Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

Question 1:

In a cricket math, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.

Solution 1:

Number of times the batswoman hits a boundary $=6$
Total number of balls played $=30$
\therefore Number of times that the batswoman does not hit a boundary $=30-6=24$
$\mathrm{P}($ she does not hit a boundary $)=\frac{\text { Number of times when she does not hit boundary }}{\text { Total number of balls played }}$

$$
=\frac{24}{30}=\frac{4}{5}
$$

Question 2:

1500 families with 2 children were selected randomly, and the following data were recorded:

Number of girls in a family	2	1	0
Number of families	475	814	211

Compute the probability of a family, chosen at random, having
(i) 2 girls
(ii) 1 girl
(iii) No girl

Also check whether the sum of these probabilities is 1 .

Solution 2:

Total number of families $=475+814+211=1500$
(i) Number of families having 2 girls $=475$
P_{1} (a randomly chosen family has 2 girls $)=\frac{\text { Number of families having } 2 \text { girls }}{\text { Total number of families }}$

$$
=\frac{475}{1500}=\frac{19}{60}
$$

(ii) Number of families having 1 girl $=814$

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper
$\mathrm{P}_{2}($ a randomly chosen family has 1 girl $)=\frac{\text { Number of families having } 1 \text { girl }}{\text { Total number of families }}$

$$
=\frac{814}{1500}=\frac{407}{750}
$$

(iii) Number of families having no girl $=211$
$P_{3}($ a randomly chosen family has no girl $)=\frac{\text { Number of families having no girl }}{\text { Total number of families }}$

$$
=\frac{211}{1500}
$$

Sum of all these probabilities $=\frac{19}{60}+\frac{407}{750}+\frac{211}{1500}$

$$
\begin{aligned}
& =\frac{475+814+211}{1500} \\
& =\frac{1500}{1500}=1
\end{aligned}
$$

Therefore, the sum of all these probabilities is 1 .

Question 3:

In a particular section of Class IX, 40 students were asked about the months of their birth and the following graph was prepared for the data so obtained:

Find the probability that a student of the class was born in August.

Solution 3:

Number of students born in the month of August $=6$
Total number of students $=40$
$P($ Students born in the month of August $)=\frac{\text { Number of students born in August }}{\text { Total number of students }}$

$$
=\frac{6}{40}=\frac{3}{20}
$$

Question 4:

Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:

Outcome	3 heads	2 heads	1 head	No head
Frequency	23	72	77	28

If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up.

Solution 4:

Number of times 2 heads come up $=72$
Total number of times the coins were tossed $=200$

$$
\begin{aligned}
P(2 \text { heads will come up }) & =\frac{\text { Number of times } 2 \text { heads come up }}{\text { Total number of times the coins were tossed }} \\
& =\frac{72}{200}=\frac{9}{25}
\end{aligned}
$$

Question 5:

An organization selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:

	Vehicles per family			
Monthly income (in Rs.)	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	Above 2
Less than 7000	10	160	25	0
$7000-10000$	0	305	27	2
$10000-13000$	1	535	29	1
$13000-16000$	2	469	59	25
16000 or more	$\mathbf{1}$	579	82	88

Suppose a family is chosen, find the probability that the family chosen is
(i) earning Rs. 10000-13000 per month and owning exactly 2 vehicles.
(ii) earning Rs. 16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than Rs. 7000 per month and does not own any vehicle.
(iv) earning Rs. 13000-16000 per month and owning more than 2 vehicles.
(v) owning not more than 1 vehicle.

Solution 5:

Number of total families surveyed $=10+160+25+0+0+305+27+2+1+535+29+1+2+469+59+$ $25+1+579+82+88=2400$
(i) Number of families earning Rs. 10000-13000 per month and owning exactly 2 vehicles $=29$ Hence, required probability, $\mathrm{P}=\frac{29}{2400}$
(ii) Number of families earning Rs. 16000 or more per month and owning exactly 1 vehicle $=579$ Hence, required probability, $\mathrm{P}=\frac{579}{2400}$
(iii) Number of families earning less than Rs. 7000 per month and does not own any vehicle $=10$ Hence, required probability, $\mathrm{P}=\frac{10}{2400}=\frac{1}{240}$
(iv) Number of families earning Rs. 13000-16000 per month and owning more than 2 vehicles $=25$ Hence, required probability, $\mathrm{P}=\frac{25}{2400}=\frac{1}{96}$
(v) Number of families owning not more than 1 vehicle $=10+160+0+305+1+535+2+469+1+$ $579=2062$
Hence, required probability, $\mathrm{P}=\frac{2062}{2400}=\frac{1031}{1200}$

Question 6:

A teacher wanted to analyse the performance of two sections of students in a mathematics test of 100 marks. Looking at their performances, she found that a few students got under 20 marks and a few got 70 marks or above. So she decided to group them into intervals of varying sizes as follows: $0-20,20-30, \ldots, 60-70$, $70-100$. Then she formed the following table:

Marks	Number of student
$0-20$	7
$20-30$	10
$30-40$	10
$40-50$	20
$50-60$	20
$60-70$	15
$70-$ above	8
Total	90

(i) Find the probability that a student obtained less than 20% in the mathematics test.
(ii) Find the probability that a student obtained marks 60 or above.

Solution 6:

Total number of students $=90$
(i) Number of students getting less than 20% marks in the test $=7$

Hence, required probability, $\mathrm{P}=\frac{7}{90}$
(ii) Number of students obtaining marks 60 or above $=15+8=23$

Hence, required probability, $\mathrm{P}=\frac{23}{90}$

Question 7:

To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table.

Opinion	Number of students
like	135
dislike	65

Find the probability that a student chosen at random
(i) likes statistics
(ii) does not like it

Solution 7:

Total number of students $=135+65=200$
(i) Number of students liking statistics $=135$
$\mathrm{P}($ students liking statistics $)=\frac{135}{200}=\frac{27}{40}$
(ii) Number of students who do not like statistics $=65$
$P($ students not liking statistics $)=\frac{65}{200}=\frac{13}{40}$

Question 8:

The distance (in km) of 40 engineers from their residence to their place of work were found as follows:

5	3	10	20	25	11	13	7	12	31
19	10	12	17	18	11	32	17	16	2
7	9	7	8	3	5	12	15	18	3
12	14	2	9	6	15	15	7	6	12

What is the empirical probability that an engineer lives:
(i) less than 7 km from her place of work?
(ii) more than or equal to 7 km from her place of work?
(iii) within $1 / 2 \mathrm{~km}$ from her place of work?

Solution 8:

(i) Total number of engineers $=40$

Number of engineers living less than 7 km from their place of work $=9$

Hence, required probability that an engineer lives less than 7 km from her place of work, $\mathrm{P}=\frac{9}{40}$
(ii) Number of engineers living more than or equal to 7 km from their place of work $=40-9=31$ Hence, required probability that an engineer lives more than or equal to 7 km from her place of work, $\mathrm{P}=\frac{31}{40}$
(iii) Number of engineers living within $1 / 2 \mathrm{~km}$ from her place of work $=0$

Hence, required probability that an engineer lives within $1 / 2 \mathrm{~km}$ from her place of work, $\mathrm{P}=0$

Question 11:

Eleven bags of wheat flour, each marked 5 kg , actually contained the following weights of flour (in kg):
4.97, 5.05, 5.08, 5.03, 5.00, 5.06, 5.08, 4.98, 5.04, 5.07, 5.00

Find the probability that any of these bags chosen at random contains more than 5 kg of flour.

Solution 11 :

Number of total bags $=11$
Number of bags containing more than 5 kg of flour $=7$
Hence, required probability, $\mathrm{P}=\frac{7}{11}$

Question 12:

The below frequency distribution table represents the concentration of sulphur dioxide in the air in parts per million of a certain city for 30 days. Using this table, find the probability of the concentration of sulphur dioxide in the interval $0.12-0.16$ on any of these days.

Concentration of SO_{2} (in ppm)	Number of days (frequency)
$0.00-0.04$	4
$0.04-0.08$	9
$0.08-0.12$	9
$0.12-0.16$	2
$0.16-0.20$	2
$0.20-0.24$	30
Total	

Solution 12 :

Number days for which the concentration of sulphur dioxide was in the interval of $0.12-0.16=2$

Total number of days $=30$
Hence, required probability, $\quad \mathrm{P}=\frac{2}{30}=\frac{1}{15}$

Question 13:

The below frequency distribution table represents the blood groups of 30 students of a class. Use this table to determine the probability that a student of this class, selected at random, has blood group $A B$.

Blood group	Number of students
A	9
B	6
$A B$	3
O	12
Total	30

Solution13:

Number of students having blood group $\mathrm{AB}=3$
Total number of students $=30$
Hence, required probability, $\mathrm{P}=\frac{3}{30}=\frac{1}{10}$

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

