Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

Co-ordinate Geometry

Important Terms and Concepts

"If a pair of perpendicular lines XOX' and YOY' intersects at O , then these lines are called the co-ordinate axes". The axes divide the plane into four quadrants.
The plane containing the axes is called the Cartesian plane.
The lines XOX' and YOY' are usually drawn horizontally and vertically as shown in the figure, and are known as x -axis and y -axis respectively.
O , the point of intersection of the axes is called the origin.
Values of x are measured from O along the x -axis and are called abscissae. Along OX, x has positive values while $O X$ ', x has negative values.
Similarly, the values of y are measured from O along the y -axis and are called ordinate. Along OY, y has positive values while OY^{\prime}, y has negative values.

The ordered pair containing the abscissa and the ordinate of a point is called the coordinates of the point.

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper

Distance Formula:

To find the distance two points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$

From the figure
$\mathrm{AC}=\mathrm{x}_{2}-\mathrm{x}_{1}$
$B C=y_{2}-y_{1}$
\therefore In $\triangle \mathrm{ABC}$,
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}$ (By Pythagoras Theorem)
$=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$
$\therefore A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Section Formula:

To find the coordinates of a point which divides the line segment joining two given points in a given ratio (internally)

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ divide the join of $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ in the ratio $\mathrm{m}: \mathrm{n}$
$\therefore \mathrm{AC}=\mathrm{x}-\mathrm{x}_{1}, \mathrm{PD}=\mathrm{x}_{2}-\mathrm{x}$
\therefore From similarity property $\frac{A C}{P D}=\frac{m}{n} \Rightarrow \frac{x-x_{1}}{x_{2}-x}=\frac{m}{n}$
Now, Make x the subject of the formula, $\mathrm{nx}-\mathrm{nx}_{1}=\mathrm{mx}_{2}-\mathrm{mx}$

$$
\begin{aligned}
& \mathrm{mx}+\mathrm{nx}=\mathrm{mx}_{2}+\mathrm{nx}_{1} \\
& \mathrm{x}(\mathrm{~m}+\mathrm{n})=\mathrm{mx}_{2}+\mathrm{nx}_{1}
\end{aligned}
$$

$\therefore \mathrm{x}=\frac{m x_{2}+n x_{1}}{m+n}$

Similarly, we can show that
$\mathrm{y}=\frac{m y_{2}+n y_{1}}{m+n}$
Thus coordinate of P are $\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$

Mid-Point Formula:
If P is the mid-point of $A B$, then $m=n$,
\therefore The ratio becomes $1: 1$
$\therefore \mathrm{X}=\frac{m x_{2}+n x_{1}}{m+n}=\frac{x_{2}+x_{1}}{1+1}=\frac{x_{1}+x_{2}}{2}$
Similarly, we get $y=\frac{y_{1}+y_{2}}{2}$
Thus coordinates of point are $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Note:

When the point P divides the line joining AB in the ration m : n externally then
$P=\left(\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}\right)$

Centroid of a Triangle

Centroid is the point of intersection of three medians. It is the point of intersection of a median AG: GD is $2: 1$

To find the coordinates of the centroid of a triangle.
Let the coordinates of the vertices of $\Delta \mathrm{ABC}$, be $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$.
Let $\mathrm{G}(\mathrm{x}, \mathrm{y})$ be the centroid of the $\triangle \mathrm{ABC}$.
By applying the mid-point formula
$a=\frac{x_{1}+x_{2}}{2}$ and $b=\frac{y_{1}+y_{2}}{2}$

Again, by applying the section formula

$$
\begin{aligned}
& x=\frac{m x_{2}+n x_{1}}{m+n} \\
& =\frac{2(a)+1\left(x_{1}\right)}{2+1} \\
& =\frac{2\left(\frac{x_{2}+x_{3}}{2}\right)+x_{1}}{3} \\
& =\frac{x_{1}+x_{2}+x_{3}}{3} \\
& =\frac{2(b)+1\left(y_{1}\right)}{2+1} \\
& =\frac{2\left(\frac{y_{2}+y_{3}}{2}\right)+y_{1}}{3} \\
& =\frac{y_{1}+y_{2}+y_{3}}{3}
\end{aligned}
$$

\therefore Coordinates of the centroid are $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$

Area of the Triangle

To find the area of triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$.

Let $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ be the vertices of a triangle ABC
Area of $\triangle \mathrm{ABC}=$ Area of Trapezium ABML

+ Area of Trapezium ALNC
- Area of Trapezium BMNC
$=\frac{1}{2} M L(M B+L A)+\frac{1}{2}(L N)(L A+N C)$
$-\frac{1}{2}(M N)(M B+N C)$
$=\frac{1}{2}\left(x_{1}-x_{2}\right)\left(y_{2}+y_{1}\right)+\frac{1}{2}\left(x_{3}-x_{1}\right)\left(y_{1}+y_{3}\right)$
$-\frac{1}{2}\left(x_{3}-x_{2}\right)\left(y_{2}+y_{3}\right)$
$=\frac{1}{2}\left\{x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right\}$

Arrow Method:

It is to obtain the formula for the area of the triangle
$\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$
$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
Note:

1. If the points A, B and C we take in the anticlockwise direction, then the area will be positive. If the points we take in clockwise direction the area will be negative.
So we always take the absolute value of the area calculated.
Area of triangle
$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
2. If the area of a triangle is zero, then the three points are collinear.

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

