area}(A B C D E)$

Proof:
(i) $\triangle A C B$ and $\triangle A C F$ lie on the same base AC and are between the same parallels AC and BF .
$\operatorname{Area}(\triangle A C B)=\operatorname{Area}(\triangle A C F)$
(ii) becauseArea $(\triangle A C B)=\operatorname{Area}(\triangle A C F)$

Add Area $(A E D C)$ on both the sides, we get
$\Rightarrow \operatorname{Area}(\triangle A C B)+\operatorname{Area}(A E D C)=\operatorname{Area}(\triangle A C F)+\operatorname{Area}(A E D C)$
$\Rightarrow \operatorname{Area}(A B C D E)=\operatorname{Area}(A E D F)$
$\Rightarrow \operatorname{Area}(A E D F)=\operatorname{Area}(A B C D E)$
Q.12. A villager Ram has a plot of land in the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Ram agrees to the above proposal with the condition that he should be given an equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented.

Solution:

Let $A B C D$ be the plot of land in the shape of a quadrilateral.
Let the portion ADE be taken over by the Gram Panchayat of the village from one corner D to construct a Health Centre.
Join $A C$. Draw a line throuigh D parallel to $A C$ to meet $B C$ produced in P.
Then Ram must given the land ECP adjoining his plot so as to form a triangular plot ABP as then.

Proof: $\triangle D A P$ and $\triangle D C P$ are between the same parallels $D P$ and $A C$.
therefore Area $(\triangle D A P)=\operatorname{Area}(\triangle D C P)($ Two triangles on the same base (or equal bases) and between the same parallels are equal in area)

Substract $\operatorname{Area}(\triangle D E P)$ from both the sides.

$$
\Rightarrow \operatorname{Area}(\triangle D A P)-\operatorname{Area}(\triangle D E P)=\operatorname{Area}(\triangle D C P)-\operatorname{Area}(\triangle D E P) \operatorname{Area}(\triangle A D E)=\operatorname{Area}(\triangle P C E)
$$

Now, add Area $(A B C E)$ on the both the sides.
$\operatorname{Area}(\triangle A D E)=\operatorname{Area}(\triangle P C E)$

$$
\Rightarrow \operatorname{Area}(A B C D)=\operatorname{Area}(\triangle A B P)
$$

$\Rightarrow \operatorname{Area}(\triangle A D E)+\operatorname{Area}(A B C E)=\operatorname{Area}(\triangle P C E)+\operatorname{Area}(A B C E)$
Q.13. $A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at X and $B C$ at Y. Prove that $\operatorname{Area}(\triangle A D X)=\operatorname{Area}(\triangle A C Y)$. [Hint: Join CX.]

Solution:

Given: $A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at X and $B C$ at Y.
To Prove: $\operatorname{Area}(\triangle A D X)=\operatorname{Area}(\triangle A C Y)$.

Construction: Join CX

Proof: $\triangle A D X$ and $\triangle A C X$ are on the same base AX and between the same parallels AB and DC

thereforeArea $(\triangle A D X)=\operatorname{Area}(\triangle A C X)$
$\triangle A C X$ and $\triangle A C Y$ are on the same base AC and between the same parallels AC and XY .
therefore Area $(\triangle A C X)=\operatorname{Area}(\triangle A C Y)$
From equation(1) and (2), we get
$\operatorname{Area}(\triangle A D X)=\operatorname{Area}(\triangle A C Y)$
Q.14. In the given figure, $A P\|B Q\| C R$. Prove that Area $(\triangle A Q C)=\operatorname{Area}(\triangle P B R)$.

Solution: $A P\|B Q\| C R$
To Prove: $\operatorname{Area}(\triangle A Q C)=\operatorname{Area}(\triangle P B R)$.
Proof: $\triangle B A Q$ and $\triangle B Q R$ are between the same parallels BQ and AP and on the same base BQ .
$\operatorname{Area}(\triangle B C Q)=\operatorname{Area}(\triangle B P Q)$
$\triangle B C Q$ and $\triangle B Q R$ are between the same parallels BQ and CR and on the same base BQ .
$\operatorname{Area}(\Delta B C Q)=\operatorname{Area}(\Delta B O R)$ \qquad
$\operatorname{Area}(\triangle B A Q)+\operatorname{Area}(\triangle B C Q)=\operatorname{Area}(\triangle B P Q)+\operatorname{Area}(\triangle B Q R)$
$\Rightarrow \operatorname{Area}(\triangle A Q C)=\operatorname{Area}(\triangle P B R)$
Q.15. Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O in such a way that Area $(\triangle A O D)=$ Area $(\triangle B O C)$.Prove that $A B C D$ is a trapezium.

Solution:

Given: Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O in such a way that $\operatorname{Area}(\triangle A O D)=\operatorname{Area}(\Delta B O C)$.
To Prove: $A B C D$ is a trapezium.
Proof: $\operatorname{Area}(\triangle A O D)=\operatorname{Area}(\triangle B O C)$
Now, add $\operatorname{Area}(\triangle A O B)$ on both the sides.
$\operatorname{Area}(\triangle A O D)+\operatorname{Area}(\triangle A O B)=\operatorname{Area}(\triangle B O C)+\operatorname{Area}(\triangle A O B)$
$\Rightarrow \operatorname{Area}(\triangle A B D)=\operatorname{Area}(\triangle A B C)$
But $\triangle A B D$ and $\triangle A B C$ are on the same base AB .
there fore $\triangle A B D$ and $\triangle A B C$ will have equal corresponding altitudes
and therefore $\triangle A B D$ and $\triangle A B C$ will lie between the same parallels

$$
\Rightarrow A B \| D C
$$

t́tuerefore $A B C D$ is a trapezium. (becuuseA quadrilateral is a trapezium if exactily one pair of opposite sides is paraiiei)
Q.16. In the given figure, $\operatorname{Area}(\Delta D R C)=\operatorname{Area}(\triangle D P C)$ and Area $(\Delta B D P)=$ Area $(\Delta A R C)$. Show that both the quadrilaterals $A B C D$ and $D C P R$ are trapeziums.

Solution:

Given: $\operatorname{Area}(\Delta D R C)=\operatorname{Area}(\triangle D P C)$ and $\operatorname{Area}(\triangle B D P)=\operatorname{Area}(\triangle A R C)$
To Prove: both the quadrilaterals $A B C D$ and $D C P R$ are trapeziums.
Proof: $\operatorname{Area}(\triangle D R C)=\operatorname{Area}(\triangle D P C)$ (given)(1)
But $\triangle D R C$ and $\triangle D P C$ are on the same base DC.
there fore $\triangle D R C$ and $\triangle D P C$ will have equal corresponding altitudes.
And therefore $\triangle D R C$ and $\triangle D P C$ will lie between the same parallels.
therefore $\mathrm{DC} \| \mathrm{RP}$ (becauseA quadrilateral is a trapezium if exactly one pair of opposite sides is parallel.)
there fore DCPR is a trapezium.

$$
\begin{aligned}
& \text { Again, } \begin{array}{l}
\text { Area }(\triangle B D P)=\operatorname{Area}(\triangle A R C) \\
\quad \Rightarrow \operatorname{Area}(\triangle B D C)+\operatorname{Area}(\triangle D P C)=\operatorname{Area}(\triangle A D C)+\operatorname{Area}(\triangle D R C) \\
\quad \Rightarrow \operatorname{Area}(\triangle B D C)=\operatorname{Area}(\triangle A D C)
\end{array} \text { using(1))}
\end{aligned}
$$

But $\triangle B D C$ and $\triangle A D C$ are on the same base DC.
there fore $\triangle B D C$ and $\triangle A D C$ will have equal corresponding altitudes.
And $\triangle B D C$ and $\triangle A D C$ will lie between the same parallels.
there fore $A B \| D C$
$\Rightarrow A B C D$ Disatrapezium. (because A quadrilateral is trapezium if exactly one pair of opposite sides is parallel.)
Q.17.From the following figures, find out which figures lie between the same parallels and same base. If the case is found, then write the common base and two parallels.

D

(v)

n

Solution:

(I)The figures (quadrilateral APCD and quadrilateral $A B C D$), and (quadrilateral $P B C D$ and quadrilateral $A B C D$), lie between the same parallels $D C$ and $A B$ and lie on the same base $D C$.
(II)The figures ($\triangle T R Q$ and parallelogram SRQP), (quads TPQR and parallelogram SRQP), (quad STQR and SRQP), lie on the same base $R Q$ and between the same parallels $R Q$ and $S P$.
(III) Quads $A P C D$ and $A B Q D$ lie on the same base $A D$, and between the same parallels $A D$ and $B Q$.

