CBSE Class-10 Mathematics
 Revision Notes
 CHAPTER 01
 REAL NUMBERS

- Natural numbers: Counting numbers are called Natural numbers. These numbers are denoted by $\mathrm{N}=\{1,2,3$, ..\}
- Whole numbers: The collection of natural numbers along with 0 is the collection of Whole number and is denoted by W .
- Integers: The collection of natural numbers, their negatives along with the number zero are called Integers. This collection is denoted by Z.
- Rational number: The numbers, which are obtained by dividing two integers, are called Rational numbers. Division by zero is not defined.
- Coprime: If HCF of two numbers is 1 , then the two numbers area called relatively prime or coprime.

1. Euclid's division lemma :

For given positive integers 'a' and 'b' there exist unique whole numbers ' q ' and ' r ' satisfying the relation $\mathrm{a}=\mathrm{bq}+\mathrm{r}, 0 \leqslant \mathrm{r}<\mathrm{b}$.

Theorem: If a and b are non-zero integers, the least positive integer which is expressible as a linear combination of a and b is the HCF of a and b, i.e., if d is the HCF of a and b, then these exist integers x_{1} and y_{1}, such that $d=a x_{1}+b y_{1}$ and d is the smallest positive integer which is expressible in this form.

The HCF of a and b is denoted by $\operatorname{HCF}(a, b)$.

2. Euclid's division algorithms :

HCF of any two positive integers a and b . With $\mathrm{a}>\mathrm{b}$ is obtained as follows:
Step 1 : Apply Euclid's division lemma to a and b to find q and r such that
$\mathrm{a}=\mathrm{bq}+\mathrm{r}, 0 \leqslant \mathrm{r}<\mathrm{b}$.
b = Divisor
$q=$ Quotient
$r=$ Remainder

Step II: If r $=0, \operatorname{HCF}(\mathrm{a}, \mathrm{b})=\mathrm{b}$ if $r \neq 0$, apply Euclid's lemma to b and r .

Step III: Continue the process till the remainder is zero. The divisor at this stage will be the required HCF.

3. The Fundamental Theorem of Arithmetic:

Every composite number can be expressed (factorized) as a product of primes and this factorization is unique, apart from the order in which the prime factors occur.
$E x: \quad 24=2 \times 2 \times 2 \times 3=3 \times 2 \times 2 \times 2$
4. Let $x=\frac{p}{q}, q \neq 0$ to be a rational number, such that the prime factorization of ' q ' is of the form $2 m+5 n$, where m, n are non-negative integers. Then x has a decimal expansion which is terminating.
5. Let $x=\frac{p}{q}, \quad q \neq 0$ be a rational number, such that the prime factorizationof q is not of the form $2 m+5 n$, where m, n are non-negative integers. Then x has a decimal expansion which is non-terminating repeating.
6. \sqrt{p} is irrational, which p is a prime. A number is called irrational if it cannot be written in the form $\frac{P}{q}$ where p and q are integers and $\mathrm{q} \neq 0$.
8. If a and b are two positive integers, then $\operatorname{HCF}(a, b) \times \operatorname{LCM}(a, b)=a x b$
i.e., (HCF x LCM) of two intergers = Product of intergers.
9. A rational number which when expressed in the lowest term has factors 2 or 5 in the denominator can be written as terminating decimal otherwise a non-terminating recurring decimal. In other words, if the rational number $\frac{a}{b}$ is, such that the prime factorization of b is of form $2^{m} .5^{n}$, where m and n are natural numbers, then $\frac{a}{b}$ has a terminating decimal expansion.
10. We conclude that every rational number can be represented in the form of terminating or non-terminating recurring decimal.

