

CBSE Class 10 MATHEMATICS Revision Notes CHAPTER 8 INTRODUCTION TO TRIGONOMETRY

- Trigonometry literally means measurement of sides and angles of a triangle.
- **Positive and Negative angles**: Angles in anti-clockwise direction are taken as positive angles and angles in clockwise direction are taken as negative angles.
- Trigonometric Ratios of an acute angle of a right angled triangle:
- 1. In a right triangle ABC, right-angled at B,

2.
$$sin A = \frac{side \ opposite \ to \ angle \ A}{hypotenuse}$$

3. $cos A = \frac{side \ opposite \ to \ angle \ A}{hypotenuse}$
4. $tan \ A = \frac{side \ opposite \ to \ angle \ A}{side \ adjacent \ to \ angle \ A}}$
5. $cot \ A = \frac{Hypotenuse}{Side opposite \ to \ angle \ A}}{Side \ adjacent \ to \ angle \ A}}$
6. $sec \ A = \frac{Hypotenuse}{Side \ adjacent \ to \ angle \ A}}{Side \ adjacent \ to \ angle \ A}}$
6. $sec \ A = \frac{Hypotenuse}{Side \ adjacent \ to \ angle \ A}}{Side \ adjacent \ to \ angle \ A}}$
6. $sec \ A = \frac{Hypotenuse}{Side \ adjacent \ to \ angle \ A}}{Side \ adjacent \ to \ angle \ A}}$
6. $sec \ A = \frac{Hypotenuse}{Side \ adjacent \ to \ angle \ A}}{Side \ adjacent \ to \ angle \ A}}$

 $\cot A = rac{1}{ an A}$, $\cot A = rac{\cos A}{\sin A}$

- If one of the trigonometric ratios of an acute angle is known, the remaining trigonometric ratios of the angle can be easily determined.
- (a) Find the sides of the right triangle in terms of k.
- (b) Use Pythagoras Theorem and find the third side of the right triangle.

(c) Use definitions of t-ratios and substitute the values of sides.

(d) k is cancelled from numerator and denominator and the value of t-ratio is obtained.

• Trigonometric Ratios of some specified angles:

The values of trigonometric ratios for angles 0°, 30°, 45°, 60° and 90°.

Angle A	0 ⁰	30 ⁰	45 ⁰	60 ⁰	90 ⁰
sin A	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos A	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan A	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞
cot A	∞	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0
cosec A	∞	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
Sec A	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	∞

- The value of sin A or cos A never exceeds 1, whereas the value of sec A or cosec A is always greater than or equal to 1.
- Trigonometric Ratios of Complementary Angles:

 $sin(90^{\circ} - A) = cos A,$ $cos(90^{\circ} - A) = sinA;$ tan $(90^{\circ} - A) = cot A,$ $cot (90^{\circ} - A) = tan A;$

 $\sec (90^\circ - A) = \csc A$, $\csc (90^\circ - A) = \sec A$.

• Trigonometric Identities:

 $egin{aligned} \sin^2 \mathrm{A} + \cos^2 \mathrm{A} &= 1 \ & \mathrm{sec}^2 \mathrm{A} - \tan^2 \mathrm{A} &= 1 \ & \mathrm{for} \ 0^\circ \leq \mathrm{A} < 90^\circ, \ & \mathrm{cos} \ ec^2 \, \mathrm{A} - \mathrm{cot}^2 \mathrm{A} &= 1 \ & \mathrm{for} \ 0^\circ < \mathrm{A} \leq 90^\circ. \end{aligned}$