

Study Material Downloaded from Vedantu

About **Vedantu**

Vedantu is India's largest **LIVE online teaching platform** with best teachers from across the country.

Vedantu offers Live Interactive Classes for **JEE**, **NEET**, KVPY, NTSE, Olympiads, **CBSE**, **ICSE**, IGCSE, IB & State Boards for Students Studying in **6-12th Grades** and Droppers.

RE Webinars by Expert Teachers

FREE LIVE ONLINE

Awesome Master Teachers

Anand Prakash B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna B.Tech, IIT Bombay Co-Founder, Vedantu

My mentor is approachable and **guides me** in my future aspirations as well.

Student **- Ayushi**

My son loves the sessions and **I can** already see the change. Parent - Sreelatha

95% Students of Regular Tuitions on Vedantu scored above **90%** in exams!

Vedantii FREE MASTER CLASS SERIES

- For Grades 6-12th targeting JEE, CBSE, ICSE & much more
- Free 60 Minutes Live Interactive classes everyday
- Cearn from the Master Teachers India's best

Register for **FREE**

Limited Seats!

Download Vedantu's App & Get

DOWNLOAD THE APP

EXERCISE NO: 15.1

Question 1:

In a cricket math, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.

Solution 1:

Number of times the batswoman hits a boundary = 6

Total number of balls played = 30

: Number of times that the batswoman does not hit a boundary = 30 - 6 = 24

Number of times when she does not hit boundary

P (she does not hit a boundary) = Total number of balls played

$$=\frac{24}{30}=\frac{4}{5}$$

Question 2:

1500 families with 2 children were selected randomly, and the following data were recorded:

Number of girls in a family	2	1	0	
Number of families	475	814	211	

Compute the probability of a family, chosen at random, having

- (i) 2 girls
- (ii) 1 girl
- (iii) No girl

Also check whether the sum of these probabilities is 1.

Solution 2:

Total number of families = 475 + 814 + 211 = 1500

(i) Number of families having 2 girls = 475

 $P_{1} \text{ (a randomly chosen family has 2 girls)} = \frac{\text{Number of families having 2 girls}}{\text{Total number of families}}$ $= \frac{475}{1500} = \frac{19}{60}$

(ii) Number of families having 1 girl = 814

NCERT Solutions for Class 6 to 12 (Math & Science) Revision Notes for Class 6 to 12 (Math & Science) **RD Sharma Solutions for Class 6 to 12 Mathematics** RS Aggarwal Solutions for Class 6, 7 & 10 Mathematics Important Questions for Class 6 to 12 (Math & Science) CBSE Sample Papers for Class 9, 10 & 12 (Math & Science) Important Formula for Class 6 to 12 Math **CBSE Syllabus for Class 6 to 12** Lakhmir Singh Solutions for Class 9 & 10 **Previous Year Question Paper CBSE Class 12 Previous Year Question Paper CBSE Class 10 Previous Year Question Paper** JEE Main & Advanced Question Paper **NEET Previous Year Question Paper**

> Vedantu Innovations Pvt. Ltd. Score high with a personal teacher, Learn LIVE Online! www.vedantu.com

P₂ (a randomly chosen family has 1 girl) = $\frac{\text{Number of families having 1 girl}}{\text{Total number of families}}$ $= \frac{814}{1500} = \frac{407}{750}$

(iii) Number of families having no girl = 211

P₃ (a randomly chosen family has no girl) = $\frac{\text{Number of families having no girl}}{\text{Total number of families}}$ $= \frac{211}{1500}$ Sum of all these probabilities = $\frac{19}{60} + \frac{407}{750} + \frac{211}{1500}$ $= \frac{475 + 814 + 211}{1500}$ $= \frac{1500}{1500} = 1$

Therefore, the sum of all these probabilities is 1.

Question 3:

In a particular section of Class IX, 40 students were asked about the months of their birth and the following graph was prepared for the data so obtained:

Find the probability that a student of the class was born in August.

Solution 3:

Number of students born in the month of August = 6 Total number of students = 40

P (Students born in the month of August) =
$$\frac{\text{Number of students born in August}}{\text{Total number of students}}$$
$$= \frac{6}{40} = \frac{3}{20}$$

Question 4:

Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:

Outcome	3 heads	2 heads	1 head	No head
Frequency	23	72	77	28

If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up.

Solution 4:

Number of times 2 heads come up = 72

Total number of times the coins were tossed = 200

P (2 heads will come up) =		Numbe	er of times 2 heads come up
		l numbe	er of times the coins were tossed
· · · · · · · · · · · · · · · · · · ·	72	9	
=-2	200 =	$\overline{25}$	

Question 5:

An organization selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:

	Vehicles per family			
Monthly income (in Rs.)	0	1	2	Above 2
Less than 7000	10	16 0	25	0
7000 - 10000	0	305	27	2
10000 - 13000	1	535	29	1
13000 - 16000	2	469	59	25
16000 or more	1	579	82	88

Suppose a family is chosen, find the probability that the family chosen is

- (i) earning Rs. 10000–13000 per month and owning exactly 2 vehicles.
- (ii) earning Rs. 16000 or more per month and owning exactly 1 vehicle.
- (iii) earning less than Rs. 7000 per month and does not own any vehicle.
- (iv) earning Rs. 13000–16000 per month and owning more than 2 vehicles.
- (v) owning not more than 1 vehicle.

Solution 5:

Number of total families surveyed = 10 + 160 + 25 + 0 + 0 + 305 + 27 + 2 + 1 + 535 + 29 + 1 + 2 + 469 + 59 + 25 + 1 + 579 + 82 + 88 = 2400

(i) Number of families earning Rs. 10000–13000 per month and owning exactly 2 vehicles = 29 Hence, required probability, $P = \frac{29}{2400}$

(ii) Number of families earning Rs. 16000 or more per month and owning exactly 1 vehicle = 579 Hence, required probability, $P = \frac{579}{2400}$

(iii) Number of families earning less than Rs. 7000 per month and does not own any vehicle = 10 Hence, required probability, $P = \frac{10}{2400} = \frac{1}{240}$

(iv) Number of families earning Rs. 13000-16000 per month and owning more than 2 vehicles = 25

Hence, required probability,
$$P = \frac{25}{2400} = \frac{1}{96}$$

(v) Number of families owning not more than 1 vehicle = 10 + 160 + 0 + 305 + 1 + 535 + 2 + 469 + 1 + 579 = 2062

Hence, required probability, $P = \frac{2062}{2400} = \frac{1031}{1200}$

Question 6:

A teacher wanted to analyse the performance of two sections of students in a mathematics test of 100 marks. Looking at their performances, she found that a few students got under 20 marks and a few got 70 marks or above. So she decided to group them into intervals of varying sizes as follows: 0–20, 20–30, ..., 60–70, 70–100. Then she formed the following table:

Number of student
7
10
10
20
20
15
8
90

- (i) Find the probability that a student obtained less than 20% in the mathematics test.
- (ii) Find the probability that a student obtained marks 60 or above.

Solution 6:

Total number of students = 90

(i) Number of students getting less than 20 % marks in the test = 7

Hence, required probability, $P = \frac{7}{90}$

(ii) Number of students obtaining marks 60 or above = 15 + 8 = 23

Hence, required probability, $P = \frac{23}{25}$

Ouestion 7:

To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table.

Opinion	Number of students
like	135
dislike	65

Find the probability that a student chosen at random

(i) likes statistics

(ii) does not like it

Solution 7:

Total number of students = 135 + 65 = 200

Number of students liking statistics = 135 (i)

P (students liking statistics) = $\frac{135}{200} = \frac{27}{40}$

(ii) Number of students who do not like statistics = 65

P (students not liking statistics) = $\frac{65}{200} = \frac{13}{40}$

Question 8:

The distance (in km) of 40 engineers from their residence to their place of work were found as follows:

5	3	10	20	25	11	13	7	12	31
19	10	12	17	18	11	32	17	16	2
7	9	7	8	3	5	12	15	18	3
12	14	2	9	6	15	15	7	6	12

What is the empirical probability that an engineer lives:

- (i) less than 7 km from her place of work?
- (ii) more than or equal to 7 km from her place of work?
- within 1/2 km from her place of work? (iii)

Solution 8:

Total number of engineers = 40(i)

Number of engineers living less than 7 km from their place of work = 9

Hence, required probability that an engineer lives less than 7 km from her place of work, $P = \frac{9}{40}$

- (ii) Number of engineers living more than or equal to 7 km from their place of work = 40 9 = 31
- Hence, required probability that an engineer lives more than or equal to 7 km from her place of work, $P = \frac{31}{40}$
 - (iii) Number of engineers living within $\frac{1}{2}$ km from her place of work = 0

Hence, required probability that an engineer lives within $\frac{1}{2}$ km from her place of work, P = 0

Question 11:

Eleven bags of wheat flour, each marked 5 kg, actually contained the following weights of flour (in kg): 4.97, 5.05, 5.08, 5.03, 5.00, 5.06, 5.08, 4.98, 5.04, 5.07, 5.00 Find the probability that any of these bags chosen at random contains more than 5 kg of flour.

Solution 11 :

Number of total bags = 11Number of bags containing more than 5 kg of flour = 7

Hence, required probability, $P = \frac{7}{11}$

Question 12:

The below frequency distribution table represents the concentration of sulphur dioxide in the air in parts per million of a certain city for 30 days. Using this table,

find the probability of the concentration of sulphur dioxide in the interval 0.12-0.16 on any of these days.

Concentration of SO ₂ (in ppm)	Number of days (frequenc <mark>y</mark>)
0.00 - 0.04	4
0.04 – 0.08	9
0.08 - 0.12	9
0.12 - 0.16	2
0.16 - 0.20	4
0.20 – 0.24	2
Total	30

Solution 12 :

Number days for which the concentration of sulphur dioxide was in the interval of 0.12-0.16 = 2

Total number of days = 30

Hence, required probability, $P = \frac{2}{30} = \frac{1}{15}$

Question 13:

The below frequency distribution table represents the blood groups of 30 students of a class. Use this table to determine the probability that a student of this class, selected at random, has blood group AB.

Blood group	Number of students
А	9
В	6
AB	3
0	12
Total	30

Solution13:

Number of students having blood group AB = 3Total number of students = 30

Hence, required probability, $P = \frac{3}{30} = \frac{1}{10}$

Thank YOU for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES FREE Webinars by Expert Teachers

Vedantii FREE MASTER CLASS SERIES

- ⊘ For Grades 6-12th targeting JEE, CBSE, ICSE & much more
- Series Free 60 Minutes Live Interactive classes everyday
- ⊘ Learn from the Master Teachers India's best

Register for **FREE**

Limited Seats!