NCERT SOLUTIONS CLASS-IX MATHS CHAPTER-8 QUADRILATERALS

Q1. The angles of quadrilateral are in the ratio 3:5:9:13. Find the angles of the quadrilateral.

Solution:

Let the common ratio between the angles be x. We know that the 'Sum of the interior angles of the quadrilateral' = 360° Now, $3x + 5x + 9x + 13x = 360^{\circ}$

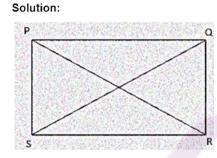
 $\Rightarrow 30x = 360^{\circ}$

 $\Rightarrow x = 12^{\circ}$

Therefore the Angles of the quadrilateral are: $3x=3 imes12=36^\circ$

 $5x = 5 \times 12 = 60^{\circ} \ 9x = 9 \times 12 = 108^{\circ} \ 13x = 13 \times 12 = 156^{\circ}$

Q2. If the diagonals of a parallelogram are equal, then show that it is a rectangle.



Given, PQ = RS To show,

PQRS is a rectangle we have to prove that one of its interior angle is right angled. **Proof,** In $\triangle PQR$ and $\triangle QPS$, QR = QP (Common side) PR = PS (Opposite sides of a parallelogram are equal) PR = QS (Given)

Therefore, $riangle PQR\cong riangle QPS$ by SSS congruence condition.

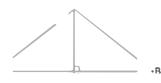
 $\angle P = \angle Q$ (by CPCT)

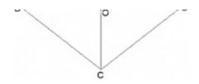
 $\angle P + \angle Q = 180^{\circ}$ (Sum of the angles on the same side of the transversal) $\Rightarrow 2\angle P = 180^{\circ}$ $\Rightarrow \angle P = 90^{\circ}$

Thus PQRS is a rectangle.

Q3. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Solution:





Let ABCD be a quadrilateral whose diagonals bisect each other at right angles.

Given,

OA = OC, OB = OD and $\angle AOB = \angle BOC = \angle OCD = \angle ODA = 90^{\circ}$

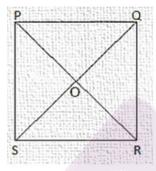
To show,

ABCD is parallelogram and AB = BC = CD = DA **Proof,** In $\triangle AOB$ and $\triangle COB$, OA = OC (Given) $\angle AOB = \angle COB$ (Opposite sides of a parallelogram are equal) OB = BO (Common) Therefore, $\triangle AOB \cong bigtriangleupCOB$ (by SAS congruence condition). Thus, AB = BC (by CPCT-Corresponding parts of Congruent) Similarly we can prove, AB = BC = CD = DAOpposites sides of a quadrilateral are equal hence ABCD is a parallelogram.

Thus, ABCD is rhombus as it is a parallelogram whose diagonals intersect at right angle.

Q4. Show that the diagonals of a square are equal and bisect each other at right angles.

Solution:



Let PQRS be a square and its diagonals PR and QS intersect each other at O. To show, $PR = QS, PO = OR \ and \ \angle POQ = 90^{\circ}$

Proof,

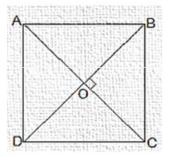
$$\begin{split} &\ln \bigtriangleup PQR \; and \; \bigtriangleup QRS, \\ &QR = QP \; (\texttt{Common}) \\ &\angle PQR = \angle QPS = 90^{\circ} \\ &PR = PS \; (\texttt{Given}) \\ &\texttt{Therefore}, \; \bigtriangleup PQR \cong \bigtriangleup QRS \; \texttt{by SAS congruence condition.} \\ &\texttt{Thus}, \; PR = PS \; (\texttt{by CPCT}). \end{split}$$

Therefore, diagonals are equal. Now, In $\triangle POQ$ and $\triangle ROS$, $\angle QPO = \angle SRO$ (Alternate interior angles) $\angle POQ = \angle ROS$ (Vertically opposite) PQ = RS (Given) Therefore, $\triangle AOB \cong \triangle COD$ (by AAS congruence condition). Thus, PO = RO by CPCT. (Diagonal bisect each other.) Now, In $\triangle POO$ and $\triangle ROO$ OQ = QO (Given) PO = RO (diagonals are bisected) PQ = RQ (Sides of the square) Therefore, $\triangle POQ \cong \triangle ROQ$ by SSS congruence condition. also, $\angle POQ = \angle ROQ$

 $\angle POQ + \angle ROQ = 180^{\circ}$ (Linear pair) Thus, $\angle POQ = \angle ROQ = 90^{\circ}$ (Diagonals bisect each other at right angles)

Q5. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Solution:



Given,

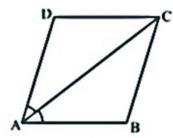
Let ABCD be a quadrilateral in which diagonals AC and BD bisect each other at right angle at O. To prove, Quadrilateral ABCD is a square.

Proof,

In $\triangle AOB$ and $\triangle COD$, AO = CO (Diagonals bisect each other) $\angle AOB = \angle COD$ (Vertically opposite) OB = OD (Diagonals bisect each other) Therefore, $\triangle AOB \cong \triangle COD$ by SAS congruence condition. Thus, AB = CD by CPCT. (i) also, $\angle OAB = \angle OCD$ (Alternate interior angles) $\Rightarrow \Rightarrow AB \parallel CD$

Now,

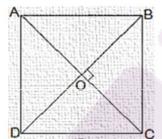
Q6. Diagonal AC of a parallelogram ABCD bisects $\angle A$. Show that (i) it bisects $\angle C$ also, (ii) ABCD is a rhombus. Solution:



(i)In $\triangle ADC$ and $\triangle CBA$, AD = CB (Opposite sides of a parallelogram) DC = BA (Opposite sides of a parallelogram) AC = CA (Common) Therefore, $\triangle ADC \cong \triangle CBA$ by SSS congruence condition. Thus, $\angle ACD = \angle CAB$ (by CPCT) and $\angle CAB = \angle CAD$ (Given) $\Rightarrow \angle ACD = \angle BCA$ Thus, AC bisects $\angle C$ also.

(ii) $\angle ACD = \angle CAD$ (Proved) $\Rightarrow AD = CD$ (Opposite sides of equal angles of a triangle are equal) Also, AB = BC = CD = DA (Opposite sides of a parallelogram) Thus, ABCD is a rhombus.

Q7. ABCD is a rhombus. Show that diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$. Solution:

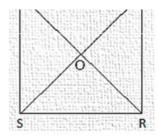


Let ABCD is a rhombus and AC and BD are its diagonals. Proof, AD = CD (Sides of a rhombus) $\angle DAC = \angle DCA$ (Angles opposite of equal sides of a triangle are equal.) also, $AB \parallel CD$ $\Rightarrow \angle DAC = \angle BCA$ (Alternate interior angles) $\Rightarrow \angle DCA = \angle BCA$ Therefore, AC bisect $\angle C$. Similarly, we can prove that diagonal AC bisect $\angle A$.

Also, by preceding above method we can prove that diagonal BD bisect $\angle B$ as well as $\angle D$.

Q8. PQRS is a rectangle in which diagonal PR bisects $\angle P$ as well as $\angle R$. Show that: (i) PQRS is a square (ii) diagonal QS bisects $\angle Q$ as well as $\angle S$.

Solution:



(i) $\angle SPR = \angle SRP$ (*PR* bisects $\angle P$ as well as $\angle R$) $\Rightarrow PS = RS$ (Sides opposite to equal angles of a triangle are equal) also, RS = PQ (Opposite sides of a rectangle) Therefore, PQ = QR = RS = SPThus, PQRS is a square.

(ii) In $\triangle QRS$, QR = RS $\Rightarrow \angle RSQ = \angle RQS$ (Angles opposite to equal sides are equal) also, $\angle RSQ = \angle PQS$ (Alternate interior angles) $\Rightarrow \angle RQS = \angle PQS$ Thus, QS bisects $\angle Q$. Now, $\angle RQS = \angle PSQ$ $\Rightarrow \angle RSQ = \angle PSQ$ Thus, BD bisects $\angle D$

Q9. In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ. Show that: (i) $\triangle APD \cong \triangle CQB$ (ii) AP = CQ(iii) $\triangle AQB \cong \triangle CPD$ (iv) AQ = CP(v) APCQ is a parallelogram

Solution:

(i) In $\triangle APD$ and $\triangle CQB$, DP = BQ (Given) $\angle ADP = \angle CBQ$ (Alternate interior angles) AD = BC (Opposite sides of a ||gm) Thus, $\triangle APD \cong \triangle CQB$ (by SAS congruence condition).

(ii) AP = CQ by CPCT as $\triangle APD \cong \triangle CQB$.

(iii) In $\triangle AQB \ and \ \triangle CPD$, BQ = DP (Given) $\angle ABQ = \angle CDP$ (Alternate interior angles) AB = BC = CD (Opposite sides of a parallelogram) Thus, $\triangle AQB \cong \triangle CPD$ (by SAS congruence condition).

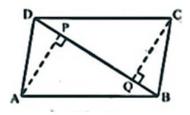
(iv) AQ = CP by CPCT as $riangle AQB \cong riangle CPD$.

(v) From (ii) and (iv), it is clear that APCQ has equal opposite sides also it has equal opposite angles. Thus, APCQ is a parallelogram.

10. ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Fig. 8.21). Show that (i) $\triangle APB \cong \triangle CQD$

(ii) AP = CQ

Solution:

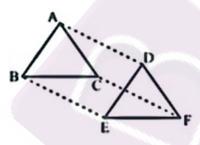


(i) In $\triangle APB$ and $\triangle CQD$, $\angle ABP = \angle CDQ$ (Alternate interior angles) $\angle APB = \angle CQD$ (equal to right angles as AP and CQ are perpendiculars) AB = CD (ABCD is a parallelogram) Thus, $\triangle APB \cong \triangle CQD$ (by AAS congruence condition).

(ii) AP = CQ by CPCT as $\triangle APB \cong \triangle CQD$.

Q11. In $\triangle ABC$ and $\triangle DEF$, AB = DE, $AB \parallel DE$, BC = EF and $BC \parallel EF$. Vertices A, B and C are joined to vertices D, E and F respectively. Show that (i) quadrilateral ABED is a parallelogram (ii) quadrilateral BEFC is a parallelogram (iii) $AD \parallel CF$ and AD = CF(iv) quadrilateral ACFD is a parallelogram (v) AC = DF

(vi) $\triangle ABC \cong \triangle DEF$ Solution:



(i) AB = DE and $AB \parallel DE$ (Given)

Thus, quadrilateral ABED is a parallelogram because two opposite sides of a quadrilateral are equal and parallel to each other.

(ii) Again BC = EF and $BC \parallel EF$.

Thus, quadrilateral BEFC is a parallelogram.

(iii) Since ABED and BEFC are parallelograms.

 \Rightarrow $AD = BE \ and \ BE = CF$ (Opposite sides of a parallelogram are equal)

Thus, AD = CF.

Also, $AD \parallel BE ~ and ~ BE \parallel CF$ (Opposite sides of a parallelogram are parallel)

Thus, $AD \parallel CF$.

(iv) AD and CF are opposite sides of quadrilateral ACFD which are equal and parallel to each other. Thus, it is a parallelogram. (v) $AC \parallel DF$ and AC = DF because ACFD is a parallelogram.

(vi) $\triangle ABC$ and $\triangle DEF$,

AB = DE (Given)

BC = EF (Given)

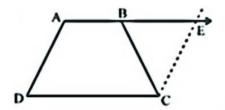
AC = DF (Opposite sides of a parallelogram)

Thus, $riangle ABC\cong riangle DEF$ (by SSS congruence condition).

Q12. ABCD is a trapezium in which $AB \parallel CD$ and AD = BC .Show that (i) $\angle A = \angle B$

(ii) $\angle C = \angle D$ (iii) $\triangle ABC \cong \triangle BAD$ (iv) diagonal AC = diagonal BD

[Hint : Extend AB and draw a line through C parallel to DA intersecting AB produced at E.] Solution:



Construction: Draw a line through C parallel to DA intersecting AB produced at E. (i) CE = AD (Opposite sides of a parallelogram) AD = BC (Given) Therefor, BC = CE $\Rightarrow \angle CBE = \angle CEB$ also, $\angle A + \angle CBE = 180^{\circ}$ (Angles on the same side of transversal and $\angle CBE = \angle CEB$) $\angle B + \angle CBE = 180^{\circ}$ (Linear pair) $\Rightarrow \angle A = \angle B$

(ii) $\angle A + \angle D = \angle B + \angle C = 180^{\circ}$ (Angles on the same side of transversal) $\Rightarrow \angle A + \angle D = \angle A + \angle C$ (as, $\angle A = \angle B$)

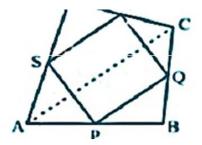
 $\Rightarrow \angle D = \angle C$

(iii) In $\triangle ABC$ and $\triangle BAD$, AB = AB (Common) $\angle DBA = \angle CBA$ AD = BC (Given) Thus, $\triangle ABC \cong \triangle BAD$ (by SAS congruence condition).

(iv) Diagonal AC = diagonal BD (by CPCT as $\triangle ABC \cong \triangle BAD$.)

Exercise 2:

Q1. ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA. AC is a diagonal. Show that : (i) $SR \parallel AC$ and $SR = \frac{1}{2}AC$ (ii) PQ = SR(iii) PQRS is a parallelogram.



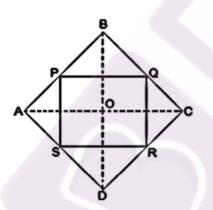
Solution:

(i) In $\triangle DAC$, R is the mid point of DC and S is the mid point of DA. Thus by mid point theorem, $SR \parallel AC$ and $SR = \frac{1}{2}AC$

(ii) In $\triangle BAC$, P is the mid point of AB and Q is the mid point of BC. Thus by mid point theorem, $PQ \parallel AC$ and $PQ = \frac{1}{2}AC$ also, $SR = \frac{1}{2}AC$ Thus, PQ = SR

(iii) $SR \parallel AC$ - from (i) and, $PQ \parallel AC$ - from (ii) $\Rightarrow SR \parallel PQ$ - from (i) and (ii) also, PQ = SR Thus, PQRS is a parallelogram.

Q2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle. Solution:



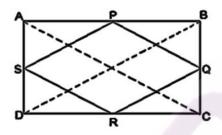
Given,

ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. **To Prove,** PQRS is a rectangle. **Construction,** Join AC and BD

Proof,

 $\angle RCQ = \angle PAS$ (Opposite angles of the rhombus) CQ = AS (Halves of the opposite sides of the rhombus) Thus, $riangle QCR \cong riangle SAP$ (by SAS congruence condition). RQ = SP (by CPCT)(ii) Now, In $\triangle CBD$, R and Q are the mid points of CD and BC respectively. $\Rightarrow QR \parallel BD$ also, P and S are the mid points of AD and AB respectively. $\Rightarrow PS \parallel BD$ $\Rightarrow QR \parallel PS$ Thus, PQRS is a parallelogram. also, $\angle PQR = 90^{\circ}$ Now, In PQRS. RS = PQ and RQ = SP from (i) and (ii) $\angle Q = 90^{\circ}$ Thus, PQRS is a rectangle.

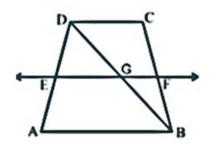
Q3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.



Solution:

Given, ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Construction, AC and BD are joined. To Prove, PQRS is a rhombus. Proof, $\ln \triangle ABC$ P and Q are the mid-points of AB and BC respectively Thus, $PQ \parallel AC$ and $PQ = \frac{1}{2}AC$ (Mid point theorem)(i) $\ln \triangle ADC$, $SR \parallel AC$ and $SR = \frac{1}{2}AC$ (Mid point theorem)(ii) So, $PQ \parallel SR$ and PQ = SRAs in quadrilateral PQRS one pair of opposite sides is equal and parallel to each other, so, it is a parallelogram. $PS \parallel QR$ and PS = QR (Opposite sides of parallelogram)(iii) Now, In $\triangle BCD$, Q and R are mid points of side BC and CD respectively. Thus, $QR \parallel BD$ and $QR = \frac{1}{2}BD$ (Mid point theorem)(iv) AC = BD (Diagonals of a rectangle are equal) (v) From equations (i), (ii), (iii), (iv) and (v), PQ = QR = SR = PSSo, PQRS is a rhombus.

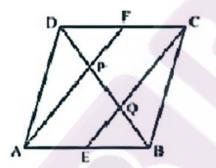
Q4. ABCD is a trapezium in which $AB \parallel DC$, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F. Show that F is the mid-point of BC.



Solution:

Given, ABCD is a trapezium in which $AB \parallel DC$, BD is a diagonal and E is the mid-point of AD. To prove, F is the mid-point of BC. Proof, BD intersected EF at G. In $\triangle BAD$, E is the mid point of AD and also $EG \parallel AB$. Thus, G is the mid point of BD (Converse of mid point theorem) Now, In $\triangle BDC$, G is the mid point of BD and also $GF \parallel AB \parallel DC$. Thus, F is the mid point of BC (Converse of mid point theorem)

Q5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively. Show that the line segments AF and EC trisect the diagonal BD.



Solution:

Given ABCD is a parallelogram. E and F are the mid-points of sides AB and CD respectively. To show, AF and EC trisect the diagonal BD. Proof,

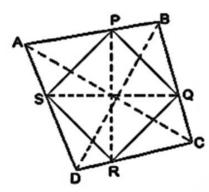
ABCD is a parallelogram Therefore, $AB \parallel CD$

also, $AE \parallel FC$

Now, AB = CD (Opposite sides of parallelogram ABCD) $\Rightarrow \frac{1}{2}AB = \frac{1}{2}CD$ $\Rightarrow AE = FC$ (E and F are midpoints of side AB and CD) AECF is a parallelogram (AE and CF are parallel and equal to each other) $AF \parallel EC$ (Opposite sides of a parallelogram) Now, In $\land DQC$. F is mid point of side DC and $FP \parallel CQ$ (as $AF \parallel EC$). P is the mid-point of DQ (Converse of mid-point theorem) $\Rightarrow DP = PQ$ (i) Similarly, In $\triangle APB$, E is mid point of side AB and $EQ \parallel AP$ (as $AF \parallel EC$). Q is the mid-point of PB (Converse of mid-point theorem) $\Rightarrow PQ = QB$ (ii) From equations (i) and (i), DP = PQ = BQ Hence, the line segments AF and EC trisect the diagonal BD.

Q6. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Solution:

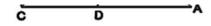


Let ABCD be a quadrilateral and P, Q, R and S are the mid points of AB, BC, CD and DA respectively.

Now, In $\triangle ACD$, R and S are the mid points of CD and DA respectively. Thus, $SR \parallel AC$. Similarly we can show that, $PQ \parallel AC$ $PS \parallel BD$ $QR \parallel BD$ Thus, PQRS is parallelogram. PR and QS are the diagonals of the parallelogram PQRS. So, they will bisect each other.

Q7. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that

(i) D is the mid-point of AC (ii) $MD \perp AC$ (iii) $CM = MA = \frac{1}{2}AB$



Solution:

(i) In $\triangle ACB$, M is the mid point of AB and $MD \parallel BC$ Thus, D is the mid point of AC (Converse of mid point theorem)

(ii) $\angle ACB = \angle ADM$ (Corresponding angles) also, $\angle ACB = 90^\circ$ Thus, $\angle ADM = 90^\circ$ and $MD \perp AC$

(iii) In $\triangle AMD$ and $\triangle CMD$, AD = CD (D is the midpoint of side AC) $\angle ADM = \angle CDM$ (Each 90°) DM = DM (common) Thus, $\triangle AMD \cong \triangle CMD$ (by SAS congruence condition). AM = CM (by CPCT) also, $AM = \frac{1}{2}AB$ (as M is mid point of AB) Hence, $CM = AM = \frac{1}{2}AB$.