CBSE Class 11 Mathematics
 Revision Notes
 Chapter-8
 BINOMIAL THEOREM

1. Binomial Theorem for Positive Integral Indices

2. General and Middle Terms

- Binomial Theorem: The expansion of a binomial for any positive integral n is given by Binomial Theorem, which is

$$
(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}
$$

- The coefficients of the expansions are arranged in an array. This array is called Pascal's triangle.
- The general term of an expansion $(\mathrm{a}+\mathrm{b})^{n} \quad i s T_{r+1}={ }^{n} C_{r} a^{n-r} \cdot b^{r}$
- The general term of an expansion $(a-b)^{n}=(-1)^{r} \cdot{ }^{n} \mathrm{C}_{r} . a^{n-r} . b^{r}$
- The general term of $(1+x)^{n}={ }^{n} \mathrm{C}_{r} . x^{r}$
- The general term of $(1-x)^{n}=(-1)^{r} \cdot{ }^{n} \mathrm{C}_{r} . x^{r}$
- In the expansion $(\mathrm{a}+\mathrm{b})^{n}$, if n is even, then the middle term is the $\left(\frac{n}{2}+1\right)^{t h}$ term. If n is odd, then the middle terms are $\left(\frac{n}{2}+1\right)^{t h}$ and $\left(\frac{n+1}{2}+1\right)^{\text {th }}$ terms.
- $r^{t h}$ term from the end in $(a+b)^{n}=(n+2-r)^{t h}$ term fromt he beginning.
- Method to prove Binomial Theorem:
(a) Principle of Mathematical Induction.
(b) Combinatorial Method.
- Factorial notation:
(i) $n!=1 \times 2 \times 3 \times 4 \ldots \ldots \times n ; \quad 0!=1$
(ii) ${ }^{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!}$
(iii) ${ }^{n} \mathrm{C}_{r}={ }^{n} \mathrm{C}_{n-r}$
(iv) ${ }^{n} \mathrm{C}_{r}+{ }^{n} \mathrm{C}_{r-1}={ }^{n+1} \mathrm{C}_{r}$

