Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

PERMUTATION AND COMBINATION

PERMUTATION AND COMBINATION

1. FUNDAMENTAL PRINCIPLES OF COUNTING

1.1 Fundamental Principle of Multiplication

If an event can occur in m different ways following which another event can occur in n different ways following which another event can occur in p different ways. Then the total number of ways of simultaneous happening of all these events in a definite order is $\mathrm{m} \times \mathrm{n} \times \mathrm{p}$.

1.2 Fundamental Principle of Addition

If there are two jobs such that they can be performed independently in m and n ways respectively, then either of the two jobs can be performed in $(\mathrm{m}+\mathrm{n})$ ways.

2. SOME BASIC ARRANGEMENTS AND SELECTIONS

2.1 Combinations

Each of the different selections made by taking some or all of a number of distinct objects or items, irrespective of their arrangements or order in which they are placed, is called a combination.

2.2 Permutations

Each of the different arrangements which can be made by taking some or all of a number of distinct objects is called a permutation.

Soto

1. Let r and n be positive integers such that $l \leq \mathrm{r} \leq \mathrm{n}$. Then, the number of all permutations of n distinct items or objects taken r at a time, is

$$
{ }^{n} P_{r}={ }^{n} C_{r} \times r!
$$

Proof: Total ways $=n(n-1)(n-2) \ldots(n-\overline{r-1})$

$$
=\frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots(\mathrm{n}-\overline{\mathrm{r}-1})(\mathrm{n}-\mathrm{r})!}{(\mathrm{n}-\mathrm{r})!}
$$

$$
=\frac{n!}{(n-r)!}
$$

$$
={ }^{n} P_{r} .
$$

So, the total no. of arrangements (permutations) of ndistinct items, taking r at a time is ${ }^{n} \mathrm{P}_{\mathrm{r}}$ or $\mathrm{P}(\mathrm{n}, \mathrm{r})$.
2. The number of all permutations (arrangements) of n distinct objects taken all at a time is $n!$.
3. The number of ways of selecting r items or objects from a group of n distinct items or objects, is

$$
\frac{n!}{(n-r)!r!}={ }^{n} C_{r}
$$

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper

3. GEOMETRIC APPLICATIONS OF ${ }^{n}{ }_{r}$

(i) Out of n non-concurrent and non-parallel straight lines, points of intersection are ${ }^{\mathrm{n}} \mathrm{C}_{2}$.
(ii) Out of ' n ' points the number of straight lines are (when no three are collinear) ${ }^{\mathrm{n}} \mathrm{C}_{2}$.
(iii) If out of n points m are collinear, then No. of straight lines $={ }^{n} C_{2}-{ }^{m} C_{2}+1$
(iv) In a polygon total number of diagonals out of n points (no three are collinear) $={ }^{\mathrm{n}} \mathrm{C}_{2}-\mathrm{n}=\frac{\mathrm{n}(\mathrm{n}-3)}{2}$.
(v) Number of triangles formed from n points is ${ }^{\mathrm{n}} \mathrm{C}_{3}$. (when no three points are collinear)
(vi) Number of triangles out of n points in which m are collinear, is ${ }^{\mathrm{n}} \mathrm{C}_{3}-{ }^{\mathrm{m}} \mathrm{C}_{3}$.
(vii) Number of triangles that can be formed out of n points (when none of the side is common to the sides of polygon), is ${ }^{n} C_{3}-{ }^{n} C_{1}-{ }^{n} C_{1} \cdot{ }^{n-4} C_{1}$
(viii)Number of parallelograms in two systems of parallel lines (when $1^{\text {st }}$ set contains m parallel lines and $2^{\text {nd }}$ set contains n parallel lines), is $={ }^{\mathrm{n}} \mathrm{C}_{2} \times{ }^{\mathrm{m}} \mathrm{C}_{2}$
(ix) Number of squares in two system of perpendicular parallel lines (when $1^{\text {st }}$ set contains m equally spaced parallel lines and $2^{\text {nd }}$ set contains n same spaced parallel lines)
$=\sum_{r=1}^{m-1}(m-r)(n-r) ;(m<n)$

4. PERMUTATIONS UNDER CERTAIN CONDITIONS

The number of all permutations (arrangements) of n different objects taken r at a time :
(i) When a particular object is to be always included in each arrangement, is ${ }^{n-1} C_{r-1} \times r!$.
(ii) When a particular object is never taken in each arrangement, is ${ }^{n-1} C_{r} \times r$!.

5. DIVISION OF OBJECTS INTO GROUPS

5.1 Division of items into groups of unequal sizes

1. The number of ways in which $(\mathrm{m}+\mathrm{n})$ distinct items can be divided into two unequal groups containing m and n items, is $\frac{(\mathrm{m}+\mathrm{n})!}{\mathrm{m}!\mathrm{n}!}$.
2. The number of ways in which $(m+n+p)$ items can be divided into unequal groups containing $\mathrm{m}, \mathrm{n}, \mathrm{p}$ items, is

$$
{ }^{m+n+p} C_{m} \cdot{ }^{n+p} C_{m}=\frac{(m+n+p)!}{m!n!p!}
$$

3. The number of ways to distribute $(m+n+p)$ items among 3 persons in the groups containing m, n and p items
$=($ No. of ways to divide $) \times($ No. of groups $)!$

$$
=\frac{(m+n+p)!}{m!n!p!} \times 3!.
$$

5.2 Division of Objects into groups of equal size

The number of ways in which mn different objects can be divided equally into m groups, each containing n objects and the order of the groups is not important, is

$$
\left(\frac{(\mathrm{mn})!}{(\mathrm{n}!)^{\mathrm{m}}}\right) \frac{1}{\mathrm{~m}!}
$$

The number of ways in which mn different items can be divided equally into m groups, each containing n objects and the order of groups is important, is

$$
\left(\frac{(\mathrm{mn})!}{(\mathrm{n}!)^{\mathrm{m}}} \times \frac{1}{\mathrm{~m}!}\right) \mathrm{m}!=\frac{(\mathrm{mn})!}{(\mathrm{n}!)^{\mathrm{m}}}
$$

PERMUTATION AND COMBINATION

6. PERMUTATIONS OF ALIKE OBJECTS

1. The number of mutually distinguishable permutations of n things, taken all at a time, of which p are alike of one kind, q alike of second kind such that $\mathrm{p}+\mathrm{q}=\mathrm{n}$, is

$$
\frac{\mathrm{n}!}{\mathrm{p}!\mathrm{q}!}
$$

2. The number of permutations of n things, of which p are alike of one kind, q are alike of second kind and remaining all are distinct, is $\frac{\mathrm{n}!}{\mathrm{p}!\mathrm{q}!}$. Here $\mathrm{p}+\mathrm{q} \neq \mathrm{n}$
3. The number of permutations of n things, of which p_{1} are alike of one kind; p_{2} are alike of second kind; p_{3} are alike of third kind;; p_{r} are alike of $\mathrm{r}^{\text {th }}$ kind such that

$$
\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots+\mathrm{p}_{\mathrm{r}}=\mathrm{n}, \text { is } \frac{\mathrm{n}!}{\mathrm{p}_{1}!\mathrm{p}_{2}!\mathrm{p}_{3}!\ldots \mathrm{p}_{\mathrm{r}}!}
$$

4. Suppose there are r things to be arranged, allowing repetitions. Let further $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots ., \mathrm{p}_{\mathrm{r}}$ be the integers such that the first object occurs exactly p_{1} times, the second occurs exactly p_{2} times subject, etc. Then the total number of permutations of these r objects to the above condition, is

$$
\frac{\left(\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots+\mathrm{p}_{\mathrm{r}}\right)!}{\mathrm{p}!\mathrm{p}_{2}!\mathrm{p}_{3}!\ldots . \mathrm{p}_{\mathrm{r}}!}
$$

7. DISTRIBUTION OF ALIKE OBJECTS

(i) The total number of ways of dividing n identical items among r persons, each one of whom, can receive 0,1 , 2, or more items $(\leq n)$, is ${ }^{n+r-1} C_{r-1}$.

OR

The total number of ways of dividing n identical objects into r groups, if blank groups are allowed, is ${ }^{n+r-1} C_{r-1}$.
(ii) The total number of ways of dividing n identical items among r persons, each of whom, receives at least one item is ${ }^{n-1} C_{r-1}$.

OR

The number of ways in which n identical items can be divided into r groups such that blank groups are not allowed, is ${ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}-1}$.
(iii) The number of ways in which n identical items can be divided into r groups so that no group contains less than k items and more than $\mathrm{m}(\mathrm{m}<\mathrm{k})$ is

The coefficient of x^{n} in the expansion of
$\left(x^{m}+x^{m+1}+\ldots x^{k}\right)^{r}$

8. NO. OF INTEGRAL SOLUTIONS OF LINEAR EQUATIONS AND INEQUATIONS

Consider the eqn. $\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}+\ldots+\mathrm{x}_{\mathrm{r}}=\mathrm{n} \ldots$ (i)
where $x_{1}, x_{2}, \ldots, x_{r}$ and n are non-negative integers.
This equation may be interpreted as that n identical objects are to be divided into r groups.

1. The total no. of non-negative integral solutions of the equation $\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots .+\mathrm{x}_{\mathrm{r}}=\mathrm{n}$ is ${ }^{\mathrm{n}+\mathrm{r}-1} \mathrm{C}_{\mathrm{r}-1}$.
2. The total number of solutions of the same equation in the set N of natural numbers is ${ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}-1}$.
3. In order to solve inequations of the form

$$
\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{m}} \leq \mathrm{n}
$$

we introduce a dummy (artificial) variable x_{m+1} such that $\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{m}}+\mathrm{x}_{\mathrm{m}+1}=\mathrm{n}$, where $\mathrm{x}_{\mathrm{m}+1} \geq 0$.
The no. of solutions of this equation are same as the no. of solutions of in Eq. (i).

PERMUTATION AND COMBINATION

9. CIRCULAR PERMUTATIONS

1. The number of circular permutations of n distinct objects is $(n-1)$!.
2. If anti-clockwise and clockwise order of arrangements are not distinct then the number of circular permutations of n distinct items is $1 / 2\{(n-1)!\}$
e.g., arrangements of beads in a necklace, arrangements of flowers in a garland etc.

10. SELECTION OF ONE OR MORE OBJECTS

1. The number of ways of selecting one or more items from a group of n distinct items is $2^{\mathrm{n}}-1$.

Proof: Out of n items, 1 item can be selected in ${ }^{n} C_{1}$ ways; 2 items can be selected in ${ }^{\mathrm{n}} \mathrm{C}_{2}$ ways; 3 items can be selected in ${ }^{\mathrm{n}} \mathrm{C}_{3}$ ways and so on......

Hence, the required number of ways
$={ }^{n} C_{1}+{ }^{n} C_{2}+{ }^{n} C_{3}+\ldots+{ }^{n} C_{n}$
$=\left({ }^{\mathrm{n}} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}\right)-{ }^{\mathrm{n}} \mathrm{C}_{0}$
$=2^{\mathrm{n}}-1$.
2. The number of ways of selecting r items out of n identical items is 1 .
3. The total number of ways of selecting zero or more items from a group of n identical items is $(\mathrm{n}+1)$.
4. The total number of selections of some or all out of $p+q+r$ items where p are alike of one kind, q are alike of second kind and rest are alike of third kind, is $[(p+1)(q+1)(r+1)]-1$.
5. The total number of ways of selecting one or more items from p identical items of one kind; q identical items of second kind; ridentical items of third kind and n different items, is $(\mathrm{p}+1)(\mathrm{q}+1)(\mathrm{r}+1) 2^{\mathrm{n}}-1$

11. THE NUMBER OF DIVISORS AND THE SUM

OF THE DIVISORS OF A GIVEN NATURAL NUMBER

Let $N=p_{1}^{n_{1}} \cdot p_{2}^{n_{2}} \cdot p_{3}^{n_{3}} \ldots . \cdot p_{k}^{n_{k}}$
where $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{k}}$ are distinct prime numbers and $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{k}}$ are positive integers.

1. Total number of divisors of $\mathrm{N}=\left(\mathrm{n}_{1}+1\right)\left(\mathrm{n}_{2}+1\right) \ldots\left(\mathrm{n}_{\mathrm{k}}+1\right)$.
2. This includes 1 and n as divisors. Therefore, number of divisors other than 1 and n, is

$$
\left(\mathrm{n}_{1}+1\right)\left(\mathrm{n}_{2}+1\right)\left(\mathrm{n}_{3}+1\right) \ldots\left(\mathrm{n}_{\mathrm{k}}+1\right)-2 .
$$

3. The sum of all divisors of (1) is given by

$$
=\left\{\frac{p_{1}^{n_{1}+1}-1}{p_{1}-1}\right\}\left\{\frac{p_{2}^{n_{2}+1}-1}{p_{2}-1}\right\}\left\{\frac{p_{3}^{n_{3}+1}-1}{p_{3}-1}\right\} \ldots\left\{\frac{p_{k}^{n_{k}+1}-1}{p_{k}-1}\right\} .
$$

12. DEARRANGEMENTS

If n distinct objects are arranged in a row, then the no. of ways in which they can be dearranged so that none of them occupies its original place, is

$$
\mathrm{n}!\left\{1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\ldots .+(-1)^{\mathrm{n}} \frac{1}{\mathrm{n}!}\right\}
$$

and it is denoted by $\mathrm{D}(\mathrm{n})$.
If $r(0 \leq r \leq n)$ objects occupy the places assigned to them i.e., their original places and none of the remaining ($n-r$) objects occupies its original places, then the no. of such ways, is

$$
\begin{gathered}
D(n-r)={ }^{n} C_{r} \cdot D(n-r) \\
={ }^{n} C_{r} \cdot(n-r) \quad\left\{\left\{1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots .+(-1)^{n-r} \frac{1}{(n-r)!}\right\}\right.
\end{gathered}
$$

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

