Class 8: Triangles (Lecture Notes I)

Triangle: We just studied polygons. Triangle is a polygon with three sides. So, we could define a triangle as a plane closed figure bounded by three line segments.

A triangle is a polygon with three edges and three vertices. It is one of the most basic shapes in geometry. A triangle with vertices A, B, and C is denoted by $\triangle \mathrm{ABC}$.

Kinds of Triangles

1. This is a classification of triangles based on the length of the sides

| Scalene Triangle | A triangle in which all three sides are
 of different lengths is called Scalene
 Triangle.
 In this type of triangle:
 $\angle \mathrm{A} \neq \angle \mathrm{B} \neq \angle \mathrm{C}$ |
| :--- | :--- | :--- |
| Isosceles Triangle | A triangle in which two sides are of
 the same length is called Isosceles
 Triangle |
| In this type of triangle: | |
| $\angle \mathrm{B}=\angle \mathrm{C}$ | |

Some of the diagrams have been adopted from https://en.wikipedia.org/wiki/Triangle

2. Classification of Triangles based on the angles

Acute-angled Triangle	A triangle in which all the three angles are more than 0° and less than 90° is called acute-angled triangle.
Right-angles Triangle	A triangle in which one of the angles is 90° is called right-angled triangle.
Obtuse-angled triangle	A triangle in which one of the angles is more than 90° but less than 180° is called obtuse-angled triangle.

Some of the diagrams have been adopted from https://en.wikipedia.org/wiki/Triangle

Terms related to a Triangle

Median	A line segment joining the vertex to the mid-point of the opposite side of a triangle is called median.
In this vertex A is meeting at point D (such that $\mathrm{BD}=\mathrm{DC}$) midpoint of BC	

Centroid	The point of intersection of three medians is called centroid.
Altitude	The perpendicular drawn from the vertex to the opposite side. Here AD is the altitude of the triangle AD and BC is the base.
The intersection of the three altitudes is called the Orthocenter of the triangle.	
Orthocenter	
Angle Bisector	Here A is the Orthocenter of the triangle. Here AD is bisecting $\angle \mathrm{BAC}$ into two equal $\angle \mathrm{BAD}$ and $\angle \mathrm{DAC}$ A line segment that bisects and called angle bisector.

Incentre and Incircle	The point of intersection of internal angle bisectors is called the Incentre. I is the Incentre of the triangle. Now if you draw a circle with the center I in such a way that it touches all the three sides of the triangle, then that is called Incircle.	The intersection of the angle 6 bisectors is the center of the incircle.
Perpendicular Bisector or Right Bisector	A line bisecting any side of the triangle and perpendicular to it is called perpendicular bisector of that side of the triangle. Here $B C$ is being bisected by $D E . B D=D C$ and $E D \perp B C$.	
Circumcenter and Circumcircle	The point of intersection of the perpendicular bisectors of the sides of the triangle is called Circumcenter. Here 0 is the circumcenter.	The circumcenter is the center of a circle passing through the three vertices of the triangle.
Exterior Angle and Interior Opposite Angles of a Triangle	$\angle A C D$ is the exterior angle and $\angle C B A$ and $\angle B A C$ are opposite interior angles of this exterior angle.	

Some of the diagrams have been adopted from https://en.wikipedia.org/wiki/Triangle

