CBSE Class 09 Mathematics
 Revision Notes
 CHAPTER - 2
 POLYNOMIALS

1. Polynomials in one Variable
2. Zeroes of a Polynomial
3. Remainder Theorem
4. Factorisation of Polynomials
5. Algebraic Identities

Constants : A symbol having a fixed numerical value is called a constant.
Variables : A symbol which may be assigned different numerical values is known as variable.

Algebraic expressions : A combination of constants and variables connected by some or all of the operations,,+- ,,$/$ is known as algebraic expression.

Terms : The several parts of an algebraic expression separated by '+' or '-' operations are called the terms of the expression.

Polynomials : An algebraic expression in which the variables involved have only nonnegative integral powers is called a polynomial.
(i) $5 x^{2}-4 x^{2}-6 x-3$ is a polynomial in variable x .
(ii) $5+8 x^{\frac{3}{2}}+4 x^{-2}$ is an expression but not a polynomial.

Polynomials are denoted by $\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$ etc.
Coefficients : In the polynomial $x^{3}+3 x^{2}+3 x+1$, coefficient of x^{3}, x^{2}, x are $1,3,3$ respectively and we also say that +1 is the constant term in it.

Degree of a polynomial in one variable: In case of a polynomial in one variable the highest power of the variable is called the degree of the polynomial.

A polynomial of degree n has n roots.
Classification of polynomials on the basis of degree.

degree	Polynomial	Example
(a) 1	Linear	$x+1,2 x+3$ etc.
(b) 2	Quadratic	$a x^{2}+b x+c$ etc.
(c) 3	Cubic	$x^{3}+3 x^{2}+1$ etc.
(d) 4	Biquadratic	$x^{4}-1$

Classification of polynomials on the basis of number of terms

No. of terms	Polynomial \& Examples.
(i) 1	Monomial $-5,3 x, \frac{1}{3} y$ etc.
(ii) 2	Binomial $-(3+6 x),(x-5 y)$ etc.
(iii) 3	Trinomial- $2 x^{2}+4 x+2$ etc.

Constant polynomial : A polynomial containing one term only, consisting a constant term is called a constant polynomial.The degree of non-zero constant polynomial is zero.

Zero polynomial : A polynomial consisting of one term, namely zero only is called a zero polynomial.

The degree of zero polynomial is not defined.
Zeroes of a polynomial : Let $p(x)$ be a polynomial. If $p(a)=0$, then we say that "a" is a zero of the polynomial of $p(x)$.

Remark : Finding the zeroes of polynomial $p(x)$ means solving the equation $p(x)=0$.
Remainder theorem : Let $f(x)$ be a polynomial of degree $n \geqslant 1$ and let a be any real number. When $\mathrm{f}(\mathrm{x})$ is divided by $(x-a)$ then the remainder is $\mathrm{f}(\mathrm{a})$

Factor theorem : Let $\mathrm{f}(\mathrm{x})$ be a polynomial of degree $\mathrm{n}>1$ and let a be any real number.
If $f(a)=0$ then, $(x-a)$ is factor of $f(x)$

If $f(x-a)$ is factor of $f(x)$ then $f(a)=0$
Factor : A polynomial $p(x)$ is called factor of $q(x)$ divides $q(x)$ exactly.
Factorization : To express a given polynomial as the product of polynomials each of degree less than that of the given polynomial such that no such a factor has a factor of lower degree, is called factorization.

Some algebraic identities useful in factorization:

(i) $(x+y)^{2}=(x)^{2}+2 \mathrm{xy}+(y)^{2}$
(ii) $(x-y)^{2}=(x)^{2}-2 \mathrm{xy}+(y)^{2}$
(iii) $x^{2}-y^{2}=(\mathrm{x}-\mathrm{y})(\mathrm{x}+\mathrm{y})$
(iv) $(\mathrm{x}+\mathrm{a})(\mathrm{x}+\mathrm{b})=(x)^{2}+(\mathrm{a}+\mathrm{b}) \mathrm{x}+\mathrm{ab}$
(v) $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 \mathrm{xy}+2 \mathrm{yz}+2 \mathrm{zx}$
(vi) $(x+y)^{3}=x^{3}+y^{3}+3 \mathrm{xy}(\mathrm{x}+\mathrm{y})$
(vii) $(x-y)^{3}=x^{3}-y^{3}-3 \mathrm{xy}(\mathrm{x}-\mathrm{y})$
(viii) $x^{3}+y^{3}+z^{3}-3 \mathrm{xyz}=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left(x^{2}+y^{2}+z^{2}-\mathrm{xy}-\mathrm{yz}-\mathrm{zx}\right)$
$x^{3}+y^{3}+z^{3}=3 x y z$ if $\mathrm{x}+\mathrm{y}+\mathrm{z}=0$
(ix) $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
(x) $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

